首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interleukin-17 (IL-17), mainly produced by activated (memory) T cells, has been found in the corneas from herpetic stromal keratitis (HSK) patients. To better understand the role of IL-17 and to optimize fidelity to human recurrent HSK, in this study, we utilized a mouse model of recurrent HSK, examined the expression of IL-17 and Th17 cells, and determine the alterability of virus-induced corneal inflammation after anti-IL-17 antibody treatment during murine recurrent HSK. We found that Th17 cells were obviously up-regulated in both cornea and DLNs of recurrent mice. Peak IL-17 protein present in recurrent cornea in conjunction with peak opacity mediated by CD4+ T cells. Systemic administration of anti-IL-17 antibody resulted in a diminished severity of corneal opacity, neovascularization, and CD4+ T cells infiltration compared to control. Anti-IL-17 treatment down-regulated the mRNA and protein levels of TNF-α expression in recurrent corneas, and decreased HSV-specific DTH responses. Our results indicate that elevated IL-17 expression may be involved in the development of recurrent HSK. The likely mechanisms of action for IL-17 are through up-regulating TNF-α expression and promoting HSV-specific DTH responses. Thus, IL-17 might constitute a useful target for therapeutic intervention in recurrent HSK.  相似文献   

2.
Corneal infection of BALB/c mice with herpes simplex virus type 1 results in a chronic inflammatory response in the stroma termed herpetic stromal keratitis (HSK). This disease is considered to be immunopathological and mediated primarily by CD4+ T cells of the type 1 cytokine profile. However, the nature of the antigens, virus or host derived, which drive the inflammatory response remains in doubt. In this study, the relevance of infection with replicating virus for the subsequent development of HSK was evaluated with immunocompetent mice as well as with SCID mice reconstituted with herpes simplex virus-immune CD4+ T cells. In the corneas of immunocompetent mice, infectious virus, viral antigen, and mRNA expression were detectable for only a brief period of time (< or = 7 days postinfection), and all were undetectable by the time clinical lesions were evident (10 to 15 days). Viral replication, however, was necessary for the development of HSK in both models, since infection with UV-inactivated virus or with mutant viruses which were incapable of multiple rounds of replication in vivo failed to induce HSK. The inactivated and mutant viral preparations did, however, stimulate T-cell immune responses in immunocompetent mice. The results are discussed in terms of possible involvement of host antigens exposed in response to transient progeny virion replication in the immune-privileged cornea.  相似文献   

3.
Herpes simplex virus 1 (HSV-1) replication initiates inflammation and angiogenesis responses in the cornea to result in herpetic stromal keratitis (HSK), which is a leading cause of infection-induced vision impairment. Chemokines are secreted to modulate HSK by recruiting leukocytes, which affect virus growth, and by influencing angiogenesis. The present study used a murine infection model to investigate the significance of the chemokine CXC chemokine ligand 10 (CXCL10; gamma interferon-inducible protein 10 [IP-10]) in HSK. Here, we show that HSV-1 infection of the cornea induced CXCL10 protein expression in epithelial cells. The corneas of mice with a targeted disruption of the gene encoding CXCL10 displayed decreases in levels of neutrophil-attracting cytokine (interleukin-6), primary neutrophil influx, and viral clearance 2 or 3 days postinfection. Subsequently, absence of CXCL10 aggravated HSK with elevated levels of interleukin-6, chemokines for CD4+ T cells and/or neutrophils (macrophage inflammatory protein-1α and macrophage inflammatory protein-2), angiogenic factor (vascular endothelial growth factor A), and secondary neutrophil influx, as well as infiltration of CD4+ T cells to exacerbate opacity and angiogenesis in the cornea at 14 and up to 28 days postinfection. Our results collectively show that endogenous CXCL10 contributes to recruit the primary neutrophil influx and to affect the expression of cytokines, chemokines, and angiogenic factors as well as to reduce the viral titer and HSK severity.  相似文献   

4.
Viruses are suspected but usually unproven triggering factors in autoimmunity. One favored mechanism to explain the role of viruses in the genesis of autoimmunity is molecular mimicry. An immunoinflammatory blinding lesion called herpetic stromal keratitis (HSK) that follows ocular infection with herpes simplex virus (HSV) is suggested to result from a CD4(+) T-cell response to a UL6 peptide of HSV that cross-reacts with a corneal autopeptide shared with the immunoglobulin G2a(b) (IgG2a(b)) isotype. The present report reevaluates the molecular mimicry hypothesis to explain HSK pathogenesis. Our results failed to reveal cross-reactivity between the UL6 and IgG2a(b) peptides or between peptide reactive T cells and HSV antigens. More importantly, animals infected with HSV failed to develop responses that reacted with either peptide, and infection with a recombinant vaccinia UL6 vector failed to cause HSK, in spite of generating UL6 reactivity. Other lines of evidence also failed to support the molecular mimicry hypothesis, such as the failure to affect HSK severity upon tolerization of susceptible BALB/c and B-cell-deficient mice with IgG2a(b) or UL6 peptides. An additional study system revealed that HSK could be induced in mouse strains, such as the OT2 x RAG1(-/-) mice (T cell receptor transgenic recognizing OVA(323-339)) that were unable to produce CD4(+) T-cell responses to any detectable HSV antigens. Our results cast doubt on the molecular mimicry hypothesis as an explanation for the pathogenesis of HSK and indicate that if autoimmunity is involved its likely proceeds via a bystander activation mechanism.  相似文献   

5.
Bystander activation involving T lymphocytes in herpetic stromal keratitis   总被引:11,自引:0,他引:11  
Herpes simplex virus infection of mouse corneas can lead to the development of an immunopathological lesion, termed herpetic stromal keratitis (HSK). Such lesions also occur in TCR-transgenic mice backcrossed to SCID (TgSCID) that are unable to mount detectable HSV-specific immune responses. The present study demonstrates that lesion expression in such mice depends on continuous viral replication, whereas in immunocompetent mice, lesions occurred even if virus replication was terminated at 4 days after infection. The continuous replication in TgSCID mice was considered necessary to produce an activating stimulus to CD4(+) T cells that invade the cornea. Lesions in TgSCID were resistant to control by cyclosporin A, but were inhibited by treatment with rapamycin. This result was interpreted to indicate that T cell activation involved a non-TCR-mediated cytokine-driven bystander mechanism. Bystander activation was also shown to play a role in HSK lesions in immunocompetent mice. Accordingly, in immunocompetent DO11.10 mice, lesions were dominated by KJ1.26(+) OVA-specific CD4(+) T cells that were unreactive with HSV. In addition, KJ1.26(+) HSV nonimmune cells parked in ocularly infected BALB/c mice were demonstrable in HSK lesions. These results provide insight for the choice of new strategies to manage HSK, an important cause of human blindness.  相似文献   

6.
Herpetic stromal keratitis in the reconstituted scid mouse model.   总被引:4,自引:2,他引:2       下载免费PDF全文
Infections of the cornea with herpes simplex virus type 1 cause inflammatory lesions which frequently lead to blindness. The disease is suspected to be immunopathological in nature. To establish this point and to study possible mechanisms involved, corneal infections in C.B-17 scid/scid and cell-reconstituted scid mice were investigated. Whereas unreconstituted scid mice failed to develop herpetic stromal keratitis (HSK) and died of encephalitis, mice reconstituted with T lymphocytes generated severe lesions. T cells of the CD4+ subset were found to be essential mediators of the HSK lesion, while T cells of the CD8+ subset protected mice from lethality. The results confirm that HSK is an immunopathological disease and that scid mice provide a convenient model that should prove valuable in establishing the biochemical mechanisms by which HSK is mediated.  相似文献   

7.
Herpetic stromal keratitis (HSK) is a chronic inflammatory process in corneal stroma that results from recurrent HSV type 1 infection. We used the murine model of HSK to demonstrate the importance of the interaction between an inducible T cell costimulatory receptor, 4-1BB, and its ligand, 4-1BB ligand (4-1BBL), in the development of this disease. In BALB/c mice, HSK ordinarily induced by infection with the RE strain of herpes was prevented by blocking 4-1BB/4-1BBL interaction, either by deleting 4-1BB (in mutant 4-1BB(-/-) mice) or by introducing mAbs against 4-1BBL. The majority of T cells infiltrating the infected corneas were 4-1BB(+) activated effector cells that expressed cell surface markers CD44, CD25, and/or CD62L, as well as chemokine receptors CCR1, CCR2, and CCR5, and a limited number of TCR Vbeta chains (Vbeta8.1/8.2, Vbeta8.3, Vbeta10b, and Vbeta5.1/5.2, in order of abundance). Analysis of cell surface phenotypes showed that the failure to develop HSK in the 4-1BB(-/-) mice was associated with a reduced expression of CD62L at the time of T cell migration into the corneal stroma.  相似文献   

8.
Approximately 7 days after HSV-1 corneal infection, BALB/c mice develop tissue-destructive inflammation in the cornea termed herpes stromal keratitis (HSK), as well as periocular skin lesions that are characterized by vesicles, edema, and fur loss. CD4(+) T cells and Th1 cytokines contribute to both the immunopathology in the cornea and the eradication of viral replication in the skin. We demonstrate that disruption of CD40/CD154 signaling does not impact the initial expansion of CD4(+) T cells in the draining lymph nodes, but dramatically reduces the persistence and Th1 polarization of these cells. Despite the reduced Th1 response, CD154(-/-) mice developed HSK and periocular skin disease with similar kinetics and severity (as assessed by clinical examination) as wild-type (WT) mice. However, when the composition of the inflammatory infiltrate was examined by flow cytometric analysis, CD154(-/-) mice exhibited significantly fewer CD4(+) and CD8(+) T cells and neutrophils than WT mice at the peak of HSK. Moreover, CD4(+) T cells from infected corneas of CD154(-/-) mice produced significantly less IFN-gamma than those of WT mice when stimulated with viral Ags in vitro. The IFN-gamma production of cells from infected corneas of WT mice was not affected by addition of anti-CD154 mAb to the stimulation cultures. This suggests that CD154 signaling is required at the inductive phase, but not at the effector phase, of the Th1 response within the infected cornea. We conclude that local disruption of CD40/CD154 signaling is not likely to be a useful therapy for HSK.  相似文献   

9.
HSV-1 infection of the cornea leads to a potentially blinding immunoinflammatory lesion of the cornea, termed herpetic stromal keratitis. It has also been shown that one of the factors limiting inflammation of the cornea is the presence of Fas ligand (FasL) on corneal epithelium and endothelium. In this study, the role played by FasL expression in the cornea following acute infection with HSV-1 was determined. Both BALB/c and C57BL/6 (B6) mice with HSV-1 infection were compared with their lpr and gld counterparts. Results indicated that mice bearing mutations in the Fas Ag (lpr) displayed the most severe disease, whereas the FasL-defective gld mouse displayed an intermediate phenotype. It was further demonstrated that increased disease was due to lack of Fas expression on bone marrow-derived cells. Of interest, although virus persisted slightly longer in the corneas of mice bearing lpr and gld mutations, the persistence of infectious virus in the trigeminal ganglia was the same for all strains infected. Further, B6 mice bearing lpr and gld mutations were also more resistant to virus-induced mortality than were wild-type B6 mice. Thus, neither disease nor mortality correlated with viral replication in these mice. Collectively, the findings indicate that the presence of FasL on the cornea restricts the entry of Fas(+) bone marrow-derived inflammatory cells and thus reduces the severity of HSK.  相似文献   

10.
Herpes stromal keratitis (HSK) is a prevalent and frequently vision-threatening disease associated with herpes simplex virus type 1 (HSV-1) infection. In mice, HSK progression occurs after viral clearance and requires T cells and neutrophils. One model implicates Th1-like CD4 T cells with cross-reactivity between the HSV-1 protein UL6 and a corneal autoantigen. HSK can be prevented by establishing specific immunological tolerance. However, HSK can also occur in T-cell receptor-transgenic X SCID mice lacking HSV-specific T cells. To study the pathogenesis of HSK in the natural host species, we measured local HSV-specific T-cell responses in HSK corneas removed at transplant surgery (n = 5) or control corneas (n = 2). HSV-1 DNA was detected by PCR in two specimens. HSV-specific CD4 T cells were enriched in three of the five HSK specimens and were not detectable in the control specimens. Reactivity with peptide epitopes within the tegument proteins UL21 and UL49 was documented. Responses to HSV-1 UL6 were not detected. Diverse HLA DR and DP alleles restricted these local responses. Most clones secreted gamma interferon, but not interleukin-5, in response to antigen. HSV-specific CD8 cells were also recovered. Some clones had cytotoxic-T-lymphocyte activity. The diverse specificities and HLA-restricting alleles of local virus-specific T cells in HSK are consistent with their contribution to HSK by a proinflammatory effect.  相似文献   

11.
12.
The potential of therapeutic vaccination of animals latently infected with herpes simplex virus type 1 (HSV-1) to enhance protective immunity to the virus and thereby reduce the incidence and severity of recurrent ocular disease was assessed in a mouse model. Mice latently infected with HSV-1 were vaccinated intranasally with a mixture of HSV-1 glycoproteins and recombinant Escherichia coli heat-labile enterotoxin B subunit (rEtxB) as an adjuvant. The systemic immune response induced was characterized by high levels of virus-specific immunoglobulin G1 (IgG1) in serum and very low levels of IgG2a. Mucosal immunity was demonstrated by high levels of IgA in eye and vaginal secretions. Proliferating T cells from lymph nodes of vaccinated animals produced higher levels of interleukin-10 (IL-10) than were produced by such cells from mock-vaccinated animals. This profile suggests that vaccination of latently infected mice modulates the Th1-dominated proinflammatory response usually induced upon infection. After reactivation of latent virus by UV irradiation, vaccinated mice showed reduced viral shedding in tears as well as a reduction in the incidence of recurrent herpetic corneal epithelial disease and stromal disease compared with mock-vaccinated mice. Moreover, vaccinated mice developing recurrent ocular disease showed less severe signs and a quicker recovery rate. Spread of virus to other areas close to the eye, such as the eyelid, was also significantly reduced. Encephalitis occurred in a small percentage (11%) of mock-vaccinated mice, but vaccinated animals were completely protected from such disease. The possible immune mechanisms involved in protection against recurrent ocular herpetic disease in therapeutically vaccinated animals are discussed.  相似文献   

13.
Jun H  Seo SK  Jeong HY  Seo HM  Zhu G  Chen L  Choi IH 《FEBS letters》2005,579(27):6259-6264
The co-signaling molecule B7-H1 (CD274) functions as both a co-inhibitor through programmed death-1 (PD-1) receptor and a co-stimulator via an as-yet-unidentified receptor on T cells. We investigated the physiological role of endogenous B7-H1 in the pathogenesis of herpetic stromal keratitis (HSK) caused by herpes simplex virus type 1 (HSV-1). Following HSV-1 infection of the cornea of mice, B7-H1 expression was up-regulated in the CD11b+ macrophage population in the draining lymph nodes (dLN) and in the inflamed cornea. In addition, HSV-1 infection significantly increased PD-1 expression on CD4+ T cells in the dLN and inflamed cornea. The administration of antagonistic B7-H1 monoclonal antibody resulted in the proliferation of HSV-specific CD4+ T cells that secreted interferon (INF)-gamma, and inhibited the apoptosis of HSV-specific CD4+ T cells, which exaggerated HSK. These results strongly suggest that the B7-H1 may be involved in suppression of the development of HSK.  相似文献   

14.
In primary ocular herpes simplex virus (HSV) infection, nitric oxide may function to control viral replication and herpetic stromal keratitis (HSK) lesions. Recurrent HSK, manifested as corneal opacity and neovascularization, is the potentially blinding sequel to primary infection. Here, we assess the effects of nitric oxide synthase inhibition on a mouse model of recurrent HSK. In preliminary primary infection experiments, NIH inbred mice treated with aminoguanidine, an inhibitor of inducible nitric oxide synthase (iNOS), experienced no changes in post-infection tear, brain, or ganglia virus titers, but encephalitis-related mortality was elevated. After UV-B stimulated viral reactivation, iNOS inhibition did not affect virus shedding or clinical disease. In contrast to primary HSK, there was no exacerbation of mortality in recurrent disease. Our findings indicate that nitric oxide can be neuroprotective without antiviral effects in primary HSK, and does not play a significant role in the pathogenesis of recurrent HSK. Compared with data from other mouse strains, this work suggests that there may be a genetic component to the importance of NO in controlling ocular HSV infection.  相似文献   

15.
Ocular infection with HSV results in a blinding immunoinflammatory lesion known as herpetic stromal keratitis (HSK). Early preclinical events include inflammatory cell, mainly neutrophils, infiltration of the stroma, and neovascularization. To further evaluate the role of neutrophils in pathogenesis, HSV infection was compared in BALB/c and mice of the same background, but lacking CXCR2, the receptor for chemokines involved in neutrophil recruitment. Our results show clear differences in the outcome of ocular HSV infection in CXCR2-/- compared with control BALB/c mice. Thus, CXCR2-/- animals had minimal PMN influx during the first 7 days postinfection, and this correlated with a longer duration of virus infection in the eye compared with BALB/c mice. The CXCR2-/- mice were also more susceptible to HSV-induced lesions and developed HSK upon exposure to a dose of HSV that was minimally pathogenic to BALB/c mice. The basis for the greater HSK lesion susceptibility of CXCR2-/- mice was associated with an elevated IL-6 response, which appeared in turn to induce the angiogenic factor, vascular endothelial growth factor. Our results serve to further demonstrate the critical role of angiogenesis in the pathogenesis of ocular lesions.  相似文献   

16.
This report analyzes the role of vascular endothelial growth factor (VEGF)-induced angiogenesis in the immunoinflammatory lesion stromal keratitis induced by ocular infection with herpes simplex virus (HSV). Our results show that infection with replication-competent, but not mutant, viruses results in the expression of VEGF mRNA and protein in the cornea. This a rapid event, with VEGF mRNA detectable by 12 h postinfection (p.i.) and proteins detectable by 24 h p.i. VEGF production occurred both in the virus-infected corneal epithelium and in the underlying stroma, in which viral antigens were undetectable. In the stroma, VEGF was produced by inflammatory cells; these initially were predominantly polymorphonuclear leukocytes (PMN), but at later time points both PMN and macrophage-like cells were VEGF producers. In the epithelium, the major site of VEGF-expressing cells in early infection, the infected cells themselves were usually negative for VEGF. Similarly, in vitro infection studies indicated that the cells which produced VEGF were not those which expressed virus. Attesting to the possible role of VEGF-induced angiogenesis in the pathogenesis of herpetic stromal keratitis were experiments showing that VEGF inhibition with mFlt(1-3)-immunoglobulin G diminished angiogenesis and the severity of lesions after HSV infection. These observations are the first to evaluate VEGF-induced angiogenesis in the pathogenesis of stromal keratitis. Our results indicate that the control of angiogenesis represents a useful adjunct to therapy of herpetic ocular disease, an important cause of human blindness.  相似文献   

17.
To determine the outcome of Onchocerca volvulus keratitis in IL-4(-/-) BALB/c mice, animals were immunized subcutaneously and injected into the corneal stroma with soluble O. volvulus antigens. IL-4(-/-) BALB/c mice had a deviated cellular response, with decreased serum IgE and IgG1 and elevated IgG2a compared with control BALB/c mice. In marked contrast to control BALB/c, C57BL/6, and IL-4(-/-) C57BL/6 mice, IL-4(-/-) BALB/c mice developed severe corneal opacification and neovascularization that was associated with a pronounced neutrophil infiltrate to the corneal stroma. STAT-6(-/-) BALB/c mice had the same phenotype as IL-4(-/-) BALB/c mice, and complement depletion had no effect on the severity of O. volvulus keratitis in these mice. These findings indicate that on a BALB/c background, IL-4 has a critical role in regulating neutrophil recruitment to the cornea and development of O. volvulus keratitis.  相似文献   

18.
Herpetic stromal keratitis (SK), a frequent cause of visual impairment, is considered to represent an immune-mediated inflammatory response to persistent herpes simplex virus virions or subcomponents within the corneal stroma. The experimental disease in mice involves the essential participation of T lymphocytes, but the role of T-lymphocyte subsets in either mediating or controlling the disease is uncertain. In this report, rat monoclonal antibodies were used to selectively deplete mice in vivo of CD4+ (helper-inducer) and CD8+ (cytotoxic-suppressor) T-cell populations and the effect on herpetic SK was evaluated. As measured by flow cytometry, mice treated with anti-CD4 monoclonal antibody (GK 1.5) were greater than 95% depleted of CD4+ T lymphocytes and mice treated with anti-CD8 monoclonal antibody (2.43) were 90% depleted of CD8+ T lymphocytes. Depleted and nonspecific mouse ascites-treated control mice were infected topically on the corneas with herpes simplex virus type 1, and the induction of various immune parameters during the acute infection was evaluated. CD4+-depleted mice failed to produce either a significant antiviral antibody or delayed-type hypersensitivity response but were capable of producing normal cytotoxic T-lymphocyte responses. In contrast, CD8+-depleted mice produced antiviral antibody and delayed-type hypersensitivity responses comparable with those in control animals, but cytotoxic T-lymphocyte responses were markedly reduced. Clinical observations of the corneas revealed that SK in CD4+-depleted mice was significantly reduced, whereas in CD8+-depleted mice SK developed more rapidly, was more severe, and involved a greater percentage of mice. These observations implicate the CD4+ T-lymphocyte subset as the principal mediators of SK and CD8+ T lymphocytes as possible regulators that control the severity of SK.  相似文献   

19.
20.
Molecularly defined vaccine formulations capable of inducing antiviral CD8+ T-cell-specific immunity in a manner compatible with human delivery are limited. Few molecules achieve this target without the support of an appropriate immunological adjuvant. In this study, we investigate the potential of totally synthetic palmitoyl-tailed helper-cytotoxic-T-lymphocyte chimeric epitopes (Th-CTL chimeric lipopeptides) to induce herpes simplex virus type 1 (HSV-1)-specific CD8+ T-cell responses. As a model antigen, the HSV-1 glycoprotein B498-505 (gB498-505) CD8+ CTL epitope was synthesized in line with the Pan DR peptide (PADRE), a universal CD4+ Th epitope. The peptide backbone, composed solely of both epitopes, was extended by N-terminal attachment of one (PAM-Th-CTL), two [(PAM)2-Th-CTL], or three [(PAM)3-Th-CTL] palmitoyl lysines and delivered to H2b mice in adjuvant-free saline. Potent HSV-1 gB498-505-specific antiviral CD8+ T-cell effector type 1 responses were induced by each of the palmitoyl-tailed Th-CTL chimeric epitopes, irrespective of the number of lipid moieties. The palmitoyl-tailed Th-CTL chimeric epitopes provoked cell surface expression of major histocompatibility complex and costimulatory molecules and production of interleukin-12 and tumor necrosis factor alpha proinflammatory cytokines by immature dendritic cells. Following ocular HSV-1 challenge, palmitoyl-tailed Th-CTL-immunized mice exhibited a decrease of virus replication in the eye and in the local trigeminal ganglion and reduced herpetic blepharitis and corneal scarring. The rational of the molecularly defined vaccine approach presented in this study may be applied to ocular herpes and other viral infections in humans, providing steps are taken to include appropriate Th and CTL epitopes and lipid groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号