首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Various biogenic amines including octopamine, dopamine and serotonin, and their precursors and metabolites in haemolymph and the central nervous system from American cockroaches (Periplaneta americana L.) were measured using electrochemical detection.2. Octopamine was found in similar high relative abundances in haemolymph and the central nervous system.3. The amount of octopamine was much higher than that of tyramine and synephrine in haemolymph and thoracic nerve cord, whereas tyramine was at the highest level followed by octopamine and synephrine in the brain.4. Insects were stressed by vibrating at 100 or 1000 Hz, visually by flashing light at 4 Hz for 15 min or by immersing the insect in water at 60°C for 30 sec, which resulted in the elevation of octopamine, tyramine, synephrine and tyrosine levels in thoracic nerve cord.  相似文献   

2.
Evidence for octopaminergic modulation of an insect visceral muscle   总被引:4,自引:0,他引:4  
Two dorsal unpaired median neurons (DUMOV1 and DUMOV2) lying in the posterior region of the VIIth abdominal ganglion of Locusta migratoria have axons which project to the muscles of the oviducts. This study reports the presence of octopamine within isolated DUMOV cell bodies, as well as in the oviducal nerve and innervated oviducal muscle. Individual cell bodies were pooled and found to contain about 0.34 pmol of octopamine per cell body giving an approximate value of 1.27 mM octopamine. Octopamine is concentrated within the area of oviducal muscle which receives DUMOV axons. Pharmacological studies reveal that the amplitude of neurally-evoked contractions of the oviducal muscle is reduced in a dose-dependent manner by octopamine, with threshold lying between 5 X 10(-10) M and 7 X 10(-9) M. The receptors for this response show a specificity for octopamine and synephrine, with an order of potency being octopamine = synephrine greater than metanephrine greater than tyramine greater than dopamine. The presence of octopamine throughout this neural pathway, coupled with the demonstration of octopaminergic modulation of muscular contraction, supports the hypothesis that octopamine serves a physiological role in this visceral system.  相似文献   

3.
Octopamine was identified in the spermathecal tissue of Locusta migratoria using HPLC and immunohistochemical techniques. Octopamine-like immunoreactive unpaired median neurons were identified in the VIIth and VIIIth (terminal) abdominal ganglia and octopamine-like immunoreactive axons were present in the ventral ovipositor nerve (branches from this nerve innervate the spermatheca). Stimulatory actions of octopamine on myogenic and neurogenic contractions were observed. Dose-dependent increases in the frequency of myogenic contractions and the amplitude of neurogenic contractions were elicited by the application of octopamine to the spermathecal muscle. Non-sustained basal tension increases were noted in some preparations, although these were not found to be dose-dependent. SchistoFLRFamide (PDVDHVFLRFamide) inhibited octopamine-induced contractions by a maximum of about 30%. In the presence of 3-isobutyl-1 -methylxanthine, octopamine increased cAMP levels in all regions of the spermathecal. The largest increase in cAMP content was found in the spermathecal sac, followed by the straight duct and coil duct. Phentolamine blocked octopamine-induced increases in cAMP levels and abolished the actions of octopamine on myogenic contractions.  相似文献   

4.
The effect of octopamine on the neuromuscular junction of the mealworm (Tenebrio molitor) was examined. Octopamine potentiated excitatory junctional potentials (EJPs) recorded intracellularly and extracellularly from ventral longitudinal muscle fibers. The potentiating action of octopamine was blocked in the presence of the alpha-adrenergic blocking agent, phentolamine, but not in the presence of another alpha-blocker, phenoxybenzamine, or the beta-blockers propranolol and dichloroisoproterenol. The resting membrane potential, membrane input resistance, reversal potential of EJP, glutamate potentials, and spontaneous miniature EJPs were found to be unaffected by octopamine. In contrast, quantal contents estimated by the extracellularly recorded EJP failures were greatly increased by octopamine. These results suggest that octopamine acted on the presynaptic terminals via alpha-adrenoceptor-like receptors (octopamine receptors) at the Tenebrio neuromuscular junctions to enhance the transmitter release associated with the motor nerve impulses.  相似文献   

5.
The effects of the amines 5HT and octopamine on the myogenic activity of Periplaneta americana (L.) oviducts and the pharmacological profile of octopamine and 5HT receptors on the lateral oviducts have been determined. Application of 5HT to the oviducts resulted in a dose-dependent increase in basal tonus and amplitude of contractions. Antagonist studies revealed that the 5HT receptor on the cockroach oviduct most resembles the mammalian 5HT2 receptor. Application of octopamine resulted in a decrease in basal tonus and had a biphasic effect on the amplitude of contractions, being stimulatory at low doses and inhibitory at higher ones. The inhibitory effects of octopamine appear to be mediated via cAMP and are blocked by antagonists which indicate that the octopamine receptor is of the octopamine-2 type. © 1995 Wiley-Liss, Inc.  相似文献   

6.
High-frequency electrical stimulation (~20 Hz) of the lateral nerve in abdominal segments of the cricket, Teleogryllus oceanicus, caused an increase in tonus of the abdominal dorsal longitudinal muscle (DLM). This effect persisted for 1–5 min following stimulation. Application of the pentapeptide proctolin (threshold 1–10 nM) mimicked the increase in muscle tonus produced by electrical stimulation. Individual twitches were unaffected or slightly reduced by proctolin. Low-frequency electrical stimulation (<7 Hz) of the lateral nerve counteracted a previously induced increase in muscle tonus, apparently by activation of an inhibitory motoneuron. γ-Aminobutyric acid (GABA) mimicked the effect of low-frequency stimulation and reduced muscle tonus. Octopamine, in concentrations of ≤0.1 mM, was inactive on the abdominal DLM when stimulated at low frequencies (0.5–2 Hz). Application of proctolin to the metathoracic DLM caused an increase in twitch amplitude but had little effect on basal tonus. In conjunction with the previously described responses of the metathoracic DLM to octopamine, these results show that the serially homologous abdominal and metathoracic DLMs have dissimilar responses to the modulators proctolin and octopamine.  相似文献   

7.
The biogenic amine octopamine and the pentapeptide proctolin are two important neuroactive chemicals that control contraction of the oviducts of the African locust Locusta migratoria. The physiological responses and signal transduction pathways used by octopamine and proctolin have been well characterized in the locust oviducts and this therefore provides the opportunity to examine the interaction between these two pathways. Octopamine, via the intracellular messenger adenosine 3',5'-cyclic monophosphate (cyclic AMP), inhibits contraction of the oviducts, while proctolin, via the phosphoinositol pathway, stimulates contraction. We have examined the physiological response of the oviducts to combinations of octopamine and proctolin and also looked at how combinations of these affect one of the main intracellular mediators of the octopamine response, namely cyclic AMP. It was found that application of octopamine to the oviducts led to a dose-dependent reduction in tonus of the muscle and also a decrease in the amplitude and frequency of spontaneous phasic contractions. Octopamine-induced relaxation was enhanced in the presence of the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX). Octopamine was also able to inhibit proctolin-induced contractions of the oviducts in a dose-dependent manner. A 10(-9) M proctolin-induced contraction was inhibited by 83% in the presence of 10(-5) M octopamine, and was completely inhibited in the presence of 10(-5) M octopamine plus 5x10(-4) M IBMX. Octopamine led to a dose-dependent increase in cyclic AMP content as measured by radioimmunoassay. In the presence of 10(-9) M proctolin, this octopamine-induced increase in cyclic AMP was reduced by as much as 60%. Proctolin also caused a dose-dependent decrease in the cyclic AMP elevation produced by 5x10(-6) M octopamine. These results indicate that octopamine and proctolin can antagonize each other's physiological response when added in combination, and that proctolin is able to modulate the response of the oviducts to octopamine by influencing cyclic AMP levels.  相似文献   

8.
Tyramine-like immunoreactivity was identified in neurons of the VIIIth abdominal ganglion and in axons projecting to the spermatheca of adult females of Locusta migratoria. Tyramine-like immunoreactive processes were also found throughout all regions of the spermatheca and tyramine-like immunoreactive bipolar or multipolar neurons were present on the spermathecal sac. HPLC coupled with electrochemical detection revealed more tyramine than octopamine present in spermathecal tissue. Electrical stimulation of the ventral ovipositor nerve resulted in a significant increase in calcium-dependent release of tyramine from the spermatheca. Both tyramine and octopamine increase the frequency and basal tonus of spermathecal contractions in a dose-dependent manner, with octopamine having a lower threshold. When tyramine is applied along with a half maximal octopamine dose, there is an additive effect on contractions of the spermatheca with slight synergistic effects at lower doses of tyramine. High concentrations of tyramine (10(-4)M) stimulated increases in cyclic AMP levels of the spermatheca; an effect blocked by phentolamine. Phentolamine has a higher affinity (and thus a lower IC(50) value congruent with5.6x10(-8)M) than yohimbine (IC(50) congruent with1.1x10(-4)M) in reducing tyramine-induced spermathecal contractions. Taken together, these results suggest that tyramine may be a co-transmitter with octopamine at the spermatheca, with both neuroactive chemicals acting on an octopamine receptor.  相似文献   

9.
In the American lobster (Homarus americanus) the biogenic amines serotonin and octopamine appear to play important and opposite roles in the regulation of aggressive behavior, in the establishment and/or maintenance of dominant and subordinate behavioral states and in the modulation of the associated postural stances and escape responses. The octopamine-containing neurosecretory neurons in the thoracic regions of the lobster ventral nerve cord fall into two morphological subgroups, the root octopamine cells, a classical neurohemal group with release regions along second thoracic roots, and the claw octopamine cells, a group that selectively innervates the claws. Cells of both subgroups have additional sets of endings within neuropil regions of ganglia of the ventral nerve cord. Octopamine neurosecretory neurons generally are silent, but when spontaneously active or when activated, they show large overshooting action potentials with prominent after-hyperpolarizations. Autoinhibition after high-frequency firing, which is also seen in other crustacean neurosecretory cells, is readily apparent in these cells. The cells show no spontaneous synaptic activity, but appear to be excited by a unitary source. Stimulation of lateral or medial giant axons, which excite serotonergic cells yielded no response in octopaminergic neurosecretory cells and no evidence for direct interactions between pairs of octopamine neurons, or between the octopaminergic and the serotonergic sets of neurosecretory neurons was found.  相似文献   

10.
Octopamine Uptake and Metabolism in the Insect Nervous System   总被引:5,自引:0,他引:5  
Several insect tissues were examined for their ability to take up octopamine in the presence and absence of sodium ions. The cockroach Malpighian tubules, ovary, and ventral nerve cord showed the highest level of sodium-dependent uptake. The adult firefly lantern exhibited substantial sodium-independent uptake. Some of these tissues were also examined for their ability to metabolize octopamine by N-acetylation. Measurable N-acetyltransferase activity was present in the cockroach ventral nerve cord, tobacco hornworm CNS, and firefly light organ. N-Acetylation is proposed to be the major metabolic pathway for octopamine in the cockroach (Periplaneta americana) nervous system. Several classes of compounds, including octopamine receptor agonists, tricyclic antidepressants, amphetamines, chloroethylbenzylamines, and some experimental insecticides, were tested for their ability to inhibit octopamine uptake and metabolism. The sodium-insensitive component of uptake was not inhibited by most compounds tested, but the sodium-sensitive component was strongly inhibited by xylamine, N-ethyl-N-chloroethyl-o-bromobenzylamine, and their aziridinium ions (60-100%). These compounds also effectively inhibited N-acetyl-transferase (IC50 values at or below 1 microM). Other good inhibitors of N-acetyltransferase included desipramine, synephrine, and an experimental insecticide, CGA 132427. Formamidine pesticides had limited effect on both processes, and neither action seems likely to be involved in their octopaminergic actions in vivo. Cocaine was unique in stimulating N-acetyltransferase activity. When inhibition of sodium-sensitive uptake is compared with inhibition of N-acetyltransferase in the cockroach ventral nerve cord, two groups of inhibitors are discernible. Type 1 compounds inhibit uptake without an effect on N-acetyltransferase, whereas type 2 compounds inhibit both processes. These results suggest a functional linkage between the uptake and acetylation of octopamine.  相似文献   

11.
Summary The presence of a SchistoFLRFamide-like peptide associated with the oviducts of Locusta migratoria has been shown using sequential reversed-phase high performance liquid chromatography separation coupled with radioimmunoassay and bioassay. The peptide is present in areas of the oviduct which receive extensive innervation, with sixfold less peptide in areas that receive little innervation. Material with FMRFamide-like immunoreactivity (determined by radioimmunoassay) is also present in the oviducal nerve and VIIth abdominal ganglion.SchistoFLRFamide is a potent modulator of contraction of this visceral muscle, inhibiting or reducing the amplitude and frequency of spontaneous contractions, relaxing basal tonus, and reducing the amplitude of neurally-evoked, proctolin-induced, glutamate-induced and high potassium-induced contractions. The FMRFamide-like immunoreactivity within the oviducts which co-elutes with SchistoFLRFamide on two separations is also capable of reducing the amplitude of neurally-evoked and proctolin-induced contractions, and of inhibiting spontaneous contractions and relaxing basal tonus.The effects of SchistoFLRFamide upon this visceral muscle are not abolished by the -adrenergic receptor antagonist phentolamine and do not appear to be mediated by cyclic AMP. Thus the receptors for Schisto-FLRFamide are distinct from those of octopamine which mediate similar physiological effects but which are blocked by phentolamine and which are coupled to adenylate cyclase.The results indicate that SchistoFLRFamide, or a very similar peptide, which has previously been identified as a modulator of locust heart beat, is also associated with visceral muscle of the reproductive system, and may play a neural role in concert with octopamine, at modulating muscular activity.Abbreviations BPP Bovine pancreatic polypeptide - BSA Bovine serum albumin - EJP Excitatory junctional potential - FaRPs FMRFamide-related peptides - FLI FMRFamide-like immuno-reactivity - LMS Leucomyosuppressin - RIA Radioimmunoassay - RP-HPLC Reversed-phase high performance liquid chromatography - TFA Trifluoroacetic acid  相似文献   

12.
The effects of various pharmacological agents on neurally evoked contractions of the visceral muscles of the oviduct of Locusta migratoria have been examined. The pentapeptide, proctolin, at low concentrations (10?11 M?10?10 M), induced an increase in the amplitude of neurally evoked contractions and basal tonus, and induced the appearance and increased the frequency of myogenic contractions. Glutamate, at 10?4 M, produced a small transient contraction which in some preparations was accompanied by a reduction in amplitude of neurally evoked contractions. Octopamine, at 10?6 M, reduced the amplitude of neurally evoked contractions and also resulted in a relaxation of the muscles. The octopaminergic effects were inhibited by the α-aminergic antagonist phentolamine. Neurally evoked contractions were unaffected by dopamine, 5-HT or the acetylcholine receptor antagonists atropine and hexamethonium. Acetylcholine increased the amplitude of neurally evoked contractions, but only at the high concentration of 10?3 M. The possible role of proctolin and glutamate as excitatory neuro-transmitters and the inhibitory action of octopamine is discussed.  相似文献   

13.
Abstract— Octopamine distribution has been surveyed in the nervous systems of two insect species, the locust, Schistocerca americana gregaria , and the cockroach Periplaneta americana. It is essentially similar for both species, being highly localised in the ganglia of the ventral nerve cord. Large amounts of octopamine are also found in the optic lobes especially, in the locust where it is concentrated in the medulla of the optic lobe. Octopamine can also be shown to be associated with insect neurohae-mal structures such as the corpora cardiaca and the neurohaemal organs of the medial nervous system. The significance of the distribution is discussed.  相似文献   

14.
Insects, including cockroaches, have the ability to select a proper diet from different nutrient choices. We have showed previously that various neurotransmitters and neuromodulators appear to regulate certain aspects of feeding in the cockroach, Rhyparobia madera. In the current study, we examined the role of octopamine in feeding behavior of cockroach nymphs. By either injection or direct incorporation into the diet blocks, an octopamine agonist (octopamine or synephrine) or antagonist (phentolamine) was effective in altering feeding in R. madera nymphs. Both octopamine and synephrine increased feeding slightly, while phentolamine decreased feeding dramatically. Phentolamine was able to decrease feeding, but not motor activity, when injected directly into the nymphs. Octopamine appears to cause increased feeding in the cockroach.  相似文献   

15.
Octopamine has been shown to play major roles in invertebrate nervous systems as a neurotransmitter, neuromodulator, and neurohormone. Tyramine is the biochemical precursor of octopamine and its neuromodulatory role is now being investigated and clarified in invertebrates, particularly in insects. Both octopamine and tyramine mediate their actions via G protein-coupled receptors (GPCRs) and are believed to play important functions in the regulation of physiological processes in locust oviduct. Here we report the isolation, cloning, and tissue expression of a putative octopamine/tyramine receptor from the locust, Locusta migratoria. Degenerate oligonucleotides in PCR reactions were first used to obtain partial cDNA sequences and then these partial sequences were used in screens to obtain a full-length cDNA. The cloned cDNA is about 3.1 kb long and encodes a protein of 484 amino acid residues with typical characteristics of GPCRs including seven transmembrane domains and many signature residues. The amino acid sequence of the cloned cDNA displays sequence similarities with known GPCRs, particularly octopamine/tyramine receptors. Screening of the locust genomic DNA library resulted in isolation of a genomic DNA with the same size as the cDNA, indicating that the gene is intron-less. RT-PCR and Northern blot analyses revealed the expression of the receptor mRNA in brain, ventral nerve cord, oviduct, and midgut tissues. Southern blot analyses using EcoRI and HindIII restriction endonucleases recognized at least two distinct gene bands.  相似文献   

16.
The effects of male accessory-gland extracts on the myogenic contractions and the adenylate cyclase activity of the oviduct of Locusta migratoria have been examined. The extracts stimulated first the frequency and the amplitude, then the tonus of the oviduct contractions in dose-dependent and reversible ways. They also stimulated the adenylate cyclase activity of oviduct disrupted-cell preparations. Extracts of opalescent glands (one of the 15 male accessory glands) gave similar results with only a quantitative difference. The tonus response is probably independent of the adenylate cyclase activity because octopamine and forskolin did not mimic this effect, and also because phentolamine was unable to inhibit the effect.Frequency and mainly amplitude responses can be induced through an adenylate cyclase-dependent receptor as shown by the similitude of actions with octopamine and forskolin. However, since the effects on the adenylate cyclase activity of octopamine and the accessory-gland extracts were cumulative, we concluded that these compounds are acting on two discrete types of receptors. All these results suggest that male accessory-gland secretions directly act upon the oviduct, in one case through adenylate cyclase-dependent receptors.  相似文献   

17.
1. At 10−8 M, 5-HT increased both the frequency and amplitude of contractions of isolated locust foregut. At 10−4 M the foregut general tonus was increased.2. Both spontaneously active and quiescent hindguts were less sensitive to 5-HT, showing only an increase in amplitude of contraction at 10−6−10−5 M.3. The Hill plot suggested that although the 5-HT receptor populations in these two gut divisions differed in affinities, they were essentially homogeneous.4. Octopamine (10−5−10−4 M) increased foregut contraction frequency but diminished amplitude.5. Octopamine action on the hindgut was varied. At 10−8 M it slightly increased tonus, while at 10−5 M it increased contraction amplitude without affecting frequency.6. At 10−4 M octopamine suppressed activity of spontaneously active preparations and lowered the tonus of quiescent preparations.7. Tyramine induced dose-dependent inhibition of foregut responses to 5-HT. The hindgut was exceptionally sensitive to tyramine, at only 10−8 M it suppressed 5-HT responses.8. Octopamine inhibited fore- and hindgut responses to 5-HT, but was less effective than tyramine.9. Locust fore- and hindgut have remarkably different pharmacological properties reflecting differences in innervation and in extrajunctional monoamine receptor affinities.  相似文献   

18.
1. Octopamine was synthesized by the ventral nerve cords of E. octuculata during in vitro incubation in radiolabelled tyrosine and tyramine. Trace amounts of dopamine were also synthesized from tyrosine and tyramine.2. In vitro uptake of 3H-octopamine revealed the presence of a sodium sensitive and a sodium insensitive component which was linear up to 10.54 μM. The sodium sensitive component showed at least one component that was fully saturated at 1.54 μM octopamine, possessed a Km of approximately 4 × 10−7 M and a Vmax of 15.5 mM/10 ventral nerve cord ganglia/min.3. Release of preloaded 3H-octopamine from ventral nerve cords was by a calcium-dependent process. A high-potassium-induced calcium-dependent release was also demonstrated.4. Hydroxymandelic acid production was decreased in the presence of iproniazid phosphate suggesting the presence of a monoamine oxidase.5. The synthesis, release, reuptake and metabolism of octopamine are discussed in the light of octopamine as a central transmitter in the leech.  相似文献   

19.
《Insect Biochemistry》1990,20(3):239-244
The octopamine-sensitive adenylate cyclase associated with haemocytes of the American cockroach, Periplaneta americana, has been used as a model system with which to study desensitization of the octopamine receptor. Preincubation of the haemocytes with octopamine results in a large decrease in subsequent maximal stimulation of cyclic AMP production by octopamine with little change in affinity of the receptor for the agonist. This effect of preincubation is dependent upon the concentration of octopamine in the preincubation media and on the duration of exposure. The attenuation appears to be a receptor-mediated event rather than an artifact of the preincubation. Octopamine receptor agonists (octopamine, synephrine, N-demethylchlordimeform) induce desensitization while biogenic amines with poor octopamine receptor affinity (dopamine, serotonin, norepinephrine) are without affect. In contrast, the octopamine receptor antagonist, phentolamine, appears to enhance subsequent stimulation by octopamine. The attenuation of octopamine stimulation of adenylate cyclase is conserved in broken-cell preparations with no alteration of responses to NaF or forskolin. Incubation of the cells with dibutyryl cyclic AMP or forskolin does not induce desensitization. The data indicate that the OA receptors coupled to AC in cockroach haemocytes undergo an homologous desensitization in response to exposure to agonists.  相似文献   

20.
The biogenic amine, octopamine, modulates a variety of aspects of insect motor behavior, including direct action on the flight central pattern generator. A number of recent studies demonstrate that tyramine, the biological precursor of octopamine, also affects invertebrate locomotor behaviors, including insect flight. However, it is not clear whether the central pattern generating networks are directly affected by both amines, octopamine and tyramine. In this study, we tested whether tyramine affected the central pattern generator for flight in the moth, Manduca sexta. Fictive flight was induced in an isolated ventral nerve cord preparation by bath application of the octopamine agonist, chlordimeform, to test potential effects of tyramine on the flight central pattern generator by pharmacological manipulations. The results demonstrate that octopamine but not tyramine is sufficient to induce fictive flight in the isolated ventral nerve cord. During chlordimeform induced fictive flight, bath application of tyramine selectively increases synaptic drive to depressor motoneurons, increases the number of depressor spikes during each cycle and decreases the depressor phase. Conversely, blocking tyramine receptors selectively reduces depressor motoneuron activity, but does not affect cycle by cycle elevator motoneuron spiking. Therefore, octopamine and tyramine exert distinct effects on the flight central pattern generating network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号