首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sclerotia of Sclerotinia sclerotiorum inoculated with pycnidiospores of Coniothyrium minitans were studied by means of light microscopy and transmission and scanning electron microscopy. The hyperparasite penetrated the walls of the rind cells by means of physical pressure and destroyed the cell contents. Penetration of medullary hyphae was by enzymic lysis and physical pressure; there was evidence to suggest that the hyperparasite may coil around the host cells before inserting infection hyphae.  相似文献   

2.
In a study using scanning electron microscopy (SEM), the mode of hyperparasitism of Coniothyrium minitans on its host Sclerotinia sclerotiorum was investigated. The SEM micrographs confirm previous reports, from light microscopic studies, that hyphal tips of C. minitans invade the host hypha by direct penetration, without developing appressoria, and that indentation of the host cell wall at the point of penetration is often evident. There is no functional distinction between amain branch and a side branch hypha of the hyperparasite and tips of either type of hyphae are capable of invading host hyphae by direct penetration.  相似文献   

3.
Artificial and modified natural hosts were exposed to females of the gypsy moth [Lymantria dispar (L.)] hyperparasite,Eurytoma appendigaster (Swederus), to investigate its host recognition behavior on the primary host, which are cocooned larvae of the gypsy moth parasite,Cotesia melanoscela (Ratzeburg). Material(s) which caused drilling behavior by the hyperparasite on host cocoons were extracted with both polar and non-polar solvents. However, cocoons washed with large volumes of solvent still caused substantial drilling activities by females, suggesting that additional cues may be important. Results suggest that host recognition in this hyperparasite involves a variety of host characteristics.   相似文献   

4.
Trichothecium roseum (Tr) has been shown to be a highly effective hyperparasite on conidia of Pestalotiopsis funerea (Pf) in vivo and in vitro. The stages of this spore parasitism are: positive tropism of Tr towards Pf conidia, contact between Tr and Pf, formation of simple or lobed appressoria of Tr on the host conidial surface, penetration of the attacked host cells from the base of the appressoria, development of host-internal, mostly branching parasitic hyphae by Tr, desintegration, lysis and death of the parasitized host cells, exit of Tr from the destroyed host cells and its intensive sporulation over Pf remnants. Pf did not show any defence reactions against the attack by Tr. In addition to the antagonistic activities of Tr against Pf reported previously, which are due to extracellular toxins released by Tr, direct hyperparasitism is a second mechanism of antagonism, which contributes to the successful competitive ability of Tr in this fungal interaction.  相似文献   

5.
Assessing the impact of natural enemies of plant and animal pathogens on their host's population dynamics is needed to determine the role of hyperparasites in affecting disease dynamics, and their potential for use in efficient control strategies of pathogens. Here, we focus on the long‐term study describing metapopulation dynamics of an obligate pathogen, the powdery mildew (Podosphaera plantaginis) naturally infecting its wild host plant (Plantago lanceolata) in the fragmented landscape of the Åland archipelago (southwest Finland). Regionally, the pathogen persists through a balance of extinctions and colonizations, yet factors affecting extinction rates remain poorly understood. Mycoparasites of the genus Ampelomyces appear as good candidates for testing the role of a hyperparasite, i.e. a parasite of other parasites, in the regulation of their fungal hosts' population dynamics. For this purpose, we first designed a quantitative PCR assay for detection of Ampelomyces spp. in field‐collected samples. This newly developed molecular test was then applied to a large‐scale sampling within the Åland archipelago, revealing that Ampelomyces is a widespread hyperparasite in this system, with high variability in prevalence among populations. We found that the hyperparasite was more common on leaves where multiple powdery mildew strains coexist, a pattern that may be attributed to differential exposure. Moreover, the prevalence of Ampelomyces at the plant level negatively affected the overwinter survival of its fungal host. We conclude that this hyperparasite may likely impact on its host population dynamics and argue for increased focus on the role of hyperparasites in disease dynamics.  相似文献   

6.
The searching efficiencies of a primary parasite (Diaeretiella rapae (McIntosh )) and a hyperparasite (Alloxysta brassicae (Ash. )) were investigated and compared. In both species, at all parasite densities, there was a curvilinear relationship (P<0.001) between the number of hosts parasitised and the host density. A linear regression (log a=log Q−m log P) was fitted for log area of discovery against log parasite density (P<0.001). The area of discovery for its immediate (i.e. primary) host (viz. Diaeretiella for the hyperparasite and aphid for Diaeretiella) is lower in the hyperparasite than in the primary parasite. In Diaeretialla both the searching efficiency and the mutual interference constant increased (but not significantly, P>0.05) in the presence of its males.  相似文献   

7.
Hyperparasitism of Uromyces appendiculatus var. appendiculatus by Verticillium lecanii Host Recognition, Penetration and Degradation of Spores Culture filtrates of the hyperparasite Verticillium lecanii contain numerous lytic enzymes. When specific substrates were added to the filtrate, degradation of chitin is increased by a factor of 2,25 and degradation of starch is increased by a factor of 1,5. The degradation of uredo- and teliospores of Uromyces appendiculatus var. appendiculatus is documented cytologically. Appressoria-like structures initiated direct penetration of the spore walls. Additional routes of penetration through the germpores of both sporetypes and the pedicles of the teliospores were observed. Degradation of the spore cytoplasm is described. Sugars on the surface of uredo- and teliospores and on hyphae of the hyperparasite were characterized using the gold-marked lectins Con A and WGA. Their role in the host-parasite recognition process is discussed.  相似文献   

8.
A plant parasite parasitizing another plant parasite is known as a hyperparasite. Information is scarce regarding the ecophysiology of hyperparasites and their hosts despite their potential to illuminate processes of host–parasite solute flux. Here we present mineral profiles and stable isotopic data for two associations of the hyperparasite Viscum articulatum and its primary mistletoe and tree hosts. Acting as the terminal sink, the hyperparasite had consistently higher contents of all major and minor elements evaluated compared to the primary parasite and the proximal portion of the tree host branch. The primary parasite had lower contents of Cu, Mg, Mn, N, and Z relative to the proximal portion of the tree host branch, suggesting nutritional stress applied by the hyperparasite. Interestingly Fe and Cu showed no consistent pattern between host and primary parasite, while the osmotically active elements P and K increased from tree host, to primary mistletoe, and finally the hyperparasitic mistletoe. The δ13C partitioning patterns for hyperparasites, primary parasites, and hosts were non‐linear in contrast to linear patterns reported from the literature for autoparasitic mistletoe associations, demonstrating fundamental differences between nutrition in hyperparasites and autoparasites.  相似文献   

9.
In vitro studies on hyphal interactions between phyllosphere and phylloplane fungi revealed Mucor circinelloides to be a destructive hyperparasite of Rhizopus nigricans. The mycoparasite penetrated the host hypha and formed sporangiophores and sporangia on different parts of Rhizopus nigricans.  相似文献   

10.
The infecting hyphae of Phytophthora capsici grew intercellularly in infected tissues of roots and stems of pepper (Capsicum annuum). The vascular tissues were not markedly disorganized even when heavily infected. Intercellularly growing hyphae penetrated the host cells by forming haustorium-like bodies. The consistent features of ultrastructural changes in infected tissues of pepper roots and stems were degeneration of cell organelles and dissolution of host cell walls. The cytoplasm detached from the cell wall aggregated abundantly around some haustorium-like bodies or the penetration sites of fungal hyphae. The host cell walls were palely stained, thinned and swollen, possibly being biochemically altered by the action of fungal macerating enzymes. Electron-dense, wall-like material was apposed on the outer wall of xylem vessel contacted by fungal hyphae. The infecting hyphae were also surrounded by granular, dark-staining cytoplasm. Characteristics of host cell responses to the invading P. capsici were the deposition of papilla-like material on host cell walls next to hyphae and the encasement of haustorium-like bodies with wall appositions.  相似文献   

11.
Chinese cabbage roots colonized by the dematiaceous fungal taxon Heteroconium chaetospira were previously found to become highly resistant to clubroot and Verticillium yellows. The dematiaceous fungus possesses an endophytic nature, but no detailed anatomical studies on endophyte–host plant interactions have so far been provided. Light and electron microscopy revealed that hyphae of H. chaetospira were abundant on and inside the root epidermal cells by 3 weeks following inoculation. The penetration pegs easily breached into epidermal cells, and the infection hyphae penetrated into cortical cells. Some appressorium-like swollen structures formed from intracellular hyphae, but no visible degradation of the host cell walls was evident where the hyphae contacted. No visible signs of host reactions and no invagination of the host plasma membrane around the hyphae were seen in the host cells. By 8 weeks following inoculation, masses of closely packed fungal cells had been formed in some cells of the epidermis and cortical layers, but further hyphal ingress was halted, mostly in the inner cortical cell layer. Thus, root vascular cylinders remained intact.  相似文献   

12.
Summary Electron microscopy of protocorms of Dactylorhiza purpurella infected with a symbiotic Rhizoctonia sp. showed that the intracellular hyphae examined did not penetrate the plasmalemma of the host cell. Walls of hyphae within cells bore many hemispherical protuberances over which the host plasmalemma was closely pressed. we estimate that these protuberances would increase the area of contact between hyphae and host plasmalemma by about 15%. They were not found on hyphae growing on agar. Except for these protuberances, and some vesicles or tubules which invaginated the fungus plasmalemma, no other structures were seen which could be suggested to be adaptations to transport across the living fungus-host interface.  相似文献   

13.
Ustilago esculenta is a biotrophic smut fungus that parasitizes Zizania latifolia, an edible aquatic vegetable of the southern China region. Infection results in swelling of the upper parts of the Z. latifolia culm which are called jiaobai and have a unique flavor and delicacy and are popular among Chinese. The infection process of Z. latifolia by U. esculenta was investigated with light and electron microscopy. Distribution of hyphae was uneven in plants; hyphae were mainly present in the swollen upper parts (jiaobai), the nodal regions of mature culms and old rhizomes and buds or shoots. Hyphae were rare in the internodes of mature culms and were fewer in the internodes of old rhizomes. All new buds produced on the nodes of culms and rhizomes were infected by hyphae in November before and in March after overwintering. The hyphae grew into the buds from the parent nodes via intervascular tissues only or via parenchyma tissues and vascular bundles. Hyphae extended within and between the host cells and frequently formed hyphal aggregations or clusters, not only in the mature tissues but also in developing tissues. The typical interface between the fungal hyphal wall and invaginated host plasma membrane comprised a sheath. The sheath surrounding a hyphae comprised an outer electron-opaque matrix and an inner electron-dense layer. The electron-opaque matrix layers were thicker in jiaobai tissues, ranging from 0.28 to 0.85 μm. The electron-dense hyphal coatings were more conspicuous in the young buds or shoots and mature culms than in the jiaobai. The intercellular hyphae caused large cavity formation between the cells or rupture of host cell walls, for gaining entry into host cells. The broken host cell wall fused with the electron-opaque matrix of the hyphal sheath as an interactive interface. The teliospore wall and wall ornamentation development was the same in postmature jiaobai tissues with sporadic sori and in the huijiao (jiaobai tissues containing the massive sori), but a sheath enveloping the teliospore was more transparent in the process of teliospore development in the jiaobai than in the huijiao.  相似文献   

14.
The mycoparasitic interactions of Verticillium biguttatum with Rhizoctonia solani and with a variety of other soil-borne fungi were investigated in dual cultures. V. biguttatum interacted with various soil fungi by appressed growth along the host hyphae and infrequent penetrations. Intracellular growth and subsequent sporulation, however, only occurred with R. solani, a few binucleate Rhizoctonia and Ceratobasidium spp., and Sclerotinia sclerotiorum. Effective mycoparasitism on sclerotia was restricted to those belonging to R. solani.Electron-microscopic observations revealed that V. biguttatum can penetrate the host cell with infection tubes. This process is probably mediated by enzymatic hydrolysis of the cell wall. Subsequently, trophic hyphae develop within the host cytoplasm, ultimately resulting in death of the host cell.  相似文献   

15.
Interactions of Pythium oligandrum and four plant‐pathogenic Pythium spp. (P. ultimum, P. vexans, P. graminicola and P. aphanidermatum,) were studied in vitro by (i) video microscopy of hyphal interactions on water agar films, (ii) counting of host and mycoparasite propagules in different regions of opposing colonies on sunflower‐seed extract agar films and (Hi) ability of P. oligandrum to overgrow plates of potato‐dextrose agar previously colonized by Pythium spp. Pythium oligandrum typically coiled round the hyphae of Pythium hosts and penetrated the host hyphae after approximately 50 min from the hyphal coils, causing disruption of host hyphal tips up to 1.2 mm ahead of contact points. The relative growth rates of mycoparasite and host hyphae, timing of penetration and distance (sub‐apical) at which penetration led to host tip disruption were used to assess the potential of mycoparasitism by P. oligandrum to prevent the growth of Pythium hosts. P. aphanidermatum was unique among the ‘host’ Pythium spp. in being largely unaffected by P. oligandrum and in antagonizing the mycoparasite by coiling and penetrating the mycoparasite hyphae. Other host Pythium spp. apparently differed in susceptibility, the most susceptible being P. vexans and P. ultimum, whereas P. graminicola was more resistant. The results are discussed in relation to the role of P. oligandrum as a biocontrol agent, especially for limiting the ability of other Pythium spp. to increase their propagule populations in crop residues.  相似文献   

16.
The effects of arbuscular mycorrhizal fungi alkaline phosphatase (ALP) activities on the drought-resistance of Hippophae rhamnoides under water stress have been studied using histochemical techniques. The result shows in the mycorrhizae that total hyphae and functional hyphae form the base for the active hyphae, and amounts follow the order total hyphae>functional hyphae>active hyphae. Active hyphae play an important role in the biomass accumulation of the hosts; the hyphae with phosphatase activity (ALP) have a positive and strong effect on H. rhamnoides growth and its drought-resistance, and the rise of ALP is related to an increase in the fresh weight of the host trees, and a reduction of wilting. The direct participation of ALP in the P nutrient exchange host trees can improve the nutrient and water conditions, and raise their drought-resistance. Received: 17 August 1998 / Accepted: 18 March 1999  相似文献   

17.
Rhizophydium distinction Petersen and its hyperparasite are reported from Polysiphonia nigrescens in North Carolina. The planonts of R. discinctum, undescribed previously, are posteriorly uniflagellate. Olpidiopsis paradoxus (Petersen) Johnson is proposed as a new combination for the holocarpic, endobiotic fungus parasitizing the Rhizophydium. Early infection stages are evidenced by the accumulation of oil deposits in the host cytoplasm. Resting spores are unknown.  相似文献   

18.
The endophyte, that is, the haustorial part within the tissues of the host plant Impatiens balsamina, of the parasitic angiosperm Cuscuta japonica was studied with light and electron microscopy. The endophyte consisted mainly of vacuolated parenchymatous axial cells and elongate, superficial (epidermal) cells. Then the elongate, epidermal cells separated from each other and transformed into filamentous cells, called searching hyphae. The hyphae grew independently either intercellularly or intracellularly in the host parenchyma. The apical end of the hyphal cells was characterized by conspicuous, large nuclei with enlarged nucleoli and very dense cytoplasm with abundant organelles, suggesting that the hyphal cells penetrating host tissue were metabolically very active. Numerous osmiophilic particles and chloroplasts were noted in the hyphae. The osmiophilic particles were assumed to be associated with elongation of the growing hyphe. Plasmodemata connections between the searching hyphal cells of the parasite and the host parenchyma cells were not detected. Hyphal cells that reached the host xylem differentiated into water-conducting xylic hyphae by thickening of the secondary walls. A xylem bridge connecting the parasite and the host was confirmed from serial sections. Some hyphal cells that reached the host phloem differentiated into nutrient-conducting phloic hyphae. Phloic hyphae had a thin layer of peripheral cytoplasm with typical features of sieve-tube members in autotrophic angiosperms, i.e., parallel arrays of smooth endoplasmic reticulum, mitochondria, and plastids with starch granules. Interspecific open connections via the sieve pores of the host sieve elements and plasmodesmata of the parasite phloic hyphae were very rarely observed, indicating that the symplastic translocation of assimilate to the parasite from the host occurred.  相似文献   

19.
Scanning electron microscopy showed that hyphae of Coniothyrium minitans produced appressorium-like swellings when they came in contact with Sclerotinia sclerotiorum in dual culture on PDA. The parasitized hyphae gradually skrank and collapsed, and hyphae of the mycoparasite were found inside the host hyphae. The mycoparasite hyphae grew inter- and intracellularly within the sclerotia of S. sclerotiorum. In the later stages of parasitism, hyphae of the mycoparasite proliferated extensively within the sclerotia and formed pycnidia near the sclerotial surface. At this stage, the sclerotia became flattened, soft and disintegrated. Sclerotia parasitized by C. minitans failed to germinate either myceliogenically or carpogenically.  相似文献   

20.
The use of Verticillium lecanii as a biological control agent against the bean rust fungus Uromyces appendiculatus var. appendiculatus in the field and in the glasshouse The deuteromycete V. lecanii parasites uredo- and teliospores of the bean-rust-fungus U. appendiculatus var. appendiculatus. We investigated the conditions for the use of the hyperparasite as biological control agent in the field and in glasshouses. The growth rate of the hyperparasite was 0,3 cm per day at 25 °C. Under suitable conditions in the lab (25 °C, 100 % r. h.) it took about 20 days to invade 100 % of uredospores and 65 % of teliospores. We failed to prevent the spread of bean-rust-fungus spores in the field, but we succeeded in the glasshouse by 68 %, compared to the untreated controls, using the hyperparasite V. lecanii as biological control agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号