首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Olfactory bulbs contain dendrodendritic synapses, which occur between granule cells and mitral cells, and gamma-aminobutyric acid (GABA) is thought to act as an inhibitory neurotransmitter at these synapses. Synaptosomes derived from the dendrodendritic synapses of the olfactory bulb were shown previously to contain considerable L-glutamate decarboxylase activity. The subcellular distribution and binding parameters of [3H]GABA and [3H]muscimol binding sites have now been determined in the rat olfactory bulb. Of all fractions examined, crude synaptic membranes (CSM) prepared from the dendrodendritic synaptosomes were shown to have the highest specific binding activity and accounted for nearly all of the total binding activity for both ligands. The specific binding activities for [3H]GABA and for [3H]muscimol were greatly increased after treating the CSM with 0.05% Triton X-100. Binding was shown to be Na+-independent, reversible, pharmacologically specific, and saturable. High- and low-affinity sites were detected for both ligands, and both classes of sites had appreciably lower KD values for muscimol (KD1 = 3.1 nM, KD2 = 25.1 nM) than for GABA (KD1 = 8.6 nM; KD2 = 63.7 nM). The amounts of the high-affinity binding sites for muscimol and GABA were similar (Bmax = 1.7 and 1.5 pmol/mg protein, respectively). The results of the present experiments indicate that the GABA and muscimol binding sites represent the GABA postsynaptic receptor, presumably on mitral cell dendrites, and provide further support for the hypothesis that GABA functions as a neurotransmitter at the dendrodendritic synapses in the olfactory bulb.  相似文献   

2.
The presence of a [3H]muscimol binding site on the purified benzodiazepine receptor was demonstrated. The purified protein was apparently homogeneous as shown by sodium dodecyl sulfate polyacrylamide gel electrophoresis (stained with silver), with a molecular weight of 60,000 +/- 3000. The benzodiazepine binding sites were characterized as being of the central type and the [3H]flunitrazepam binding was enhanced by GABA. This activation was antagonized by bicuculline. [3H]Muscimol specifically binds to the benzodiazepine receptor. The Scatchard plot indicates a Kd of 23 nM and the ratio [3H]flunitrazepam/[3H]muscimol is approximately unity.  相似文献   

3.
Abstract: The effect of lindane administration on the specific binding of ligands to different sites on the GABAA receptor-ionophore complex was studied in the rat brain by receptor mapping autoradiography. [3H]Muscimol (Mus), [3H]flunitrazepam (Flu), and t -[35S]butylbicyclophosphorothionate (TBPS) were used as specific ligands of GABA, benzodiazepine, and picrotoxinin binding sites, respectively. Rats received a single oral dose of 30 mg/kg lindane and they were classified into two groups according to the absence or presence of convulsions. Vehicle-treated groups acted as controls. The effect of the xenobiotic on ligand binding was measured in different brain areas and nuclei 12 min or 5 h after its administration. Lindane induced a generalized decrease in [35S]TBPS binding, which was present shortly after dosing. In addition, [3H]Flu binding was increased in lindane-treated animals, this modification also appearing shortly after administration but diminishing during the studied time. Finally, lindane induced a decrease in [3H]Mus binding, which became more evident over time. These modifications were observed both in the presence and in the absence of convulsions. However, an increase in [3H]-Mus binding was detected shortly after lindane-induced convulsions. The observed decrease in [35S]TBPS binding is in agreement with the postulated action of lindane at the picrotoxinin binding site of the GABAA receptor chloride channel. The effects observed on the binding of [3H]Flu and [3H]Mus may be secondary to the action of lindane as an allosteric antagonist of the GABAA receptor.  相似文献   

4.
Muscimol is one of the most potent agonist ligands at the gamma-aminobutyric acidA (GABAA) receptor. Analysis of its chemical structure showed it to be a candidate for photoaffinity labeling. In practice, UV irradiation at 254 nm both changed the UV spectrum of muscimol and induced an irreversible binding of [3H]-muscimol to rat cerebellar synaptosomal membrane. After 10 min of irradiation, using 10 nM [3H]muscimol, the specific portion of this binding was 270 fmol/mg protein. (Nonspecific binding was defined as that arising in the presence of 1 mM GABA.) Specific binding increased asymptotically up to 100 nM [3H]muscimol. Irradiation of the membranes themselves did not significantly alter the KD or Bmax of reversible [3H]muscimol binding. However, irradiation of [3H]muscimol reduced its capacity subsequently to photolabel the membranes by 86 +/- 3%. Dose-dependent inhibition of binding was observed with muscimol, GABA, and bicuculline methiodide; with 10 nM [3H]muscimol maximum inhibition was 70% of total labeling and the order of potencies of these three compounds was characteristic of labeling to the GABAA receptor. Baclofen, l-glutamate, and diazepam exerted no effect at high concentrations. SDS-PAGE of the photolabeled membranes indicated specific incorporation of radioactivity into two molecular-weight species. One failed to enter the separating gel, implying a molecular weight greater than 250,000 daltons (250 kD). The molecular weight of the other was identified by fluorography to be about 52,000 daltons (52 kD).  相似文献   

5.
The regional distribution of [3H]zolpidem, a novel imidazopyridine hypnotic possessing preferential affinity for the BZD1 (benzodiazepine subtype 1) receptor, has been studied autoradiographically in the rat CNS and compared with that of [3H]flunitrazepam. The binding of [3H]zolpidem to rat brain sections was saturable, specific, reversible, and of high affinity (KD = 6.4 nM). It occurred at a single population of sites whose pharmacological characteristics were similar to those of the benzodiazepine receptors labeled with [3H]flunitrazepam. However, ethyl-beta-carboline-3-carboxylate and CL 218,872 were more potent displacers of [3H]zolpidem than of [3H]flunitrazepam. The autoradiographic brain distribution of [3H]zolpidem binding sites was qualitatively similar to that previously reported for benzodiazepine receptors. The highest levels of [3H]-zolpidem binding sites occurred in the olfactory bulb (glomerular layer), inferior colliculus, ventral pallidum, nucleus of the diagonal band of Broca, cerebral cortex (layer IV), medial septum, islands of Calleja, subthalamic nucleus, and substantia nigra pars reticulata, whereas the lowest densities were found in parts of the thalamus, pons, and medulla. Comparative quantitative autoradiographic analysis of the binding of [3H]zolpidem and [3H]flunitrazepam [a mixed BZD1/BZD2 (benzodiazepine subtype 2) receptor agonist] in the CNS revealed that the relative density of both 3H-labeled ligands differed in several brain areas. Similar levels of binding for both ligands were found in brain regions enriched in BZD1 receptors, e.g., substantia nigra pars reticulata, inferior colliculus, cerebellum, and cerebral cortex lamina IV. The levels of [3H]zolpidem binding were five times lower than those of [3H]flunitrazepam binding in those brain regions enriched in BZD2 receptors, e.g., nucleus accumbens, dentate gyrus, and striatum. Moreover, [3H]zolpidem binding was undetectable in the spinal cord (which contains predominantly BZD2 receptors). Finally, like CL 218,872 and ethyl-beta-carboline-3-carboxylate, zolpidem was a more potent displacer of [3H]flunitrazepam binding in brain regions enriched in BZD1 receptors than in brain areas enriched in BZD2 receptors. The present data add further support to the view that zolpidem, although structurally unrelated to the benzodiazepines, binds to the benzodiazepine receptor and possesses selectivity for the BZD1 receptor subtype.  相似文献   

6.
Specific binding of [3H]diazepam at a free concentration of 2 nM was found to be maximally potentiated by 117% in Tris-HCl buffer and 160% in Tris-citrate buffer by ethylenediamine (EDA), but only at relatively high concentrations of EDA (ED50 = 5 X 10(-5) M), although this potentiation was susceptible to a low dose (6 microM) of bicuculline. Dose-response curves show that EDA differs from GABA with respect to both potency and efficacy. In additivity experiments no evidence was found that EDA could act as a partial agonist at GABA receptors, and it was concluded that EDA and GABA apparently do not potentiate [3H]diazepam binding by acting on the same receptor. Scatchard analysis lends support to this hypothesis, indicating that the potentiation of [3H]diazepam binding by 3.16 X 10(-3) M EDA is due to an increase in receptor number (from 930 to 1170 fmol/mg protein) and not receptor affinity (remaining constant about 20 nM). Subsequent studies showed the potentiation to be reversible. It is concluded that EDA can act on the GABA-benzodiazepine receptor ionophore complex but that this is probably not a direct action on the GABA receptor. It is suggested that EDA can be used to differentiate GABA receptors linked to benzodiazepine receptors from those not so linked.  相似文献   

7.
We examined the effects of in vivo hypoxia (10% O2/90% N2) on the gamma-aminobutyric acid (GABA)/benzodiazepine receptors and on glutamic acid decarboxylase (GAD) activity in the rat brain. Male Wistar rats were exposed to a mixture of 10% O2 and 90% N2 in a chamber for various periods (3, 6, 12, and 24 h). The control rats were exposed to room air. The brain regions examined were the cerebral cortex, striatum, hippocampus, and cerebellum. GABA and benzodiazepine receptors were assessed using [3H]muscimol and [3H]flunitrazepam, respectively. Compared with control values, GAD activity was decreased significantly following a 6-h exposure to hypoxia in all four regions studied. On the other hand, the numbers of both [3H]muscimol and [3H]flunitrazepam binding sites were increased significantly. The increase in receptor number tended to return to control values after 24 h. Treatment of the membrane preparations with 0.05% Triton X-100 eliminated the increase in the binding capacity. These results may represent an up-regulation of postsynaptically located GABA/benzodiazepine receptors corresponding to the impaired presynaptic activity under hypoxia.  相似文献   

8.
Abstract: THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) is a specific GABA agonist with potent analgesic properties. The binding of radioactive THIP to thoroughly washed, frozen, and thawed membranes isolated from rat brains has been studied at 2°C under sodium ion-free conditions and compared with the binding of [3H]GABA and [3H]piperidine-4-sulphonic acid ([3H]P4S). The best computer fits to the experimental data were in all cases attained with a receptor model based on three independent binding sites, of which only the high- and medium-affinity sites could be characterised satisfactorily. While the KD values were found to be comparable for all three ligands employed, the density of the high-affinity binding site (BM1) was, with the exception of the membranes from the cerebellum, considerably lower for [3H]THIP than for [3H]GABA and [3 H]P4S. The regional distribution of the GABA receptors, which bind [3H]THIP, was different from those recognizing [3H]GABA and [3H]P4S. A number of analogues, including asymmetric compounds with known configuration, were tested as inhibitors of the binding of [3H]GABA, [3H]muscimol, [3H]THIP, [3H]isoguvacine, and [3H]P4S. The concentrations of the asymmetric compounds required for the inhibition of [3H]P4S binding were much higher than those required for the displacement of [3H]GABA, [3H]muscimol, [3H]THIP, and [3H]isoguvacine. The comparable relative potencies of inhibitors do, however, indicate that all of the ligands bind to the GABA receptors.  相似文献   

9.
Irreversible photolabeling by [3H]flunitrazepam of four proteins with apparent molecular weights 51,000 (P51), 53,000 (P53), 55,000 (P55), and 59,000 (P59) was investigated in various rat brain regions by SDS-polyacrylamide gel electrophoresis, fluorography, and quantitative determination of radioactivity bound to proteins. On maximal labeling of these proteins, only 15-25% of [3H]flunitrazepam reversibly bound to membranes becomes irreversibly attached to proteins. Results presented indicate that for every [3H]flunitrazepam molecule irreversibly bound to membranes, three molecules dissociate from reversible benzodiazepine binding sites. This seems to indicate that these proteins are either closely associated or identical with reversible benzodiazepine binding sites, and supports the hypothesis that four benzodiazepine binding sites are associated with one benzodiazepine receptor. When irreversible labeling profiles of proteins P51, P53, P55, and P59 were compared in different brain regions, it was found that labeling of individual proteins varied independently, supporting previous evidence that these proteins are associated with distinct benzodiazepine receptors.  相似文献   

10.
GABAA receptor agonists modulate [3H]diazepam binding in rat cortical membranes with different efficacies. At 23 degrees C, the relative potencies for enhancement of [3H]diazepam binding by agonists parallel their potencies in inhibiting [3H]gamma-aminobutyric acid [( 3H]GABA) binding. The agonist concentrations needed for enhancement of [3H]diazepam binding are up to 35 times higher than for [3H]GABA binding and correspond closely to the concentrations required for displacement of [3H]bicuculline methochloride (BMC) binding. The maximum enhancement of [3H]diazepam varied among agonists: muscimol = GABA greater than isoguvacine greater than 3-aminopropane sulphonic acid (3APS) = imidazoleacetic acid (IAA) greater than 4,5,6,7-tetrahydroisoxazolo (4,5,6)-pyridin-3-ol (THIP) = taurine greater than piperidine 4-sulphonic acid (P4S). At 37 degrees C, the potencies of agonists remained unchanged, but isoguvacine, 3 APS, and THIP acquired efficacies similar to GABA, whereas IAA, taurine, and P4S maintained their partial agonist profiles. At both temperatures the agonist-induced enhancement of [3H]diazepam binding was reversible by bicuculline methobromide and by the steroid GABA antagonist RU 5135. These results stress the importance of studying receptor-receptor interaction under near-physiological conditions and offer an in vitro assay that may predict the agonist status of putative GABA receptor ligands.  相似文献   

11.
Modulation of [3H]muscimol binding by picrotoxin, pentobarbitone, and etomidate was investigated in rat cerebellar and cerebral cortical membranes. In cerebellum, at 37 degrees C in the presence of chloride ions (150 mM), picrotoxin and picrotoxinin decreased specific [3H]muscimol binding to 43 +/- 3% of control, with an EC50 of 1.2 +/- 0.1 microM. [3H]Muscimol saturation experiments in the presence and absence of picrotoxin indicated that the picrotoxin effect was primarily due to a loss of high-affinity muscimol sites with KD approximately equal to 10 nM. Pentobarbitone enhanced specific [3H]muscimol binding to 259 +/- 3% of control, with EC50 = 292 +/- 37 microM, and etomidate increased binding to 298 +/- 18%, with EC50 = 7.1 +/- 1.0 microM. The influence of temperature and chloride ion concentration on these effects was investigated by comparing experiments at 37 and 0 degrees C in the presence or absence of chloride at constant ionic strength. The results indicate that studies at 0 degrees C underestimate the coupling between GABA receptors and barbiturate sites and that they greatly overestimate the importance of chloride ions in this phenomenon. In cerebral cortical membranes (37 degrees C, 150 mM Cl-), the effect of picrotoxin was similar to that observed in cerebellum, whereas the effects of pentobarbitone and etomidate were greater, but occurred at higher concentrations.  相似文献   

12.
Abstract: The binding of radioactive piperidine-4-sulphonic acid ([3H]P4S) to thoroughly washed, frozen, and thawed membranes isolated from cow and rat brains has been studied. Quantitative computer analysis of the binding curves for four regions of bovine brain revealed the general presence of two binding sites. In these brain regions less satisfactory computer fits were obtained for receptor models showing one or three binding sites or negative cooperativity. With the use of Tris-citrate buffer at 0°C the two affinity classes for P4S in bovine cortex membranes revealed the following binding parameters: KD= 17 ± 7 nM (Bmax= 0.15 ± 0.07 pmol/mg protein) and KD= 237 ± 100 nM (Bmax= 0.80 ± 0.20 pmol/mg protein). Heterogeneity was also observed for association and dissociation rates of [3H]P4S. The slow binding component (kon= 5.6 × 107 or 8.8 × 107 M-1 min-1, kOff= 0.83 min-1, and KD= 14.7 or 9.4 nM, determined by two different methods in phosphate buffer containing potassium chloride) corresponds to the high-affinity component of the equilibrium binding curve (KD= 11 nM, Bmax= 0.12 pmol/mg protein in the same buffer system). The association and dissociation rates for the subpopulation of rapidly dissociating sites, apparently corresponding to the low-affinity sites, were too rapid to be measured accurately. The binding of [3H]P4S appears to involve the same two populations of sites with Bmax values similar to those for [3H]GABA binding to the same tissue, although the kinetic parameters for the two ligands are somewhat different. Furthermore, comparative studies on the inhibition of [3H]P4S and [3H]GABA binding by various GABA analogues, strongly suggest that P4S binds to the GABA receptors. The different effects of P4S and GABA on benzodiazepine binding are discussed.  相似文献   

13.
The effect of intrastriatal microinjection of kainic acid (KA) on specific binding of [3H]muscimol to the particulate fractions obtained from corpus striatum (CS), globus pallidus (GP), substantia nigra (SN), and cerebral cortex (CC) was examined. Seven days after the unilateral intrastriatal microinjection of KA, the amount of specifically bound [3H]muscimol was significantly increased at the injected site, whereas no significant alteration of [3H]muscimol binding was found in GP, SN, or CC. Scatchard analysis of striatal binding revealed that microinjection of KA significantly increased the affinity (KD) of GABA receptors on the injected (lesioned) side of the CS without affecting the total number of binding sites (Bmax) therein. This significant increase in [3H]muscimol binding, however, was eliminated by pretreating particulate fractions from the CS with Triton X-100, a non-ionic detergent. No statistically significant difference in amounts of [3H]muscimol binding was detected when the preparations from the KA-treated and non-treated CS were preincubated with 0.05% Triton X-100, respectively. Scatchard analysis using CS preparations treated with 0.05% Triton X-100 revealed that the affinity of the GABA receptor was increased by treatment with Triton X-100, while the total number of binding sites (Bmax) was unchanged by this treatment. These results suggest that neuronal degeneration produced by KA in vivo and pretreatment of particulate preparations with Triton X-100 in vitro may increase the amount of specifically bound [3H]muscimol to CS preparations by a similar molecular mechanism.  相似文献   

14.
DMCM (methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate) produces convulsions in mice and rats, probably by interacting with benzodiazepine (BZ) receptors. Investigation of specific binding of [3H]DMCM to rat hippocampus and cortex revealed polyphasic saturation curves, indicating a high-affinity site (KD = 0.5-0.8 nM) and a site with lower affinity (KD = 3-6 nM). BZ receptor ligands of various chemical classes, but not other agents, displace [3H]DMCM from specific binding sites--indicating that [3H]DMCM binds to BZ receptors in rat brain. The regional distribution of [3H]DMCM binding is complementary to that of the BZ1-selective radioligand [3H]PrCC. Specific binding of [3H]DMCM (0.1 nM) was reduced by gamma-aminobutyric acid (GABA) receptor agonist to approximately 20% of the control value at 37 degrees C in chloride-containing buffers; the reduction was bicuculline methiodide- and RU 5135-sensitive. The effective concentrations of 10 GABA analogues in reducing [3H]DMCM binding correlated closely to published values for their GABA receptor affinity. Specific binding of [3H]DMCM is regulated by unknown factors; e.g. enhanced binding was found by Ag+ treatment of membranes, in the presence of picrotoxinin, or by exposure to ultraviolet light in the presence of flunitrazepam. In conclusion, [3H]DMCM appears to bind to high-affinity brain BZ receptors, although the binding properties are different from those of [3H]flunitrazepam and [3H]PrCC. These differences might relate in part to subclass selectivity and in part to differences in efficacy of DMCM at BZ receptors.  相似文献   

15.
When rat brain membranes were incubated with the benzodiazepine agonist [3H]flunitrazepam or the partial inverse benzodiazepine agonist [3H]Ro 15-4513 in the presence of ultraviolet light one protein (P51) was specifically and irreversibly labeled in cerebellum and at least two proteins (P51 and P55) were labeled in hippocampus. After digestion of the membranes with trypsin, protein P51 was degraded into several peptides. When P51 was photolabeled with [3H]Ro 15-4513, four peptides with apparent molecular weights of 39,000, 29,000, 21,000, and 17,000 were observed. When P51 was labeled with [3H]flunitrazepam, only two peptides with apparent molecular weights of 39,000 and 25,000 were obtained. Protein P55 was only partially degraded by trypsin, and whether it was labeled with [3H]flunitrazepam or [3H]Ro 15-4513 it yielded the same two proteolytic peptides with apparent molecular weights of 42,000 and 45,000. These results support the existence of at least two different benzodiazepine receptor subtypes associated with proteins P51 and P55. The different receptors seem to be differentially protected against treatment with trypsin. In addition, these results indicate that in the benzodiazepine receptor subtype associated with P51 benzodiazepine agonists and partial inverse benzodiazepine agonists irreversibly bind to different parts of the molecule.  相似文献   

16.
Abstract: The binding of [3H] γ-aminobutyric acid ([3H]GABA) and [3H]muscimol has been studied in purified synaptic plasma membrane (SPM) preparations from rat brain. Scatchard analysis of specific binding (defined as that displaced by 100 μMγ-aminobutyrate) indicated that the binding of both radiolabelled ligands was best described by a two component Langmuir adsorption isotherm. The apparent KD and Bmax values for [3H]GABA at 4°C were KD1, 20 nM; KD2,165 nM; Bmax1, 0.48 pmol;Bmax2, 6.0 pmol. mg?1; for [3H]muscimol at 4°C they were: KD1, 1.75 nM; KD2, 17.5 nM; Bmaxl, 0.84 pmol. mg?1; Bmax2, 4.8 pmol.mg?1; and for [3H]muscimol at 37°C they were: KD1, 7.0 nM; Km, 60 nM; Bmax], 0.5 pmol-mg?1; Bmax2, 7.2 pmol-mg1. Under the experimental conditions used, the similar Bmilx values for [3H]GABA and [3H]muscimol binding to the SPM preparations suggests that the high- and low-affinity components for the two radiolabeled ligands are identical. The effects of the GAB A antagonist bicuculline on the binding of [3H]muscimol at 4CC and 37°C were studied. At 4°C, antagonism of muscimol binding appeared to be competitive at the high-affinity site but noncompetitive at the low-affinity site. At 37°C, antagonism was again competitive at the high-affinity site but was of a mixed competitive/noncompetitive nature at the low-affinity site. Assuming that binding to the high-affinity site is associated with the pharmacological actions of bicuculline, the apparent KD values obtained suggest a pA2 value of 5.3 against [3H]muscimol at 4°C and 37°C. This figure is in good agreement with several estimates of the potency of bicuculline based on pharmacological measurements. Results from displacement studies using [3H]GABA and [3H]muscimol suggest that [3H]GABA might be a more satisfactory ligand than [3H]muscimol in GABA radioreceptor assays.  相似文献   

17.
Abstract: A [3H]muscimol radioreceptor assay was used to measure the levels of GAB A in mouse brain. The method is based on the competitive inhibition of [3H]muscimol binding to the GABA receptor by GABA extracted from tissue. The specificity and accuracy of the method was established by comparative measurements of GABA levels by gas chromatography. GABA levels obtained by radioreceptor assay (R) and gas chromatography (GC) in different areas of mouse brain were (in μmol/g tissue ± S.E.M.): cerebral cortex 1.41 ± 0.06 (R), 1.50 ± 0.03 (GC); corpus striatum 1.70 ± 0.05 (R), 1.66 ± 0.01 (GC); cerebellum 1.15 ± 0.04 (R), 1.11 ± 0.07 (GC); hippocampus 1.35 ± 0.04 (R), 1.43 ± 0.04 (GC). The sensitivity of the assay was 5 pmol of GABA, which is sufficient to measure GABA levels in brain. The technique described is simple and rapid and it can be used for unpurified tissue extracts.  相似文献   

18.
The effect of phospholipid methylation on both [3H]diazepam and [3H]GABA ( [3H]gamma-aminobutyric acid) binding to crude synaptic plasma membrane from rat cerebellum has been studied. S-Adenosylmethionine (SAM) stimulates [3H]methyl group incorporation into membrane phospholipids and enhances [3H]diazepam binding by increasing the apparent Bmax. Conversely, inhibition of [3H]methyl group transfer from [3H]SAM to phospholipids by preincubation with SAM at 0 degrees C or with SAH abolishes the increase of binding. After preincubation with SAM, analysis of the GABA binding reveals the presence of binding sites with high affinity, a property absent in control membranes preincubated without SAM. Among the neurotransmitter bindings tested, only those of GABA and benzodiazepine in the cerebellum and beta-adrenergic ligands in the cerebral cortex are enhanced upon stimulation of phospholipid methyltransferase activity. [3H]Dihydromorphine, [3H]dihydro-alpha-ergokryptine and [3H]spiroperidol bindings are not affected by SAM. The present data suggest an involvement of phospholipid methylation in regulation of both [3H]GABA and [3H]-diazepam binding.  相似文献   

19.
Abstract: [3H]Diazepam and [3H]flunitrazepam ([3H]FNP) binding to washed and frozen synaptosomal membranes from rat cerebral cortex were compared. In Tris-citrate buffer, γ -aminobutyric acid (GABA) and NaCl both increased [3H]diazepam binding more than [3H]FNP binding. GABA and pentobarbital both enhanced this effect of NaCl. Because of the extremely rapid dissociation of [3H]diazepam in the absence of NaCl and GABA, the Bmax (maximal binding capacity) was smaller by the filtration assay than by the centrifugation assay. [3H]FNP, which dissociates more slowly, had the same Bmax in both assays. [3H]Diazepam association had two components, and was faster than [3H]FNP association. [3H]Diazepam dissociation, which also had two components, was faster than that of [3H]FNP, and also had a greater fraction of rapidly dissociating species. [3H]FNP dissociation was similar when initiated by diazepam, flunitrazepam, clonazepam, or Ro15-1788, which is a benzodiazepine antagonist. [3H]Diazepam dissociation with Ro15-1788, flunitrazepam, or clonazepam was slower than with diazepam. GABA and NaCl, but not pentobarbital, increased the percentage of slowly dissociating species. This effect of NaCl was potentiated by GABA and pentobarbital. The results support the cyclic model of benzodiazepine receptors existing in two interconvertible conformations, and suggest that, distinct from their binding affinity, some ligands (like flunitrazepam) are better than others (like diazepam) in inducing the conversion of the receptor to the higher-affinity state.  相似文献   

20.
In brain synaptic membranes not extensively washed, (+)-5-[3H]methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5, 10-imine ([3H]MK-801) binding was markedly inhibited in a concentration-dependent manner (at concentrations above 1 microM) by several compounds having antagonistic activity at the Ca(2+)-binding protein calmodulin. Scatchard analysis revealed that N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) inhibited the binding through a significant decrease in the density of binding sites without affecting the affinity at 10 microM. In membranes extensively washed and treated with a low concentration of Triton X-100, L-glutamic acid (Glu) drastically accelerated the initial association rate of [3H]MK-801 binding with glycine (Gly), almost doubling the initial association rate found in the presence of Glu alone. The addition of W-7 invariably reduced the initial association rate observed in the presence of either Glu alone or both Glu and Gly, without significantly altering the dissociation rate of bound [3H]-MK-801, irrespective of the presence of the two stimulatory amino acids. The maximal potencies of Glu, Gly, and spermidine in potentiating the binding were all attenuated by W-7. These results suggest that calmodulin antagonists may interfere with opening processes of an ion channel associated with an N-methyl-D-aspartate-sensitive subclass of excitatory amino acid receptors in rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号