首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
Premature ovarian failure occurs in almost 1% of women under age 40. Molecular alterations of the FSH receptor (FSHR) have recently been described. A first homozygous mutation of the FSHR was identified in Finland. More recently, we described two new mutations of the FSHR in a woman presenting a partial FSH-resistance syndrome (patient 1). We now report new molecular alterations of the FSHR in another woman (patient 2) who presented at the age of 19 with primary amenorrhea contrasting with normal pubertal development. She had high plasma FSH, and numerous ovarian follicles up to 3 mm in size were evidenced by ultrasonography. Histological and immunohistochemical examination of ovarian biopsies revealed the presence of a normal follicular development up to the antral stage and disruption at further stages. DNA sequencing showed two heterozygous mutations: Asp224Val in the extracellular domain and Leu601Val in the third extracellular loop of FSHR. Cells transfected with expression vectors encoding the wild type or the mutated Leu601Val receptors bound hormone with similar affinity, whereas binding was barely detectable with the Asp224Val mutant. Confocal microscopy showed the latter to have an impaired targeting to the cell membrane. This was confirmed by its accumulation as a mannose-rich precursor. Adenylate cyclase stimulation by FSH of the Leu601Val mutant receptor showed a 12+/-3% residual activity, whereas in patient 1 a 24+/-4% residual activity was detected for the Arg573Cys mutant receptor. These results are in keeping with the fact that estradiol and inhibin B levels were higher in patient 1 and that stimulation with recombinant FSH did not increase follicular size, estradiol, or inhibin B levels in patient 2 in contrast to what was observed for patient 1. Thus, differences in the residual activity of mutated FSHR led to differences in the clinical, biological, and histological phenotypes of the patient.  相似文献   

4.
Although gonadotropins have been reported to downregulate FSH-receptor (FSHR) mRNA levels in the ovaries of female rats, the effect of the gonadotropin surge, particularly FSH, on hamster follicular FSHR mRNA levels warrants further examination. The objectives of the present study were to clone and determine the complete FSHR cDNA sequence of the hamster and to delineate the effects of endogenous and exogenous FSH on the steady-state levels of ovarian FSHR mRNA. Complete FSHR cDNA was derived from hamster ovarian total RNA by the strategy of 3'- and 5'-rapid amplification of cDNA ends. Ovaries were obtained before and after the endogenous gonadotropin surge or exogenous FSH administration, and the steady-state levels of FSHR mRNA were assessed by Northern blot hybridization. Cloned FSHR cDNA consists of a reading frame corresponding to exons 1-10 of the human FSHR gene and the 5'- and 3'-untranslated regions. The nucleic acid and amino acid sequences of the reading frame were at least 87% and 92% identical, respectively, to that of human, rat, and mouse FSHR. Furthermore, the amino acid sequence contained seven transmembrane domains characteristic of the FSHR. The steady-state levels of FSHR mRNA increased from estrus (Day 1) to reach a peak on proestrus (Day 4) noon; however, significant attenuation was noted following the gonadotropin surge, which was blocked by phenobarbital. Exogenous FSH also downregulated, both dose- and time-dependently, ovarian FSHR mRNA levels. These data indicate that the nucleic acid sequence of hamster FSHR has been identified and that FSH modulates FSHR mRNA levels in the hamster ovary.  相似文献   

5.
6.
A possible role for gonadotrophins luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in the prostate physiology has been suggested in humans and rats. This study aimed at investigating the presence of receptors for LH and FSH (LHR and FSHR) in the canine prostate. Prostates were collected at post mortem from 6 clinically healthy, sexually intact beagles free from any prostatic disorder. Tissue was sampled from dorsal, middle and ventral regions of each prostate. Immunohistochemical localization was performed on wax-embedded sections using polyclonal antibodies for LHR or FSHR. The pattern and intensity of staining in the parenchyma (glandular epithelium) and stroma were determined using a semiquantitative histologic assessment. Receptors for LH and FSH were consistently present in both the glandular epithelium and the stroma in all tissue samples examined. Expression for both receptors was higher in the glandular epithelium than the stroma of all prostatic regions (P < 0.001). In the glandular epithelium, LHR (P < 0.01) and FSHR (P < 0.05) expression was lower in the lateral than the other regions, and there was no difference between dorsal and ventral regions. However, variations in the expression for LHR and FSHR among prostatic regions were not found in the stroma. These findings have demonstrated that LHR and FSHR are expressed in the dog prostate, and the variation observed in their levels of expression among its regions and tissue layers suggests a potential role of gonadotrophins LH and FSH in the regulation of the prostate physiology, particularly the glandular epithelium.  相似文献   

7.
Ghosalkar JD  Mahale SD 《Peptides》2006,27(11):2894-2900
The extracellular domain (ECD) of the follicle stimulating hormone receptor (FSHR) has been shown to be a major determinant of hormone selectivity. The N-terminal 9-30 region, the sequence of which is unique to FSHR, has been extensively studied earlier and has been proposed to be an FSHR neutralizing epitope. In this study antipeptide antibodies specific to the peptide 9-30 were generated and used for identifying a specific immunodominant region within it. Overlapping peptides corresponding to the regions 9-19, 15-25 and 20-30 were synthesized. The ability of the antipeptide antibodies to 9-30 of FSHR to bind to different peptides was checked. The results indicated that the antibodies mainly recognized the peptide 20-30 and not the other two overlapping peptides. Further, the effect of the peptide 20-30 on the binding of radiolabeled FSH to its receptor was monitored. This peptide showed FSH-binding inhibitory activity with an IC(50) value of 0.598 x 10(-4)M and was more effective than the peptide 9-30 itself. Binding kinetics revealed that the observed effect of the peptide 20-30 is due to mixed type of inhibitory mechanism. This is the smallest peptide from the rat FSHR sequence having ability to inhibit FSH binding to its receptor by more than 90%.  相似文献   

8.
Recent studies suggest that bone marrow stem cells (BMSCs) are promising grafts to treat a variety of diseases, including reproductive dysfunction. Primary ovarian failure is characterized by amenorrhea and infertility in a normal karyotype female, with an elevated serum level of follicle-stimulating hormone (FSH) and a decrease level of estrogen caused by a mutation in FSH receptor (FSHR) gene. Currently, there is no effective treatment for this condition. The phenotype of FSHR (-/-) mouse, FORKO (follitropin receptor knockout), is a suitable model to study ovarian failure in humans. Female FORKO mice have elevated FSH, decreased estrogen levels, are sterile because of the absence of folliculogenesis, and display thin uteri and small nonfunctional ovaries. In this study, we determined the effects of BMSC transplantation on reproductive physiology in this animal model. Twenty four hours post BMSC transplantation, treated animals showed detectable estroidogeneic changes in daily vaginal smear. Significant increase in total body weight and reproductive organs was observed in treated animals. Hemotoxylin and eosin (H&E) evaluation of the ovaries demonstrated significant increase in both the maturation and the total number of the follicles in treated animals. The FSH dropped to 40-50% and estrogen increased 4-5.5 times in the serum of treated animals compared to controls. The FSHR mRNA was detected in the ovaries of treated animals. Our results show that intravenously injected BMSCs were able to reach the ovaries of FORKO mice, differentiate and express FHSR gene, make FSHR responsive to FSH, resume estrogen hormone production, and restore folliculogenesis.  相似文献   

9.
10.
目的探讨大鼠胃组织中是否表达卵泡刺激素(FSH)及其受体(FSHR),为进一步研究FSH对消化系统的功能调节提供理论依据。方法选取SD大鼠20只,雌雄不拘,经腹腔注射戊巴比妥钠麻醉成功后,用4%多聚甲醛先快后慢灌流固定2h,开腹取胃组织置于300g/L蔗糖液中直至组织沉底,恒冷箱切片机切成厚度为6/zm的组织切片用于单标记免疫荧光定位研究。另一部分胃组织放入4%多聚甲醛室温固定6—8h,按石蜡包埋程序包埋后制成4pm石蜡切片用于原位杂交研究。结果在大鼠胃底腺的壁细胞和主细胞呈FSH和FSHR免疫反应阳性,阳性物质分布于细胞质,细胞核呈阴性反应;上述细胞同样含有FSH和FSHRmRNA杂交信号,信号物质亦分布于细胞质内,细胞核呈阴性反应。结论FSH及其受体定位于大鼠壁细胞和主细胞,同时大鼠壁细胞和主细胞又能产生FSH及其受体,说明FSH对壁细胞和主细胞功能作用可能是通过旁分泌或自分泌的作用来实现的。  相似文献   

11.
12.
Steroidal regulation of gene expression in follicular cells is not completely defined. Granulosa cells from 5 mm bovine follicles were cultured and treated and steady-state mRNA levels determined for FSHR (follicle-stimulating hormone receptor) and CYP19A1 (aromatase). Cells were treated for 5 days with (0.1-300 ng/ml) 17beta-estradiol (E2), testosterone (T), or 5alpha-dihydrotestosterone (DHT). FSHR mRNA was increased by T and DHT but not E2. In contrast, CYP19A1 mRNA was induced by all doses of E2 but only high doses of T and DHT. Similarly, varying treatment duration (1-5 days) showed that FSHR was increased by T and DHT and CYP19A1 mRNA increased by E2 and T at all times. Synergism between steroid hormones and FSH or forskolin was also evaluated. FSH or E2 did not alter FSHR mRNA and did not enhance DHT stimulation of FSHR mRNA. In contrast, DHT alone had no effect on CYP19A1 mRNA but synergized with FSH plus E2 to increase CYP19A1 mRNA, probably due to induction of FSHR by DHT. Effects of E2 and T on CYP19A1 were blocked by ICI 182,780, indicating mediation by estrogen receptors. However, the specific androgen receptor antagonist bicalutamide did not block E2 or T effects on CYP19A1 but did block T and DHT stimulation of FSHR. Thus, FSHR is specifically regulated through androgen receptor, whereas CYP19A1 is regulated by multiple pathways, including estrogen receptors and cAMP/protein kinase A induced by FSHR activation in granulosa cells. These inter- and intracellular regulatory mechanisms may be critical for normal follicle growth and dominant follicle selection.  相似文献   

13.
Long-term in vitro culture (16?days) of caprine ovarian cortical tissue was performed to test the effect of FSH and IGF-I on the viability and development of preantral follicles and mRNA expression for FSH and IGF-I receptors. Fragments were cultured in ??-MEM+ alone or supplemented with different combinations of FSH and IGF-I (sequential medium). The culture period was divided into two parts. Follicles were isolated and classified as normal or abnormal and primordial, primary or secondary. Viability of isolated follicles was determined by staining with Trypan Blue dye. Expression of FSHR and IGFR-1 mRNA was evaluated by qPCR. At day 8 of culture, more (P?<?0.05) follicles in treatments containing IGF-I alone or associated with FSH were normal and viable (overall mean, 81?% and 79?% respectively) than the treatments cultured with FSH or ??-MEM+ alone (68?% and 63?%). At day 16 of culture, treatments with FSH and/or IGF-I had more (P?<?0.05) viable follicles (69?%) than ??-MEM+ (38?%). The percentages of follicular development observed in the IGF-I/FSH, FSH+IGF-I/FSH+IGF-I and FSH/IGF-I treatments were similar but higher (P?<?0.05) than the other treatments. FSH and IGF-I during the entire culture period maximized (P?<?0.05) follicular and oocyte diameters and the percentage of secondary follicles (28?%). FSHR mRNA expression in the non-cultured control was similar to the treatment supplemented with FSH and IGF-I but higher (P?<?0.05) than ??-MEM+. IGFR-1 expression did not differ among treatments. Association of FSH and IGF-I in long-term in vitro culture promoted follicular development, maintaining FSHR mRNA expression.  相似文献   

14.
FSH mediates its testicular actions via a specific Sertoli cell G protein-coupled receptor. We created a novel transgenic model to investigate a mutant human FSH receptor (FSHR(+)) containing a single amino acid substitution (Asp567Gly) equivalent to activating mutations in related glycoprotein hormone receptors. To examine the ligand-independent gonadal actions of FSHR(+), the rat androgen-binding protein gene promoter was used to direct FSHR(+) transgene expression to Sertoli cells of gonadotropin-deficient hypogonadal (hpg) mice. Both normal and hpg mouse testes expressed FSHR(+) mRNA. Testis weights of transgenic FSHR(+) hpg mice were increased approximately 2-fold relative to hpg controls (P < 0.02) and contained mature Sertoli cells and postmeiotic germ cells absent in controls, revealing FSHR(+)-initiated autonomous FSH-like testicular activity. Isolated transgenic Sertoli cells had significantly higher basal ( approximately 2-fold) and FSH-stimulated ( approximately 50%) cAMP levels compared with controls, demonstrating constitutive signaling and cell-surface expression of FSHR(+), respectively. Transgenic FSHR(+) also elevated testosterone production in hpg testes, in the absence of circulating LH (or FSH), and it was not expressed functionally on steroidogenic cells, suggesting a paracrine effect mediated by Sertoli cells. The FSHR(+) response was additive with a maximal testosterone dose on hpg testicular development, demonstrating FSHR(+) activity independent of androgen-specific actions. The FSHR(+) response was male specific as ovarian expression of FSHR(+) had no effect on hpg ovary size. These findings reveal transgenic FSHR(+) stimulated a constitutive FSH-like Sertoli cell response in gonadotropin-deficient testes, and pathways that induced LH-independent testicular steroidogenesis. This novel transgenic paradigm provides a unique approach to investigate the in vivo actions of mutated activating gonadotropin receptors.  相似文献   

15.
16.
FSH directly regulates bone mass   总被引:21,自引:0,他引:21  
Postmenopausal osteoporosis, a global public health problem, has for decades been attributed solely to declining estrogen levels. Although FSH levels rise sharply in parallel, a direct effect of FSH on the skeleton has never been explored. We show that FSH is required for hypogonadal bone loss. Neither FSHbeta nor FSH receptor (FSHR) null mice have bone loss despite severe hypogonadism. Bone mass is increased and osteoclastic resorption is decreased in haploinsufficient FSHbeta+/- mice with normal ovarian function, suggesting that the skeletal action of FSH is estrogen independent. Osteoclasts and their precursors possess G(i2alpha)-coupled FSHRs that activate MEK/Erk, NF-kappaB, and Akt to result in enhanced osteoclast formation and function. We suggest that high circulating FSH causes hypogonadal bone loss.  相似文献   

17.
Follicle stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHCGR) were demonstrated to impact upon survival of patients suffering from epithelial ovarian cancer (EOC). Though structure wise the G-protein coupled estrogen receptor (GPER/GPR30) is related to FSHR/LHCGR, its prognostic impact in EOC remains controversial. We recently found that FSHR negative patients represent a specific EOC subgroup that may behave differently in respect to both treatment response and prognosis. Hence, the current study aimed to analyze how GPER may interact with the FSHR/LHCGR system in EOC and whether the prognostic significance of GPER in EOC cases (n = 151) may be dependent on the FSHR/LHCGR immunophenotype of the tumor. Ovarian cancer cell lines were used to study how FSH and LH regulate GPER and whether GPER activation differentially affects in vitro cell proliferation in presence/absence of activated FSHR/LHCGR. In EOC tissue, GPER correlated with FSHR/LHCGR and was related to prolonged overall survival only in FSHR/LHCGR negative patients. Although GPER was found to be specifically induced by LH/FSH, GPER agonists (4-Hydroxy-Tamoxifen, G1) reduced EOC cell proliferation only in case of LH/FSH unstimulated pathways. To the same direction, only patients characterized as LHCGR/FSHR negative seem to gain from GPER in terms of survival. Our combined tissue and in vitro results support thus the hypothesis that GPER activation could be of therapeutic benefit in LHCGR/FSHR negative EOC patients. Further studies are needed to evaluate the impact of GPER activation on a clinical scheme.  相似文献   

18.
The first activating mutation of the FSH receptor (FSHR*D567G) was identified in a gonadotropin-deficient hypophysectomized man who exhibited persistent spermatogenesis and fertility with only androgen replacement. We have determined the ability of FSHR* activity to maintain spermatogenesis and/or steroidogenesis during gonadotropin and androgen deprivation in mature transgenic FSHR* mice (Tg(Abpa-FSHR*D567G)1Cmal), hereafter referred to as Tg-FSHR* mice. Testes of untreated adult Tg-FSHR* males were equivalent in weight to nontransgenic controls but exhibited increased total Sertoli cell (24%) and spermatogonia (34%) numbers and nonsignificantly elevated spermatocyte-spermatid numbers (13%-17%). During sustained GNRH1 agonist treatment that markedly reduced (96%-98%) serum LH and testosterone (T) and decreased serum FSH (68%-72%), the testes of GNRH1 agonist-treated Tg-FSHR* mice remained significantly larger than treated nontransgenic controls. After 4 wk of gonadotropin suppression, Sertoli cell numbers were reduced in Tg-FSHR* testes to levels comparable with nontransgenic testes, whereas spermatogonia numbers were maintained at higher levels relative to nontransgenic testes. However, after 8 wk of GNRH1 agonist treatment, the total spermatogonia, spermatocyte, or postmeiotic spermatid numbers were reduced to equivalent levels in Tg-FSHR* and nontransgenic mice. FSHR* effects were further examined in gonadotropin-deficient hypogonadal Gnrh1hpg/Gnrh1hpg (Gnrh1(-/-)) mice during testicular regression following withdrawal of T after maximal T-stimulated spermatogenesis. After 6 wk of T withdrawal, spermatogonia, spermatocyte, and postmeiotic spermatid numbers in Tg-FSHR* Gnrh1(-/-) testes decreased to levels found in untreated Tg-FSHR* Gnrh1(-/-) testes. Basal serum T levels in untreated Tg-FSHR* Gnrh1(-/-) males were 2-fold higher than Gnrh1(-/-) controls, but following T treatment/withdrawal, serum T and epididymal weights declined to basal levels found in nontransgenic Gnrh1(-/-) mice. Therefore, FSHR* was unable to sustain circulating T or androgen-dependent epididymal size or postmeiotic spermatogenic development. We conclude that FSHR* activity enhances Sertoli and spermatogenic development in normal testes but has limited ability to maintain spermatogenesis during gonadotropin deficiency, in which the testicular response provided by the FSHR*D567G mutation resembled typical FSH-mediated but not steroidogenic activity.  相似文献   

19.
In ovarian granulosa cells, follicle-stimulating hormone (FSH) regulates the proliferation and differentiation events required for follicular growth and oocyte maturation. FSH actions are mediated exclusively through the FSH receptor (FSHR). In cattle, the FSHR gene expression pattern during folliculogenesis and the implications of this receptor in reproductive disorders have been extensively studied. However, the limited availability of specific antibodies against bovine FSHR has restricted FSHR protein analysis. In the present study, we developed an anti-FSHR polyclonal serum by using a 14-kDa peptide conjugated to maltose binding protein. The antiserum obtained was characterized by western blot of protein extracts from bovine follicles, BGC-1 cells and primary cultures of granulosa cells stimulated with testosterone. Also, the blocking effect of serum on estradiol secretion and cell viability after gonadotropin stimulus was characterized in a functional in vitro assay. A 76-kDa protein, consistent with the predicted molecular size of full-length FSHR, was detected in ovarian tissue. Besides, two immunoreactive bands of 60-kDa and 30-kDa (only in cultured cells) were detected. These bands would be related to some of the isoforms of the receptor. Therefore, immunohistochemical assays allowed detecting FSHR in the cytoplasm of granulosa cells and an increase in its expression as follicles progressed from primordial to large preantral follicles. These results suggest that the anti-FSHR serum here developed has good reactivity and specificity against the native FSHR. Therefore, this antiserum may serve as a valuable tool for future studies of the biological function of FSHR in physiological conditions as well as of the molecular mechanism and functional involvement of FSHR in reproductive disorders.  相似文献   

20.
Regulation of FSH receptor promoter activation in the osteoclast   总被引:1,自引:0,他引:1  
We have shown recently that FSH stimulates osteoclast formation and function by a direct action on a G(i)-coupled FSH receptor (FSHR). Here, we report properties of the mouse FSH receptor promoter in the context of its activation in RAW-C3 osteoclast precursor macrophages. Basal promoter activity was low, but was significantly stimulated by receptor activator for NF-kappaB-ligand (RANK-L), a critical osteoclastogenic and pro-resorptive cytokine. In contrast, FSH dampened FSHR promoter activation, while estrogen had no effect. We surmise that the FSHR expression is regulated distinctly in the osteoclast, and differently from other cells, such as the ovarian follicular and Leydig cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号