共查询到20条相似文献,搜索用时 31 毫秒
1.
Identification of dynein heavy chain genes expressed in human and mouse testis: chromosomal localization of an axonemal dynein gene 总被引:1,自引:0,他引:1
Jü rgen Neesen Michael R. Koehler Renate Kirschner Claus Steinlein Jü rgen Kreutzberger Wolfgang Engel Michael Schmid 《Gene》1997,200(1-2):193-202
Dynein heavy chains are involved in microtubule-dependent transport processes. While cytoplasmic dyneins are involved in chromosome or vesicle movement, axonemal dyneins are essential for motility of cilia and flagella. Here we report the isolation of dynein heavy chain (DHC)-like sequences in man and mouse. Using polymerase chain reaction and reverse-transcribed human and mouse testis RNA cDNA fragments encoding the conserved ATP binding region of dynein heavy chains were amplified. We identified 11 different mouse and eight human dynein-like sequences in testis which show high similarity to known dyneins of different species such as rat, sea urchin or green algae. Sequence similarities suggest that two of the mouse clones and one human clone encode putative cytoplasmic dynein heavy chains, whereas the other sequences show higher similarity to axonemal dyneins. Two of nine axonemal dynein isoforms identified in the mouse testis are more closely related to known outer arm dyneins, while seven clones seem to belong to the inner arm dynein group. Of the isolated human isoforms three clones were classified as outer arm and four clones as inner arm dynein heavy chains. Each of the DHC cDNAs corresponds to an individual gene as determined by Southern blot experiments. The alignment of the deduced protein sequences between human (HDHC) and mouse (MDHC) dynein fragments reveals higher similarity between single human and mouse sequences than between two sequences of the same species. Human and mouse cDNA fragments were used to isolate genomic clones. Two of these clones, gHDHC7 and gMDHC7, are homologous genes encoding axonemal inner arm dyneins. While the human clone is assigned to 3p21, the mouse gene maps to chromosome 14. 相似文献
2.
3.
4.
5.
6.
Using pulse-chase conditions in culture we have investigated the incorporation of 3H-leucine into tubulin of isolated oviducts from 5 day-old mice. Label appears in soluble, particulate and axonemal fractions minutes after incubation. In the latter two fractions, but not in the soluble fraction, this label is rapidly diluted under chase conditions. The data do not fit a simple model of sequential transfer of radioactively labeled, newly synthesized tubulin from a soluble fraction through centriole precursors to assembled ciliary axonemes. 相似文献
7.
Identification of recombinant phages containing sequences from different rat myosin heavy chain genes. 总被引:12,自引:3,他引:12 下载免费PDF全文
U Nudel D Katcoff Y Carmon D Zevin-Sonkin Z Levi Y Shaul M Shani D Yaffe 《Nucleic acids research》1980,8(10):2133-2146
The construction and identification of a recombinant plasmid containing a cDNA insert which hybridizes specifically to myosin heavy chain mRNA is described. The plasmid was used as a probe to screen a rat genomic library for recombinant phages containing myosin heavy chain sequences. Six clones with approximately 15 k bp inserts each were isolated. Digestion with several restriction enzymes and hybridization of the fractionated DNA with the plasmid probe showed that the clones contained 3 different DNA inserts. Electron microscopy of a heteroduplex made by hybridization of DNA from two clones confirmed that the inserts originated in different genes. Hybridization of size-fractionated ECOR1 digested rat spleen DNA with the cloned probe suggested the existence of at least 5 myosin heavy chain genes. 相似文献
8.
The determination of the structure and the expression of dynein during embryonic development are central to the understanding of dynein function. As an important first step toward these objectives, cDNAs encoding portions of sea urchin ciliary dynein were identified by antibody screening of a sea urchin cDNA expression library. Because of the complete lack of protein sequence data, it was first necessary to prove the identity of the dynein cDNAs. Of the five cDNA inserts initially cloned, one, designated P72A1, was characterized extensively. Four independent criteria demonstrated that P72A1 encoded a portion of a dynein heavy chain. (1) The beta-galactosidase-P72A1 fusion protein affinity-purified dynein-specific antibodies from crude antiserum. (2) Two other antisera to dynein, raised independently of the antiserum used to screen the cDNA library, reacted with the fusion protein. (3) A new antiserum raised against the fusion protein reacted with authentic dynein heavy chain on Western blots and stained embryonic cilia by indirect immunofluorescence microscopy. (4) Two new antisera, elicited against opposite ends of the P72A1 open reading frame, each reacted with authentic dynein heavy chain protein. Western blot analyses of dissociated dynein heavy chains revealed that P72A1 encoded a portion of the beta heavy chain. Epitope mapping experiments confirmed the identity of P72A1 as part of the beta heavy chain and also demonstrated that P72A1 encoded epitopes of the carboxyl-terminal fragment B domain of the dynein beta heavy chain. Northern blot analyses of poly(A)+ RNA revealed that P72A1 hybridized with a large RNA species ca. 12.5 kb in length. The dynein mRNA concentration increased during embryonic development. Dot blot analyses of RNA isolated at various times after embryo deciliation demonstrated that the dynein beta heavy chain mRNA accumulated rapidly in response to deciliation. The accumulation was similar to but not identical with the induction of tubulin mRNA in response to the same stimulus. 相似文献
9.
A Habura I Tikhonenko R L Chisholm M P Koonce 《The Journal of biological chemistry》1999,274(22):15447-15453
Cytoplasmic dynein is a multisubunit microtubule-based motor protein that is involved in several eukaryotic cell motilities. Two dynein heavy chains each form a motor domain that connects to a common cargo-binding tail. Although this tail domain is composed of multiple polypeptides, subunit organization within this region is poorly understood. Here we present an in vitro dissection of the tail-forming region of the dynein heavy chain from Dictyostelium. Our work identifies a sequence important for dimerization and for binding the dynein intermediate chain. The core of this motif localizes within an approximately 150-amino acid region that is strongly conserved among other cytoplasmic dyneins. This level of conservation does not extend to the axonemal dynein heavy chains, suggesting functional differences between the two. Dimerization appears to occur through a different mechanism than the heavy chain-intermediate chain interaction. We corroborate the in vitro interactions with in vivo expression of heavy chain fragments in Dictyostelium. Fragments lacking the interaction domain express well, without an obvious phenotype. On the other hand, the region crucial for both interactions appears to be lethal when overexpressed. 相似文献
10.
Yagi T Minoura I Fujiwara A Saito R Yasunaga T Hirono M Kamiya R 《The Journal of biological chemistry》2005,280(50):41412-41420
Ciliary and flagellar axonemes contain multiple inner arm dyneins of which the functional difference is largely unknown. In this study, a Chlamydomonas mutant, ida9, lacking inner arm dynein c was isolated and shown to carry a mutation in the DHC9 dynein heavy chain gene. The cDNA sequence of DHC9 was determined, and its information was used to show that >80% of it is lost in the mutant. Electron microscopy and image analysis showed that the ida9 axoneme lacked electron density near the base of the S2 radial spoke, indicating that dynein c localizes to this site. The mutant ida9 swam only slightly slower than the wild type in normal media. However, swimming velocity was greatly reduced when medium viscosity was modestly increased. Thus, dynein c in wild type axonemes must produce a significant force when flagella are beating in viscous media. Because motility analyses in vitro have shown that dynein c is the fastest among all the inner arm dyneins, we can regard this dynein as a fast yet powerful motor. 相似文献
11.
12.
13.
I R Gibbons D J Asai W J Tang B H Gibbons 《Biology of the cell / under the auspices of the European Cell Biology Organization》1992,76(3):303-309
By making the hypothesis that the pattern of conserved sequence residues in the vicinity of the hydrolytic ATP-binding site of dynein would resemble that in myosins from a broad variety of sources, we designed degenerate oligonucleotide primers capable of amplifying this region of multiple dynein isoforms from sea urchin embryo poly(A)+ RNA. Quantification of the expression of two of these dynein isoforms has shown that the level of mRNA encoding for the beta-heavy chain, like that of tubulin, increases 2-3-fold after deciliation of the embryos, whereas the expression of the second dynein isoform, like that of actin, is essentially unaffected. This second isoform is believed to be the cytoplasmic dynein of sea urchin embryos. 相似文献
14.
Calcium-dependent ciliary reversals are seen in ciliated protozoans such as Tetrahymena in response to depolarizing stimuli, but the axonemal mechanisms responsible for this response are not well understood. The model is that the outer arm dyneins (OADs) control the beating frequency while the inner arm dyneins (IADs) regulate ciliary waveform. Since ciliary reversal is a type of waveform change, the model would predict that IAD mutations could affect ciliary reversal. We have used gene disruption techniques to generate several behavioral mutants of Tetrahymena with functional disruptions of various IADs. One such mutant, called KO-6, is missing I1 (the two-headed IAD) and is unable to show ciliary reversals in response to any stimuli due to a loss of axonemal Ca2+ sensitivity [Eur J Cell Biol 80 (2001) 486-497; Cell Motil Cytoskeleton 53 (2002) 281-288.]. In contrast, disruption of 3 one-headed IADs [Liu et al., Cell Motil Cytoskeleton 59 (2004), 201-214] produced mutants, which showed over-responsiveness in bioassays measuring either their depolarization-induced avoiding reactions (AR) in Na+ and Ba2+ solutions or their duration of backward swimming (continuous ciliary reversal or CCR) in K+ solutions. Detergent-extracted and reactivated mutants also showed increased probabilities of CCR at lower Ca2+ concentrations suggesting that the behavioral over-responsiveness of these three mutants in vivo is due to increased axonemal Ca2+ sensitivity. Our data suggest the possibility that the one-headed IADs and the two-headed IAD act antagonistically in vivo and that loss of any one of the one-headed IADs leads to behavioral over-responsiveness due to less resistance to I1-induced reversals. 相似文献
15.
16.
The translocation of dynein along microtubules is the basis for a variety of essential cellular movements. Despite a general domain organization that is found in all the cytoskeletal motors, there are structural features of dynein that set it apart from the other motors. These include a track-binding site that is located at the tip of a long projection, and six nucleotide-binding modules that together form the globular head of dynein. These unique features suggest that dynein produces movement by a mechanism that is different from that used by the other motors. 相似文献
17.
18.
19.
Regulation of myosin heavy chain expression during rat skeletal muscle development in vitro 总被引:10,自引:0,他引:10 下载免费PDF全文
Signals that determine fast- and slow-twitch phenotypes of skeletal muscle fibers are thought to stem from depolarization, with concomitant contraction and activation of calcium-dependent pathways. We examined the roles of contraction and activation of calcineurin (CN) in regulation of slow and fast myosin heavy chain (MHC) protein expression during muscle fiber formation in vitro. Myotubes formed from embryonic day 21 rat myoblasts contracted spontaneously, and approximately 10% expressed slow MHC after 12 d in culture, as seen by immunofluorescent staining. Transfection with a constitutively active form of calcineurin (CN*) increased slow MHC by 2.5-fold as determined by Western blot. This effect was attenuated 35% by treatment with tetrodotoxin and 90% by administration of the selective inhibitor of CN, cyclosporin A. Conversely, cyclosporin A alone increased fast MHC by twofold. Cotransfection with VIVIT, a peptide that selectively inhibits calcineurin-induced activation of the nuclear factor of activated T-cells, blocked the effect of CN* on slow MHC by 70% but had no effect on fast MHC. The results suggest that contractile activity-dependent expression of slow MHC is mediated largely through the CN-nuclear factor of activated T-cells pathway, whereas suppression of fast MHC expression may be independent of nuclear factor of activated T-cells. 相似文献