首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
BACKGROUND: The micronuclei (MN) assay is used to assess the chromosomal/mitotic spindle damage induced by ionizing radiation or mutagenic agents in vivo or in vitro. Because visual scoring of MN is cumbersome semi-automatic procedures that relay either on flow cytometry or image analysis were developed: both offer some advantages but also have shortcomings. METHODS: In the present study laser scanning cytometer (LSC), the instrument that combines analytical capabilities of flow and image cytometry, has been adapted for quantitative analysis of MN. The micronucleation of human breast carcinoma MCF-7 and leukemic HL-60 and U-937 cells was induced by in vitro treatment with mitomycin C. Cellular DNA was stained with propidium iodide (PI), protein was counterstained with fluorescein isothiocyanate (FITC). Two approaches were used to detect MN: (a) the threshold contour was set based on the data from the photosensor measuring red fluorescence of PI and MN were identified on the bivariate PI versus PI/FITC fluorescence distributions by their characteristic position; (b) the threshold contour was set on the data from the sensor measuring FITC fluorescence which made it possible, using the LSC software dedicated for FISH analysis, to assay both the frequency and DNA content of individual MN within each measured cell. RESULTS: The capability of LSC to relocate MN for visual examination was useful to confirm their identification. Visual identification of MN combined with their multiparameter characterization that took into an account their DNA content and protein/DNA ratio made it possible establish the gating parameters that excluded objects that were not MN; 93.3+/-3.3 events within the selected gate were MN. It was also possible to successfully apply FISH software to characterize individual cells with respect to quantity of MN residing in them. The percentage of MN assayed by LSC correlated well with that estimated visually by microscopy, both for MCF-7 (r = 0.93) and HL-60 cells (r = 0.87). CONCLUSIONS: LSC can be used to obtain unbiased estimate of MN frequencies. Unlike flow cytometry, it also allows one to characterize individual cells with respect to frequency and DNA content of MN residing in these cells. These analytical capabilities of LSC may be helpful not only to score MN but also to study mechanisms by which clastogenic agents induce MN.  相似文献   

3.
Analysis of apoptosis by laser scanning cytometry   总被引:12,自引:0,他引:12  
Flow cytometry techniques that are widely used in studies of cell death, and particularly in the identification of apoptotic cells, generally rely on the measurement of a single characteristic biochemical or molecular attribute. These methods fail to recognize cell death lacking that attribute, as in some examples of atypical apoptosis. Since apoptosis was originally defined by morphologic criteria, we suggest that for any new cell system the cytometry-defined apoptosis be confirmed by morphologic examination. This quality assurance measure is now provided by laser scanning cytometry (LSC). LSC measurements of cell fluorescence are precise and highly sensitive, comparable to flow cytometry (FCM), and can be carried out on cells on slides, permitting cell by cell correlation of fluorescence cytometry with visual microscopic morphology. In this report we describe adaptations of various flow cytometry techniques for detection of apoptosis by laser scanning cytometry. We also describe features unique to LSC that are useful in recognizing apoptosis. Hyperchromicity of DNA, reflecting chromatin condensation, is evidenced by high maximal pixel values for fluorescence of the DNA-bound fluorochrome. Mitochondrial probes that have been adapted to LSC to measure the drop in mitochondrial transmembrane potential that occurs early in apoptosis include rhodamine 123, 3,3'-dihexiloxadicarbocyanine [DiOC6(3)], and the aggregate dye 5,5',6,6'tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1). The changes in plasma membrane phospholipids and transport function, also early in apoptosis, are probed by a combination of the fluoresceinated annexin V and DNA fluorochromes such as propidium or 7-aminoactinomycin D. We also review methods of detection of apoptosis based on analysis of DNA fragmentation and their application to clinical oncology. Visual examination of the presumed apoptotic cells detected by cytometry makes it possible to discriminate those that are genuine from monocytes/macrophages that have ingested nuclear fragments via apoptotic bodies. Applications of flow cytometry and laser scanning cytometry in analysis of cell death are discussed and their respective advantages and disadvantages compared.  相似文献   

4.
BACKGROUND: Evaluation of chemotaxis assays traditionally relies on cumbersome and at times inaccurate visual counting. Moreover, many physiologic parameters that could be evaluated in conjunction with chemotactic migration, aside from morphologic changes, usually are not assessed due to the lack of a simultaneous method of analysis. We tested the suitability of laser scanning cytometry (LSC) as a convenient platform for counting migrated cells and for concurrent analysis of some features associated with their physiologic status. METHODS: We induced migration of THP-1 monocytes across Nuclepore filters with monocyte chemotactic protein-1 or vascular endothelial growth factor, alone or in combination. Filters were collected, and cells were fixed on filters and stained with the nuclear stain propidium iodide. Chemotactic indices were obtained by counting representative microscopic fields and by scanning the filters in LSC mode. RESULTS: We found an excellent correlation between direct counting and LSC. In addition, the software tools embodied in the LSC instrument allowed the observation of changes in nuclear compactness (increase in propidium iodide brightness) and morphology (increase in nuclear area and perimeter) that occurred in transmigrated cells. Monocyte chemotactic protein-1 and vascular endothelial growth factor acted as additive stimuli on these parameters. CONCLUSIONS: LSC analysis of cells undergoing chemotaxis provides a reliable and comprehensive assessment of the numbers and distribution of migrated cells and some of their nuclear parameters. The method can be easily extended to include the assessment of coincident molecular changes in cells due to chemotactic stimulation.  相似文献   

5.
6.
OBJECTIVE: To examine the relationship between apoptosis and proliferation in a series of human solid malignant tumors, making use of objective, reproducible techniques newly developed for laser scanning cytometry (LSC). STUDY DESIGN: Apoptosis was detected by in situ end labeling of DNA strand breaks with FITC-conjugated nucleotide. Proliferation was detected by Ki-67 antibody. Two parameters were detected independently and simultaneously with DNA measurement on aliquots of cell suspensions obtained by mechanical dissociation of fresh tumors and placed on microscope slides. RESULTS: The number of cells undergoing apoptosis varied from 0.5% to 28.1% (average, 5.4 +/- 6.0). Aneuploid tumors showed a higher percentage of apoptotic cells (7.9 +/- 7.2) as compared to diploid tumors (3.4 +/- 4.0). Tumors with the greatest number of apoptotic cells on LSC also had the largest number of apoptotic cells on light microscopic examination. The number of cells labeled by Ki-67 ranged from 1.7% to 56.7% (average, 20.0 +/- 15.5). Aneuploid tumors were characterized by a higher Ki-67 index (average, 28.3 +/- 14.3%) than the diploid tumors (13.2 +/- 13.3%). CONCLUSION: Overall, there was a very weak or no correlation between apoptosis and proliferation. However, a subset of aneuploid tumors had a high percentage of cells positive for Ki-67 and low percentage of apoptotic cells. Diploid tumors did not show any correlation between apoptosis and proliferation, although many of those tumors had both low apoptotic and proliferative indices. Whether those differences are of prognostic significance remains to be determined in follow-up studies that include more cases and clinical data. Here we have shown that LSC is a powerful new tool of potential clinical value for fast, objective analysis of apoptosis, proliferation and DNA ploidy in solid malignant tumors.  相似文献   

7.
We have examined the changes in the microtubule and tubulin contents in populations of mouse splenic T lymphocytes stimulated by the mitogen concanavalin A. Indirect immunofluorescence staining with antiserum to tubulin indicated that a more extensive microtubule network was assembled from the centrosome in those cells which had increased in size in response to the mitogen. Direct counts of microtubules from electron micrographs of the centrosome regions of cells showed approximately a 2-fold increase in microtubule number in 48 h stimulated populations and up to a 5-fold increase in the large, fully stimulated, blast cells. Determinations of tubulin and actin contents were made by the measurement of peptides specific to those proteins. As a percentage of total cell protein both of these cytoskeletal proteins increased during the first 24 h of stimulation. Tubulin increased 50% by 24 h and remained high in populations stimulated for 48 h. The tubulin content per cell increased 2.5-fold, from 0.20 to 0.51 μg/106 cells, in the 48 h stimulated population. An increase in tubulin content was also seen following the stimulation of nude mouse B lymphocyte populations and of total splenic lymphocyte populations. Our results show that during lymphocyte stimulation there is a large increase in the numbers of microtubules assembled which is correlated with, and appears dependent on, a similar large increase in the cellular tubulin content.  相似文献   

8.
Clinical applications of laser scanning cytometry   总被引:3,自引:0,他引:3  
Tárnok A  Gerstner AO 《Cytometry》2002,50(3):133-143
This study reviews existing and potential clinical applications of laser scanning cytometry (LSC) and outlines possible future developments. LSC provides a technology for solid phase cytometry. Fluorochrome-labeled specimens are immobilized on microscopic slides that are placed on a conventional epifluorescence microscope and analyzed by one or two lasers. Data comparable to flow cytometry are generated. In addition, the position of each event is recorded, a feature that allows relocalization and visualization of each measured event. The major advantage of LSC compared with other cytometric methods is the combination of two features: (a) the minimal clinical sample volume needed and (b) the connection of fluorescence data and morphological information for the measured event. Since the introduction of LSC, numerous methods have been established for the analysis of cells, cellular compartments, and tissues. Although most cytometric methods use only two or three colors, the characterization of specimens with up to five fluorochromes is possible. Most clinical applications have been designed to determine ploidy and immunophenotype; other applications include analyses of tissue biopsies and sections, fluorescence in situ hybridization, and the combination of vital and nonvital information on a single-cell basis. With the currently available assays, LSC has proven its wide spectrum of clinical applicability in slide-based cytometry and can be introduced as a standard technology in multiple clinical settings.  相似文献   

9.
Mechanisms that couple protein turnover to cell cycle progression are critical for coordinating the events of cell duplication and division. Despite the importance of cell cycle-regulated proteolysis, however, technologies to measure this phenomenon are limited, and typically involve monitoring cells that are released back into the cell cycle after synchronization. We describe here the use of laser scanning cytometry (LSC), a technical merger between fluorescence microscopy and flow cytometry, to determine cell cycle-dependent changes in protein stability in unperturbed, asynchronous, cultures of mammalian cells. In this method, the ability of the LSC to accurately measure whole cell fluorescence is employed, together with RNA fluorescence in situ hybridization and immunofluorescence, to relate abundance of a particular RNA and protein in a cell to its point at the cell cycle. Parallel monitoring of RNA and protein levels is used, together with protein synthesis inhibitors, to reveal cell cycle-specific changes in protein turnover. We demonstrate the viability of this method by analyzing the proteolysis of two prominent human oncoproteins, Myc and Cyclin E, and argue that this LSC-based approach offers several practical advantages over traditional cell synchronization methods.  相似文献   

10.
Z Bacso  J F Eliason 《Cytometry》2001,45(3):180-186
BACKGROUND: Phosphatidylserine (PS) binding by annexin V (AV) is an early membrane marker of apoptosis. Using laser scanning cytometry (LSC) and the comet assay, we showed that the DNA of AV(+) cells is so highly fragmented that it cannot be quantified by the comet assay (Bacso et al.: Cancer Res 60:4623-8, 2000). METHODS: The "halo" assay was used instead of the comet assay to quantify DNA damage associated with apoptosis. The LSC was used to measure both AV fluorescence and DNA damage on the same Jurkat cells following treatment with anti-Fas. The data from both sets of measurements were merged, allowing direct correlation of membrane and nuclear markers of cell death. RESULTS: AV(+) cells had significant DNA damage determined by the ratio between nuclear DNA and peripheral (migrated) DNA. Cells in the early and late stages of apoptosis could be discriminated on the basis of DNA content. In addition, it was possible to distinguish between apoptotic and necrotic cells in the AV(+) propidium iodide-positive population based on DNA content and DNA damage. The addition of specific inhibitors for caspases-8, 9, and 3 blocked both PS externalization and DNA fragmentation, indicating these events are downstream from caspase activation. CONCLUSIONS: This technique allows accurate distinction between apoptotic and necrotic cells and cytometric grading of apoptosis.  相似文献   

11.
A microsample delivery system (MSDS) was tested for automatic flow cytometry (FCM) analysis of DNA synthesis in stimulated human peripheral blood lymphocytes (PBL) cultivated in wells of microtiter plates. After incubation, either for 1-3 days with phytohemagglutinin, concanavalin A, and pokeweed mitogen, or for 7 days with allogenic PBL, the cells, while in the wells, were washed in hypotonic Tris buffer and stained with ethidium bromide-RNAse solution. The results obtained from quintuplicate replicated wells, each of the five containing the same control or stimulated cultures, were reproducible in terms of the number of nuclei counted in each histogram of control, mitogen-stimulated PBL, and mixed lymphocyte cultures (MLC). Using a computer program that superimposes histograms and calculates their differences on the scale of fluorescence intensity, it was possible to quantify the intensity of the response to the mitogenic stimuli. This approach to the study of lymphocyte proliferation offers not only a simpler and faster analysis of DNA synthesis than the method of 3H-thymidine incorporation, but it also allows for the analysis of other FCM parameters, such as forward and 90 degrees light scatter and double fluorescence labelling of PBL nuclei.  相似文献   

12.
BACKGROUND: To adequately analyze the complexity of the immune system and reduce the required sample volume for immunophenotyping in general, more measurable colors for the discrimination of leukocyte subsets are necessary. Immunophenotyping by the laser scanning cytometer (LSC), a slide-based cytometric technology, combines cell detection based on multiple colors with their subsequent visualization without the need for physical cell sorting. In the present study, the filter setting of the LSC was adapted for the measurement of the far-red emitting dye cyanine 7 (Cy7), thereby increasing the number of measurable commercially available fluorochromes. METHODS: The optical filters of the LSC were replaced-photomultiplier (PMT) 3/allophycocyanin (APC): 740-nm dichroic long pass, and 670-/55-nm bandpass; PMT 4/Cy7: 810-/90-nm bandpass. Peripheral blood leukocytes were stained directly by fluorochrome-labeled antibodies or by indirect staining. The tandem dyes of Cy7 (phycoerythrin [PE]-Cy7, APC-Cy7) and the fluorochromes fluorescein isothiocyanate (FITC), PE, PE-Cy5, and APC were tested alone and in different combinations. RESULTS: With the new filter combination and tandem fluorochromes, Cy7 was measurable at 488-nm (argon laser) or 633-nm (helium-neon laser) excitation. Resolution was in the range of FITC for PE-Cy7 but approximately 30% lower for APC-Cy7; spillover into the respective donor fluorochrome channel for both tandem dyes was prominent. A six-color panel for leukocyte subtyping was designed. CONCLUSIONS: With this adaptation, it is possible to measure the tandem conjugates PE-Cy7 and APC-Cy7. This new setup opens the way for six-color immunophenotyping by LSC.  相似文献   

13.
Styles JA  Clark H  Festing MF  Rew DA 《Cytometry》2001,44(2):153-155
BACKGROUND: The evaluation of the safety of drugs and other chemicals is an important aspect of toxicology work. The mouse micronucleus assay is a standard in vivo genotoxicity assay. Chromosomal damage is an indicator of genotoxicity, which manifests in the formation of micronuclei in polychromatic erythrocytes from bone marrow and in peripheral blood erythrocytes. The assay is laborious to perform by manual counting. The laser scanning cytometer allows automated and rapid quantitation of cellular and subcellular fluorescence in monodisperse cell samples on a microscope slide. The object of this study was to evaluate the application of this new technology in the mouse micronucleus genotoxicity assay. Materials and Methods One hundred forty-four mice of various strains were dosed with combinations of carcinogens and antioxidants. Duplicate blood films were prepared 3 days later. One set of slides was stained with acridine orange, and the proportion of micronucleated erythrocytes was counted in 5,000 cells per slide. The duplicates were stained with propidium iodide (40 microg/ml). Five thousand cells per sample were examined using a laser scanning cytometer. The proportion of micronucleated erythrocytes was measured. RESULTS: A coefficient of correlation of 0.96 was found between the data from the two assays. The automation of the assay on the LSC produced a considerable time saving and efficiency gain. CONCLUSIONS: We conclude that with further development, laser scanning cytometry is likely to become the preferred modality for the performance of standard genotoxicity assays.  相似文献   

14.
A method for the quantification of nuclear DNA in thick tissue blocks by confocal scanning laser microscopy is presented. Tissues were stained en bloc for DNA by chromomycin A3. Three-dimensional images, 60 microns deep, were obtained by stacking up confocal fluorescent images obtained with an MRC-500 (Bio-Rad, Richmond, CA). The effects due to bleaching and attenuation by depth of fluorescence emission were corrected mathematically. The DNA contents were estimated by summing up the detected emission intensities (discretized into pixel gray levels) from each segmented nucleus. Applications to an adult rat liver and to a human in situ carcinoma of theesophagus are shown to demonstrate, respectively, the precision of the method and its potential usefulness in histopathology. Comparisons are made with DNA histograms obtained on the same materials by image cytometry on smears and by flow cytometry. Ploidy peaks obtained with the confocal method, although wider than with other methods, are well separated. Confocal image cytometry offers the invaluable advantage of preserving the tissue architecture and therefore allowing, for instance, the selection of histological regions and the evaluation of the degree of heterogeneity of a tumor.  相似文献   

15.
16.
BACKGROUND: Cytosolic pH (pHi) changes are critical in cellular response to diverse stimuli, including cell survival and death signaling. The potential drawback in flow-based analysis is the inability to simultaneously visualize the cells during pHi measurements. Here, the suitability of laser scanning cytometer (LSC) in pHi measurement was investigated. AIM: Using the two extensively reported pH-sensitive fluorescent probes, 2,7-bis(2-Carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and 5-(and-6)-carboxy SNARF-1 acetoxymethyl ester, we evaluated the potential of automated LSC as a platform for simultaneous determination of pHi and cell morphology. The effect of a variety of buffer systems-commonly employed for pHi measurements-on cell morphology before pH clamping with the ionophore, nigericin, was also assessed. METHODS: Measurement of cytosolic pH was performed using pH-sensitive fluorescent probes BCECF-AM and SNARF-1. pH clamping was carried out using nigericin and samples were analyzed on the LSC or CyAn ADP Flow Cytometer. RESULTS: The pHi clamping conditions were optimized as 140 mM potassium and 10 microM nigericin. The suitable buffers used for pH clamping: 140 mM KCl, 1 mM MgCl2, 2 mM CaCl(2).2H2O, 5 mM glucose, 20 mM MES and 140 mM KCl, 1 mM MgCl2, 2 mM CaCl(2).2H2O, 5 mM glucose, and 20 mM Tris. Results obtained with the LSC strongly correlated with those obtained by flow cytometry. CONCLUSION: We report here that LSC is an excellent and highly reproducible platform for pHi determination, and provides the added advantage of simultaneous imaging of cells before, during, and after pH measurements.  相似文献   

17.
BACKGROUND: Effectiveness of antitumor drugs to suppress unrestricted proliferation of cancer cells is commonly measured by cell clonogenicity assays. Assays of clonogenicity are also used in studies of stem/progenitor cells and in analysis of carcinogenic transformation. The conventional assays are limited to providing information about frequency of colonies (cloning efficiency) and do not reveal the qualitative (phenotype) attributes of individual colonies that may yield clues on mechanisms by which cell proliferation was affected by the studied agent. METHODS: Laser scanning cytometry (LSC) was adapted to identify and characterize size and phenotype of colonies of MCF-7 cells growing in microscope slide chambers, untreated and treated with the cytotoxic ribonuclease, onconase (Onc). Individual colonies were located and data representing each colony were segmented based on >650-nm fluorescence excited by a He-Ne laser of the cells whose protein was stained with BODIPY 630/650-X. The DNA of the cells was stained with propidium iodide (red fluorescence) whereas specific proteins (estrogen receptor [ER] or tumor suppressor p53) were detected immunocytochemically (green fluorescence), each excited by an Ar ion laser. RESULTS: A plethora of attributes of individual colonies were measured, such as (a) morphometric features (area, circumference, area/circumference ratio, DNA or protein content per area ratio), (b) number of cells (nuclei), (c) DNA content, (d) protein content and protein/DNA ratio, and (e) expression of ER or p53 per colony, per total protein, per nucleus or per DNA, within a colony. Also cell cycle distribution within individual colonies and heterogeneity of colonies with respect to all the measured features could be assessed. The colonies growing in the presence of Onc had many of the above attributes different than the colonies from the untreated cultures. CONCLUSIONS: Analysis of the features of cell colonies by LSC provides a wealth of information about the progeny of individual cells. Changes in colony size and phenotype, reflecting altered cell shape, cell size, colony protein/DNA ratio, and expression of individual proteins, may reveal mechanisms by which drugs suppress the proliferative capacity of the cells. This may include inducing growth imbalance and differentiation and modulating expression of the genes that may be associated with cell cycle, apoptosis, or differentiation in a progeny of individual cells. Extensions of LSC may make it applicable for automatic analysis of cloning efficiency and multiparameter analysis of cell colonies in soft agar. Such analyses may be useful in studies of the mechanisms and effectiveness of antitumor drugs, in the field of carcinogenesis, and for analyzing primary cultures and assessing tumor prognosis and drug sensitivity. The assay can also be adapted to analysis of microbial colonies.  相似文献   

18.
19.
BACKGROUND: Measurements on DNA content and steroid receptor status in breast cancer are of great clinical interest. Objective determination of estrogen and progesterone receptor expression should help to define the lowest levels of positivity still responding to adjuvant antihormonal therapy. For this purpose, a simple protocol for laser scanning cytometry is presented. METHODS: Analysis of 54 routine breast cancer samples was performed by laser scanning cytometry (LSC). To obtain single cell preparations from fresh tumor tissue, slides were prepared using the Cervisoft cytological device. Exact determination of tumor cell DNA content was done by referring to the CD45-positive tissue leukocyte fraction as the internal diploid reference cell population. Steroid receptor-expressing cells were detected by indirect immunolabeling. RESULTS: Indirect immunofluorescence allowed the best quantification of both the estrogen and progesterone receptor-expressing cell fractions by LSC. The number of receptor-expressing cells could be given in percentage. For comparison, the 10% cutoff value was used to determine receptor positivity. CONCLUSION: LSC enabled a simple, reliable, and inexpensive determination of DNA index and steroid receptor expression in breast cancer specimens by objective criteria.  相似文献   

20.
AIM: To test laser scanning cytometry (LSC) for the analysis of ploidy in squamous cell carcinoma of the hypopharynx (SCCH) and to develop a routine application for minimal samples such as fine needle aspirate biopsies (FNABs). METHODS: From 11 individuals 30 FNABs of primary tumors (n=11) and lymphatic metastases of SCCH (n=11) and non-metastatic lymph nodes (n=8) are analyzed by LSC. This microscope based instrument scans the cells after immobilization on a glass slide and after double staining of cytokeratin and DNA. The location of each cell is stored with the fluorescence data. Therefore the morphology of every cell can be documented by re-staining with H & E; and re-localization on the slide. Additionally, aliquots are Feulgen-stained for image cytometry in 8 specimens. RESULTS: The diploid reference peak is identified taking leukocytes as internal standard. The DNA-index of the carcinoma cells ranges from 0.4 to 3.8. Comparison with image cytometry shows good correlation (r=0.89). CONCLUSION: LSC provides a reliable and objective way to determine the ploidy of SCCH pre-operatively. Colour figures can be viewed on http://www.esacp.org/acp/2003/25-2/gerstner.htm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号