首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The clastogenic effect of mitomycin C (MC) was determined in two normal fibroblast cell lines and two xeroderma pigmentosum (XP) cell lines, a variant and a group A excision-deficient line. The group A xeroderma cell line was substantially more sensitive to MC than either the XP variant or the normal human cells. On caffeine post-treatment potentiation of the MC-induced aberration frequency occurred in all the cell lines. The XP varian cell line exhibited a distinctly higher sensitivity to caffeine than the classical XP or the normal human cell lines.  相似文献   

2.
Sister-chromatid exchange (SCE) induced by ultraviolet (UV) irradiation and viability after UV irradiation were studied in lymphoblastoid cell lines derived from 7 patients with xeroderma pigmentosum (XP) and 6 normal donors. UV irradiation caused significant increases of SCEs in both XP and normal cells. In 3 XP cell lines, which were deficient in unscheduled DNA synthesis (UDS) and sensitive to the killing effect of UV, very high SCE frequencies were observed after UV irradiation. Cells from a patient with the De Sanctis-Cacchione syndrome were the most sensitive to UV in terms of both SCE induction and cell killing. In 2 of 4 UDS-proficient XP cell lines tested, the incidences of UV-induced SCEs were similar to those in normal cell lines, but in 2 other UDS-proficient lines from 2 XP patients with skin cancer, the frequencies of UV-induced SCEs were significantly higher than in normal cells.Continuous post-UV treatment with 1 mM caffeine markedly enhanced UV-induced SCEs in 3 of 4 UDS-proficient XP cell lines but had only slight effects on cells from the 4th UDS-proficient XP patient and from normal individuals.  相似文献   

3.
Replicative bypass repair of UV damage to DNA was studied in wide variety of human, mouse and hamster cells in culture. Survival curve analysis revealed that in established cell lines (mouse L, Chinese hamster V79, HeLa S3 and SV40-transformed xeroderma pigmentosum (XP)), post-UV caffeine treatment potentiated cell killing by reducing the extrapolation number and mean lethal UV fluence (Do). In the Do reduction as the result of random inactivation by caffeine of sensitive repair there were marked clonal differences among such cell lines, V79 being most sensitive to caffeine potentiation. However, other diploid cell lines (normal human, excision-defective XP and Syrian hamster) exhibited no obvious reduction in Do by caffeine. In parallel, alkaline sucrose sedimentation results showed that the conversion of initially smaller segments of DNA synthetized after irradiation with 10 J/m2 to high-molecular-weight DNA was inhibited by caffeine in transformed XP cells, but not in the diploid human cell lines. Exceptionall, diploid XP variants had a retarded ability of bypass repair which was drastically prevented by caffeine, so that caffeine enhanced the lethal effect of UV. Neutral CsCl study on the bypass repair mechanism by use of bromodeoxyuridine for DNA synthesis on damaged template suggests that the pyrimidine dimer acts as a block to replication and subsequently it is circumvented presumably by a new process involving replicative bypassing following strand displacement, rather than by gap-filling de novo. This mechanism worked similarly in normal and XP cells, whether or not caffeine was present, indicating that excision of dimer is not always necessary. However, replicative became defective in XP variant and transformed XP cells when caffeine was present. It appears, therefore, that the replicative bypass repair process is either caffeine resistant or sensitive, depending on the cell type used, but not necessarily on the excision repair capability.  相似文献   

4.
7 strains of human primary fibroblasts were chosen from the complementation groups A through G of xeroderma pigmentosum; these strains are UV-sensitive and deficient in excision repair of UV damage on the criterion of unscheduled DNA synthesis (UDS). They were compared with normal human fibroblasts and one xeroderma pigmentosum variant with regard to their capacity to remove pyrimidine dimers, induced in their DNA by UV at 253.7 nm. The XP variant showed a normal level of dimer removal, whereas 6 of the other XP strains had a greatly reduced capacity to remove this DNA damage, in agreement with their individual levels of UDS. Strain XP230S (complementation group F), however, only showed a 20% reduction in the removal of dimers, which is much less than expected from the low level of UDS in this strain.  相似文献   

5.
The rate of DNA synthesis was studied in normal cell strain and in strains from patients suffering from inherited disorder ataxia telangiectasia (AT). After exposure to reactively low doses of oxic X-rays (0–4 krad) DNA synthesis was depressed in AT cell strains to a significantly lesser extent than in normal cells. This response was observed in both an “excision-deficient” and an “excision-proficient” strain. In contrast, there was no difference in DNA-synthesis inhibition between AT and normal cells after UV exposure. After X-irradiation of cells from patients with xeroderma pigmentosum, both complementation group A and XP variants, the observed rate of DNA synthesis was equal to that in normal cells. An exception was the strain XP3BR which has been shown to be X-ray sensitive. This strain exhibited diminished DNA synthesis inhibition after X-ray doses below 1 krad.These data suggest a relationship between hypersensitivity to X-rays and diminished depression of DNA synthesis.  相似文献   

6.
We describe a reproducible technique for measuring DNA strand breaking and rejoining in cells after treatment with U.V.-light. Results obtained with normal human cells, xeroderma pigmentosum cells (XP, complementation group A) and XP variant cells suggest that all three of these cell-types can carry out single-strand incision with equal rapidity. However, the breaks so induced appeared to be only slowly rejoined in the XP variant cells and rejoined not at all in XP complementation group A cells. Furthermore, parental strand rejoining was inhibited by caffeine in XP variant cells but not in normal cells.  相似文献   

7.
DNA repair after UV exposure was studied in multinucleate cells, obtained after fusion of excision-defective and variant xeroderma pigmentosum fibroblasts. Optimal fusion conditions were determined, facilitating the measurement of DNA replication in heterokaryons. In unirradiated multikaryons, entry into the S phase was depressed, when compared with unfused cells. The extent of the depression of S phase entry was dependent on the fusion conditions. In heterokaryons obtained after fusion of XP variant (6 different strains) with excision-defective XP (three cell strains from complementation groups A, C and D) both unscheduled DNA synthesis and postreplication repair after UV irradiation were restored to normal levels. In contrast, complementation was not observed after pairwise fusion of the XP variant cell strains. These results suggest that the XP variants comprise a single complementation group, different from complementation groups A, C and D.  相似文献   

8.
Human cells (normal and xeroderma pigmentosum variant) irradiated with ultraviolet light and pulse-labelled with [3H]thymidine underwent transient decline and recovery of molecular weights of newly synthesized DNA and rates of [3H]thymidine incorporation. The ability to synthesize normal-sized DNA recovered more rapidly in both cell types than thymidine incorporation. During recovery cells steadily increased in their ability to replicate normal-sized DNA on damaged templates. The molecular weight versus time curves fitted exponential functions with similar rate constants in normal and heterozygous xeroderma pigmentosum cells, but with a slower rate in two xeroderma pigmentosum variant cell lines. Caffeine added during the post-irradiation period eliminated the recovery of molecular weights in xeroderma pigmentosum variant but not in normal cells. The recovery of the ability to synthesize normal-sized DNA represents a combination of a number of cellular regulatory processes, some of which are constitutive, and one of which is altered in the xeroderma pigmentosum variant such that recovery becomes slow and caffeine sensitive.  相似文献   

9.
Clonogenic survival response to 254-nm ultraviolet light was measured in 2 strains of repair-proficient normal human fibroblasts and 4 strains of xeroderma pigmentosum (XP) fibroblasts belonging to complementation groups A, C, D and variant. In all strains except XPA, cells irradiated in plateau phase and subcultured immediately were much more resistant to the lethal effect of UV than cells irradiated in the exponential phase of growth. Typically, 10-20% of plateau-phase cells were extremely resistant. When the cultures were held in plateau phase for 24 h after irradiation and before subculture, there was a further enhance of survival. By use of a UV-specific endonuclease assay, no difference was found in the number of DNA lesions induced in exponentially growing and plateau cultures by the same dose of UV light. Thus plateau-phase cells appear to be more efficient in their DNA-repair capability than cells in exponential growth. XP group A cells were uniquely found to be deficient in the processes which lead to plateau-phase resistance. Since plateau-phase repair was not lacking in XP groups C, D and variant, it may be related to a DNA-repair process different from that which is responsible for the overall UV sensitivity of these cells.  相似文献   

10.
Host-cell reactivation (HCR) of UV-irradiated herpes simplex virus type 2 (HSV-2), capacity of UV-irradiated cells to support HSV-2 plaque formation and UV-enhanced reactivation (UVER) of UV-irradiated HSV-2 were examined in fibroblasts from 4 patients with Cockayne syndrome (CS), 5 with xeroderma pigmentosum and 5 normals. All UV-survival curves for HSV-2 plaque formation showed 2 components. HCR was similar to normal for the XP variant strain and the 2 CS strains tested, but substantially reduced in the 4 excision-deficient XP strains. The capacity of UV-irradiated fibroblasts to support HSV-2 plaque formation was determined by UV-irradiating fibroblast monolayers with various doses of UV and 48 h later, infecting the monolayers with unirradiated HSV-2. The D37 values for the delayed-capacity curves so obtained were in the range 8.6-12.4 J/m2 for the normal strains, 2.8-3.2 J/m2 for the CS strains, 6.7 J/m2 for an XP variant strain and between 0.3 and 1.5 for the XP excision-deficient strains tested. These results indicate that delayed capacity for HSV-2 plaque formation is a more sensitive assay than HCR in the detection of cellular DNA-repair deficiency for XP and CS. For the examination of UVER, fibroblasts were irradiated with various UV doses and subsequently infected with either unirradiated or UV-irradiated HSV and scored for plaque formation 2 days later. UVER expression was maximum when the delay between UV-irradiation of the cells and HSV infection was 48 h. The magnitude of UVER expression was also found to be dependent on the UV dose to the cells and increased with increasing UV dose to the virus. Using a UV dose to the virus resulting in a plaque survival of about 10(-2) on unirradiated cells, the the maximum UVER factor had a mean value of 1.3 for the normal strains following a dose of 15 J/m2 to the cells. Somewhat higher UVER values were found for all the patient strains tested and resulted from lower UV doses to the cells than for normal strains. Maximum UVER factors for the CS strains ranged from 2.2 to 3.3 at a dose of 5 J/m2 to the cells, for the XP excision-deficient strains; 2.1 to 2.6 at doses of 0.5 to 2.5 J/m2 to the cells and for the XP variant strain tested; 2.5 at UV dose of 10 J/m2 to the cells.  相似文献   

11.
Summary Recombination frequencies for two sets of genetic markers of herpes simplex virus were determined in various host cells with and without ultraviolet irradiation of the virus. UV irradiation increased the recombination frequency in all the cell types studied in direct proportion to the unrepaired lethal damage. In human skin fibroblasts derived from a patient with xeroderma pigmentosum (XP) of complementation group A, a given dose of UV stimulated recombination more than that in fibroblasts from normal individuals. On the other hand, UV stimulation of HSV recombination was slightly less than normal in fibroblasts derived from a patient with a variant form XP and from an ataxia telangiectasia patient. Caffeine, an agent known to inhibit repair of UV damage, reduced recombination in most of the cell types studied but did not suppress the UV-induced increase in recombination. These findings suggest that for virus DNA with the same number of unrepaired UV-lesions, each of the tested cell types promoted HSV-recombination to an equivalent extent.  相似文献   

12.
The role of DNA repair mechanisms in the induction of sister chromatid exchanges (SCE) after exposure to ultraviolet radiation was investigated in xeroderma pigmentosum cells. Cells from different excision-deficient XP strains, representing the 5 complementation groups in XP, A, B, C, D and E, and from excision-proficient XP variant strains were irradiated with low doses of UVR (0-3.5 J/m2). The number of SCE was counted after two cycles in the presence of BUdR. In cells of the complementation groups A, B, C and D the number of SCE was significantly higher than in UV-exposed control cells. The frequencies of SCE in group E cells and in XP varient cells were not different from those in control cells. Treatment with caffeine (0-200 microgram/ml) did not result in a different response of variant cells compared with normal cells. A simple correlation between SCE frequency and residual excision-repair activity was not observed. The response of the excision-repair deficient cells suggest that unrepaired damage, produced by UVR is involved in the production of SCE.  相似文献   

13.
The effect of 4-nitroquinoline-1-oxide (4NQO) upon 3 fibroblast cell lines derived from normal and xeroderma pigmentosum subjects have been compared. Excision-deficient XP cells (XP2BI), complementation group G, are nearly 200-fold more sensitive than normal cells to the lethal effect of 4NQO while XP variants (XP7TA), are 2-fold more sensitive. This cytotoxicity correlates with the levels of unscheduled DNA synthesis performed by the 3 cell lines. 4NQO causes a dose-related inhibition of DNA replication in all cell lines. However, newly replicated DNA synthesised immediately after treatment of cells with 4NQO is slightly smaller in XP7TA variant cells than in normal cells receiving the same dose of 4NQO, but DNA fragments in excision-deficient XP2BI are 50% smaller. It is likely that replicon elongation and joining together of newly replicated DNA fragments is dependent upon the excision of certain 4NQO-induced lesions, possibly normally repaired by a 'short-patch' repair process defective in XP2BI.  相似文献   

14.
We have examined the ability of normal fibroblasts and of excision-deficient xeroderma pigmentosum (XP) and XP variant fibroblasts to perform postreplication DNA repair after increasing doses of either ultraviolet (UV) irradiation or mutagenic benzo(a)pyrene derivatives. XP cells defective in the excision of both UV-induced pyrimidine dimers and guanine adducts induced by treatment with the 7,8-diol-9,10-epoxides of benzo(a)pyrene were partially defective in their ability to synthesize high molecular weight DNA after the induction of both classes of DNA lesions. This defect was more marked in XP variant cells, despite their ability to remove by excision repair both pyrimidine dimers and the diol epoxide-induced lesions to the same degree as observed in normal cells. The benzo(a)pyrene 9,10-oxide had no effect in any of the 3 cell lines. The response of the excision and postreplication DNA repair mechanisms operating in human fibroblasts treated with benzo(a)pyrene 7,8-diol-9,10-epoxides, therefore, appears to resemble closely that seen after the induction of pyrimidine dimers by UV irradiation.  相似文献   

15.
Human interferon (HuIFN) has a protective effect against ultraviolet (UV)-induced killing of Cockayne syndrome (CS) and xeroderma pigmentosum (XP) cells. Irradiation with ultraviolet (UV) resulted in nuclear accumulation of p53 in normal human fibroblast cells, and this accumulation was suppressed by treatment with HuIFN-beta. On the other hand, a large amount of p53 was found in both nuclear and cytoplasmic fractions of one SV40-transformed XP and two SV40-transformed CS cell strains irrespective of UV irradiation. Treatment with HuIFN-beta reduced the level of pro-apoptotic Bax protein without suppression of nuclear accumulation of p53 in the CS cells but not in the XP cells. These findings suggest that there are different mechanisms of UV-refractoriness caused by HuIFN-beta in UV-sensitive CS and XP cells.  相似文献   

16.
It is known that cells from one class of xeroderma pigmentosum (XP) patients, called XP variants, carry out excision repair of UV-induced DNA damage at a normal rate and are only slightly more sensitive than normal cells to the cytotoxic effect of UV radiation, but are much more sensitive to the mutagenic effect of UV. To see if this hypermutability were the result of an 'error-prone', excision repair process, we irradiated fibroblasts derived from an XP variant patient, XP4BE, under conditions that allowed the cells various lengths of time for excision repair before the onset of DNA synthesis (S phase) and assayed the frequency of 6-thioguanine (TG)-resistant mutants. Cells synchronized by release from confluence (G0 state) and irradiated just prior to S phase showed a dose-dependent increase in mutants at very high frequencies; cells irradiated in early G1, approximately 12 h before the onset of S phase, showed frequencies 4 times lower. Cells irradiated in the G0 state and allowed 24 h or 48 h for excision repair before the onset of S phase showed still lower frequencies. A comparison of the relative rates of decrease in mutant frequency with time for excision repair before the onset of S phase in XP variant cells and normal human fibroblasts after a dose of 4 or 6 J/m2 showed that these were equal. However, for every time point, the frequency of mutants induced per dose of UV was significantly higher in the XP variant population than in the normal, suggesting that the XP variant cells have an abnormally error-prone process of replicating DNA on a template containing unexcised lesions or normal cells are by-passing many of such lesions using an error-free process. A similar comparative study in synchronized populations of XP4BE cells and normal cells, using the anti 7,8-diol-9,10-epoxide of benzo[a]pyrene, showed that excision repair prior to the onset of S phase also decreased the frequency of mutants induced in XP variant cells by this agent. But for every dose and time point, the frequencies induced in XP4BE cells and normal cells were identical. Thus, the hypermutability of the XP4BE cells was specific to UV radiation-induced DNA lesions.  相似文献   

17.
We have established viral-transformed, apparently permanent (immortalized) cell lines from diploid fibroblasts representative of normal and xeroderma pigmentosum (XP) A, G and variant individuals. The XP-G and XP-variant cells represent complementation groups not previously available as permanent lines. All the new permanent cell lines exhibit SV40 T-antigen expression. They are also aneuploid and have growth characteristics typical of viral transformants. They have retained the phenotypes of UV sensitivity, reduced repair synthesis or defective 'postreplication repair' appropriate to the XP complementation group they represent. Additionally, the new cell lines are all transfectable with the selectable plasmid pRSVneo. The XP-G and XP-variant cell lines show enhanced transfection with UV-irradiated plasmid DNA; a phenomenon previously reported for normal immortalized cells and for immortalized cells from the A and F complementation groups of XP.  相似文献   

18.
Human cells irradiated with UV light synthesize lower molecular weight DNA than unirradiated cells. This reduction in molecular weight is greater in xeroderma pigmentosum (XP) cells than in normal cells. The molecular weight of DNA is further reduced by the addition of caffeine to XP cells. By several hours after irradiation, DNA fragments are barely detectable. Cells from excision-proficient and excision-deficient XP patients were studied autoradiographically to produce cytological evidence of DNA chain elongation. Replicate cultures with and without caffeine were synchronized and irradiated with UV light during the S phase. Caffeine was removed in G2, and the cells were labeled with 3H-thymidine. Results showed significantly increased labeling during G2 of excision-deficient XP cells. Labeling was dependent on both time of irradiation and presence of caffeine. The XP variant cells had no increase in labeling for any irradiation time.Published with the approval of the Director of the West Virginia Agricultural Experiment Station as Scientific Paper No. 1608. Supported by N.I.C. Grant TO1CA05170-10.  相似文献   

19.
The rate of removal of pyrimidine dimers from DNA of UV (254 nm)-irradiated (1 J/m2) normal and xeroderma pigmentosum (XP) cells maintained in culture as nondividing populations was determined. Several normal and XP strains from complementation groups A, C and D were studied. The excision rates and survival ability of nondividing cells were examined to determine if an abnormal sensitivity was associated with a decreased rate of dimer excision. The results show that all normal strains studied excise pyrimidine dimers at the same rate, with the rate curve characterized by two components. All 'excision-deficient' XP strains excise dimers at a slower-than-normal rate, with the rate curves also characterized by two components. The rate constants for the first components of all of the XP strains (group A, C and D) are the same, one tenth of the normal rate constant, except for XP8LO (group A). XP8LO has a first-component rate constant similar to that of normal strains and a second component rate constant similar to that of other group A strains (XP12BE, XP25RO). Thus, the slower rate of dimer excision in XP8LO is due to a defect in the mechanism responsible for the second component of the excision-rate curve. In general, an abnormal sensitivity of nondividing cells to UV is associated with a reduced dimer-excision rate. A notable exception to this is the group C strain XP1BE which has an initial repair rate similar to that of group A XP12BE but is considerably more resistant when survival is measured.  相似文献   

20.
The cytotoxicity of the “K-region” epoxides as well as several other reactive metabolites or chemical derivatives of polycyclic hydrocarbons was compared in normally-repairing human diploid skin fibroblasts and in fibroblasts from a classical xeroderma pigmentosum (XP) patient (XP2BE) whose cells have been shown to carry out excision repair of damage induced in DNA by ultraviolet (UV) radiation at a rate approx. 20% that of normal cells. Each compound tested exhibited a 2- to 3-fold greater cytotoxicity in this XP strain than in the normal strain. To determine whether this difference in survival reflected a difference in the capacity of the strains to repair DNA damage caused by such hydrocarbon derivatives, we compared the cytotoxic effect of several “K-region” epoxides in two additional XP strains, each with a different capacity for repair of UV damage. The ration of the slopes of the survival curves for each of the XP strains to that of the normal strain, following exposure to each epoxide, was very similar to that which we had previously determined for their respective UV curves, suggesting that human cells repair damage induced in DNA by exposure to hydrocarbon derivatives with the same system used for UV-induced lesions.To determine whether the deficiency in rate of excision repair in this classical XP strain (XP2BE) causes such cells to be abnormally susceptible to mutations induced by “K-region” epoxides of polycyclic hydrocarbons, we compared them with normal cells for the frequency of induced mutations to 8-azaguanine resistance. The XP cells were two to three times more susceptible to mutations induced by the “K-region” epoxide of benzo(a)pyrene (BP), 7,12-dimethylbenz(a)anthracene (DMBA), and dibenz(a,h)anthracene (DBA). Evidence also was obtained that cells from an XP variant patient are abnormally susceptible to mutations induced by hydrocarbon epoxides and, as is the case following exposure to UV, are abnormally slow in converting low molecular weight DNA, synthesized from a template following exposure to hydrocarbon epoxides, into large-size DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号