首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The terms senescence and programmed cell death (PCD) have led to some confusion. Senescence as visibly observed in, for example, leaf yellowing and petal wilting, has often been taken to be synonymous with the programmed death of the constituent cells. PCD also obviously refers to cells, which show a programme leading to their death. Some scientists noted that leaf yellowing, if it has not gone too far, can be reversed. They suggested calling leaf yellowing, before the point of no return, 'senescence' and the process after it 'PCD'. However, this runs into several problems. It is counter to the historical definitions of senescence, both in animal and plant science, which stipulate that senescence is programmed and directly ends in death. It would also mean that only leaves and shoots show senescence, whereas several other plant parts, where reversal has not (yet) been shown, have no senescence, but only PCD. This conflicts with ordinary usage (as in root and flower senescence). Moreover, a programme can be reversible and therefore it is not counter to logic to regard the cell death programme as potentially reversible. In green leaf cells a decision to die, in a programmed way, has been taken, in principle, before the cells start to remobilize their contents (that is, before visible yellowing) and only rarely is this decision reversed. According to the arguments developed here there are no good reasons to separate a senescence phase and a subsequent PCD phase. Rather, it is asserted, senescence in cells is the same as PCD and the two are fully synchronous.  相似文献   

2.
Senescence is the final stage of plant ontogeny before death. Senescence may occur naturally because of age or may be induced by various endogenous and exogenous factors. Despite its destructive character, senescence is a precisely controlled process that follows a well‐defined order. It is often inseparable from programmed cell death (PCD), and a correlation between these processes has been confirmed during the senescence of leaves and petals. Despite suggestions that senescence and PCD are two separate processes, with PCD occurring after senescence, cell death responsible for senescence is accompanied by numerous changes at the cytological, physiological and molecular levels, similar to other types of PCD. Independent of the plant organ analysed, these changes are focused on initiating the processes of cellular structural degradation via fluctuations in phytohormone levels and the activation of specific genes. Cellular structural degradation is genetically programmed and dependent on autophagy. Phytohormones/plant regulators are heavily involved in regulating the senescence of plant organs and can either promote [ethylene, abscisic acid (ABA), jasmonic acid (JA), and polyamines (PAs)] or inhibit [cytokinins (CKs)] this process. Auxins and carbohydrates have been assigned a dual role in the regulation of senescence, and can both inhibit and stimulate the senescence process. In this review, we introduce the basic pathways that regulate senescence in plants and identify mechanisms involved in controlling senescence in ephemeral plant organs. Moreover, we demonstrate a universal nature of this process in different plant organs; despite this process occurring in organs that have completely different functions, it is very similar. Progress in this area is providing opportunities to revisit how, when and which way senescence is coordinated or decoupled by plant regulators in different organs and will provide a powerful tool for plant physiology research.  相似文献   

3.
4.
Abstract: Senescence is a form of programmed cell death (PCD) which leads to the death of whole organs, e.g., leaves or flowers, and eventually to the death of entire plants. Like all forms of PCD, senescence is a highly regulated and energy consuming process. Senescence parameters, like protein content, chlorophyll content, expression of photosynthesis-associated genes or senescence-associated genes (SAGs), reveal that senescence occurs in old leaves derived from young plants (6 week old) as well as in young leaves derived from older plants (8 week old), indicating that it is governed by the actual age of the leaves. In order to analyse the differential gene expression profiles during leaf senescence, hybridizations of high-density genome arrays were performed with: i) individual leaves within the rosette of a 6-week-old plant and ii) leaves of the same position within the rosette but harvested from plants of different ages, ranging from 5 to 8 weeks. Cluster and genetree analyses, according to the expression pattern revealed that genes which are up-regulated with respect to the age of the entire plant, showed completely different expression profiles with respect to the age of the individual leaves within one rosette. This was observed even though the actual difference in leaf age was approximately the same. This indicates that gene expression appears to be governed by different parameters: i) the age of the individual leaf and ii) the age and developmental stage of the entire plant.  相似文献   

5.
Controlled cellular suicide is an important process that can be observed in various organs during plant development. From the generation of proper sexual organs in monoecious plants to the hypersensitive response (HR) that occurs during incompatible pathogen interactions, programmed cell death (PCD) can be readily observed. Although several biochemical and morphological parameters have been described for various types of cell death in plants, the relationships existing between those different types of PCD events remain unclear. In this work, we set out to examine if two early molecular markers of HR cell death (HIN1 and HSR203J) as well as a senescence marker (SAG12) are coordinately induced during these processes. Our result indicates that although there is evidence of some cross-talk between both cell death pathways, spatial and temporal characteristics of activation for these markers during hypersensitive response and senescence are distinct. These observations indicate that these markers are relatively specific for different cell death programs. Interestingly, they also revealed that a senescence-like process seems to be triggered at the periphery of the HR necrotic lesion. This suggests that cells committed to die during the HR might release a signal able to induce senescence in the neighboring cells. This phenomenon could correspond to the establishment of a second barrier against pathogens. Lastly, we used those cell death markers to better characterize cell death induced by copper and we showed that this abiotic induced cell death presents similarities with HR cell death.  相似文献   

6.
Cell death is a common event in all types of plant organisms. Understanding the phenomenon of programmed cell death (PCD) is an important area of research for plant scientists because of its role in senescence and the post-harvest quality of ornamentals, fruits, and vegetables. In the present paper, PCD in relation to petal senescence in ornamental plants is reviewed. Morphological, anatomical, physiological,and biochemical changes that are related to PCD in petals, such as water content, sink-source relationships,hormones, genes, and signal transduction pathways, are discussed. Several approaches to improving the quality of post-harvest ornamentals are reviewed and some prospects for future research are given.  相似文献   

7.
The flower is the most significant and beautiful part of plants. Flowers are very useful organs in plant developmental phenomenon. During flower bud opening, various events takes place in a well defined sequence, representing all aspects of plant development, such as cell division, cellular differentiation, cell elongation or expansion and a wide spectrum of gene expression. The complexity of flower bud opening illustrates that various biological mechanisms are involved at different stages. Senescence represents the ultimate stage of floral development and results in wilting or abscission of whole flower or flower parts. Senescence is an active process and governed by a well defined cell death program. Once a flower bud opens, the programmed senescence of petal allows the removal of a metabolically active tissue. In leaves, this process can be reversed, but in floral tissue it cannot, indicating that a highly controlled genetic program for cell death is operating. The termination of a flower involves at least two, sometimes overlapping, mechanisms. In one, the perianth abscises before the majority of its cells initiate a cell death program. Abscission may occur before or during the mobilization of food reserves to other parts of the plant. Alternatively, the petals may be more persistent, so that cell deterioration and food remobilization occur while the petals are still part of the flower. The overall pattern of floral opening varies widely between plant genera, therefore, a number of senescence parameters have been used to group plants into somewhat arbitrary categories. Opening and senescence of rose flower is still an unsolved jigsaw in the world of floriculture industry and the mechanism behind the onset of the very early events in the sequence still remains to be elucidated. Hence, for advancing the knowledge on the pertinent aspect of bud opening and senescence the literature has been cited under this review.  相似文献   

8.
Wang G  Zhang Z  Kong D  Liu Q  Zhao G 《Plant cell reports》2012,31(9):1603-1610
In the chestnut "replaceable bud" cultivar 'Tima zhenzhu', the auxiliary bud formed on the fruiting branch dies after fruiting, giving rise to a morphology more suitable than the wild type's for intensive cultivation and heightened production. Here, we show that many of the hallmarks of programmed cell death (PCD) occur during the senescence of the replaceable bud, including DNA degradation, a high ratio of PCD cells and the breakdown of cell ultrastructure. The time course of the senescence was followed by sampling the developing bud from 20 to 40?days after flowering. In cv. 'Tima zhenzhu', DNA degradation was detectable prior to any visible sign of bud senescence, while it did not occur in the wild type (cv. 'Dabanhong'). The ratio of PCD cells (as determined by flow cytometry) rose over the sampling period and was consistently higher in cv. 'Tima zhenzhu' than in cv. 'Dabanhong'. After staining the bud cell nuclei with propidium iodide, it was clear that both their chromatin content and overall size fell over the sampling period in cv. 'Tima zhenzhu' while in cv. 'Dabanhong', no such decrease occurred. Other characteristics of PCD were noted in cv. 'Tima zhenzhu's bud cells, including chromatin condensation, tonoplast invagination and DNA cleavage. We conclude that the replaceable bud senescence phenomenon is driven by PCD. The manipulation of this trait may have potential for remodeling the pattern of development of the fruit-bearing branches of chestnut. Key message This paper first reported the occurrence of programmed cell death during the senescence of vegetative buds in a woody species, and the results extend the range of knowledge of PCD.  相似文献   

9.
崔克明 《植物学报》2000,17(2):97-107
细胞程序死亡(PCD)是在植物体发育过程中普遍存在的,在发育的特定阶段发生的自然的细胞死亡过程,这一死亡过程是由某些特定基因编码的“死亡程序”控制的。PCD是细胞分化的最后阶段。细胞分化的临界期就处于死亡程序执行中的某个阶段。PCD包含启动期、效应期和清除期三个阶段,其间caspase家族起着重要作用。PCD在细胞和组织的平衡、特化,以及组织分化、器官建成和对病原体的反应等植物发育过程中起着重要作用。PCD中的形态学变化和生物化学变化都有着严格的时序性。植物的PCD和动物的PCD有许多共性,包括细胞形态和DNA降解等变化。也有一些不同,植物PCD的产物既可被其它细胞吸收利用;也可用于构建自身的次生细胞壁。  相似文献   

10.
植物细胞程序死亡的机理及其与发育的关系   总被引:41,自引:3,他引:41  
崔克明 《植物学通报》2000,17(2):97-107
细胞程序死亡(PCD)是在植物体发育过程中普遍存在的,在发育的特定阶段发生的自然的细胞死亡过程,这一死亡过程是由某些特定基因编码的“死亡程序”控制的。PCD的细胞分化的最后阶段。细胞分化的临界期就牌死亡程序执行中的某个阶段。PCD包含启动期和清除期三个阶段,其间CASPASE家族起着重要作用。PCD在细胞和组织的平衡、特化,以及组织分化、器官建成和对病原体的反应等植物发育过程中起着重要作用。PCD  相似文献   

11.
Programmed Cell Death in Relation to Petal Senescence in Ornamental Plants   总被引:1,自引:0,他引:1  
Cell death is a common event in all types of plant organisms. Understanding the phenomenon of programmed cell death (PCD) is an important area of research for plant scientists because of its role in senescence and the post-harvest quality of ornamentals, fruits, and vegetables. In the present paper, PCD in relation to petal senescence in ornamental plants is reviewed. Morphological, anatomical, physiological,and biochemical changes that are related to PCD in petals, such as water content, sink-source relationships,hormones, genes, and signal transduction pathways, are discussed, Several approaches to improving the quality of post-harvest ornamentals are reviewed and some prospects for future research are given.  相似文献   

12.
Corolla life span of undetached flowers of Nicotiana tabacum was divided into stages from the closed corolla (stage 1) through anthesis (stage 5) to death (stage 9). Senescence began around stage 6 in the proximal part, concomitantly with DNA laddering. Nuclear blebbing, DNA laddering, cell wall modification, decline in protein, water, pigment content and membrane integrity were observed during senescence and PCD. Transglutaminase activity was measured as mono- and bis-derivatives of putrescine (mono-PU; bis-PU) and bis-derivatives of spermidine (bis-SD). Bis-derivatives decreased with the progression of senescence, while mono-PU increased during early senescence; derivatives were present in different amounts in the proximal and distal parts of the corolla. In excised flowers, exogenous spermine delayed senescence and PCD, and caused an increase in free and acid-soluble conjugated PA levels. Bis-PU was the most abundant PA-derivative before DNA laddering stage; thereafter, bis-PU generally decreased and mono-PU became the most abundant derivative.  相似文献   

13.
高等植物的PCD研究进展(一)   总被引:18,自引:2,他引:16  
潘建伟  董爱华  朱睦元 《遗传》2000,22(3):189-192
植物细胞程序性死亡(programmed cell death,PCD)已成为当前生物学的研究热点之一。植物PCD普遍存在于植物器官和个体生长发育过程及与环境相互作用过程中,具有重要的生物学意义。在高等植物生长发育过程中,根冠细胞、导管细胞、绒毡层细胞、胚乳细胞、胚柄细胞、糊粉细胞、大孢子细胞、助细胞和反足细胞等细胞在一定程度上均发生了PCD。另外,衰老也涉及PCD。本文综述了最近几年来与发育有关的PCD研究进展,主要包括高等植物细胞死亡的形式、起因及其PCD的形态、生化特征及高等植物营养器官(根、茎和叶)和生殖器官(花、果实和种子)在其生长发育过程中的PCD。文章最后还对植物PCD的进化和生物学意义作了进一步的讨论。 Abstract:Plant programmed cell death(PCD),the details of which are becoming a focus of intensive research in biology, is a ubiquitous phenomenon and plays an improtant biological role in the develpoment of organs and whole organisms and in interactions with the environment.During higher plant development,root cap cells,tracheary elements(TEs),tapetalcells,endosperm cells,suspensor cells,aleurone cells,megaspore cells,help cells and antipodal cells,etc.undergo PCD to some degree.In addition,senescence also involves PCD.This paper mainly reviewed PCD research progress in higher plant development in recent years,including forms and causes of cell death and PCD morphological and biochemical features in higher plants;PCD in development of nutritive organs(root ,stem and leaf) and reproductive organs(flower ,fruit and seed),evolution and biological rloes of plant PCD were further discussed in the paper.  相似文献   

14.
Mitochondrial involvement has not been identified in the programmed cell death (PCD) of leaf senescence which suggests that processes such as those involving reactive oxygen species (ROS) are controlled by chloroplasts. We report that transgenic tobacco (DeltandhF), with the plastid ndhF gene knocked-out, shows low levels of the plastid Ndh complex, homologous to mitochondrial complex I, and more than a 30-day-delay in leaf senescence with respect to wt. The comparison of activities and protein levels and analyses of genetic and phenotypic traits of wtxDeltandhF crosses indicate that regulatory roles of mitochondria in animal PCD are assumed by chloroplasts in leaf senescence. The Ndh complex would increase the reduction level of electron transporters and the generation of ROS. Chloroplastic control of leaf senescence provides a nonclassical model of PCD and reveals an unexpected role of the plastid ndh genes that are present in most higher plants.  相似文献   

15.
16.
In this work, the involvement of programmed cell death (PCD) in the wound-induced postharvest browning disorder and senescence in butterhead lettuce (Lactuca sativa L.) fresh-cuts was studied. At the wounded (cut, bruised) sites, rapid browning, loss of chlorophyll and massive cell death, accompanied with accumulation of reactive oxygen species and increased electrolyte leakage occurred in a narrow strip of tissue adjacent the injury. The dead cell morphology (protoplast and nuclei shrinkage) together with the biochemical and physiological changes resembled necrotic PCD type. With a slight delay post-wounding, senescence associated with similar cell death features was initiated in distant non-wounded sites. In addition to necrotic PCD, both in wounded and senescing tissue, the appearance of empty cell corpses was observed, indicating that part of the cells might undergo vacuolar PCD (self-digestion of cellular content after vacuole collapse). The wounding-induced local cell death at the primary site of damage suggested that PCD may serve as a mechanism to seal-off the wound by building a physical barrier of dead cells. However, the cell death at sites remote from the wound suggests the distribution of long-distance senescence-inducing wound messengers. Trichomes in unwounded tissue often were the first to show H2O2 accumulation and dead cells; thereafter, the elevated H2O2 and cell death appeared in connecting cells and senescence progressed over larger areas. This suggests that trichomes may contribute to mediating the wound signalling leading to subsequent senescence. Our findings demonstrate that PCD is an integral part of the wound syndrome in fresh-cut lettuce.  相似文献   

17.
Senescence mechanisms   总被引:24,自引:0,他引:24  
Senescence in plants is usually viewed as an internally programmed degeneration leading to death. It is a developmental process that occurs in many different tissues and serves different purposes. Generally, apoptosis refers to programmed death of small numbers of animal cells, and it shows some special features at the cell level. Some senescing plant cells show some symptoms typical of apoptosis, while others do not. This review will focus primarily on leaf senescence with ultimate aim of explaining whole plant senescence (i.e., monocarpic senescence). Traditionally, the ideas on senescence mechanisms fall into two major groupings, nutrient deficiencies (e.g., starvation) and genetic programming (i.e., senescence-promoting and senescence-inhibiting genes). Considerable evidence indicates that nutrient deficiencies are not central senescence program components, while increasing evidence supports genetic programming. Because chlorophyll (Chl) and chloroplast (CP) breakdown are so prominent, leaf senescence is generally measured in terms of Chl loss. Although CP breakdown may not be the proximate cause of leaf cell death, it certainly is important as a source of nutrients for use elsewhere, e.g., for developing reproductive structures in monocarpic plants, and this loss limits assimilatory capacity. The CP is dismantled in an orderly sequence. Individual protein complexes seem to be taken out all at once, not one subunit at a time. Removal of any component, e.g., Chl, seems to destabilize the whole complex. It is of special interest that senescing CPs secrete Chl-containing globules indicating that some CP components are broken down outside the CP. Senescence appears to be imposed on the CP by the nucleus, and all the known senescence-altering genes except one, cytG in soybean, are nuclear. Only the d1d2 mutation(s) in soybean prevents a broad range of leaf senescence processes. Exactly, what causes cell death is unclear; however, the selective thiol protease inhibitor, E-64, does delay death, and this suggests that proteases play a key role.  相似文献   

18.
Programmed cell death during pollination-induced petal senescence in petunia   总被引:23,自引:0,他引:23  
Xu Y  Hanson MR 《Plant physiology》2000,122(4):1323-1334
Petal senescence, one type of programmed cell death (PCD) in plants, is a genetically controlled sequence of events comprising its final developmental stage. We characterized the pollination-induced petal senescence process in Petunia inflata using a number of cell performance markers, including fresh/dry weight, protein amount, RNA amount, RNase activity, and cellular membrane leakage. Membrane disruption and DNA fragmentation with preferential oligonucleosomal cleavage, events characteristic of PCD, were found to be present in the advanced stage of petal senescence, indicating that plant and animal cell death phenomena share one of the molecular events in the execution phase. As in apoptosis in animals, both single-stranded DNase and double-stranded DNase activities are induced during petal cell death and are enhanced by Ca(2+). In contrast, the release of cytochrome c from mitochondria, one commitment step in signaling of apoptosis in animal cells, was found to be dispensable in petal cell death. Some components of the signal transduction pathway for PCD in plants are likely to differ from those in animal cells.  相似文献   

19.
Programmed cell death (PCD) is a process that occurs throughout the life span of every plant life, from initial germination of the seed to the senescence of the plant. It is a normal physiological milestone during the plant’s developmental process, but it can also be induced by external factors, including a variety of environmental stresses and as a response to pathogen infections. Changes in the morphology of the nucleus is one of the most noticeable during PCD but all the components of the plant cell (cytoplasm, cytoskeleton and organelles) are involved in this fascinating process. To date, relatively little is known about PCD in plants, but several factors, among which polyamines (PAs) and plant growth regulators, have been shown to play an important role in the initiation and regulation of the process. The role of PAs in plant PCD appears to be multifaceted acting in some instances as pro-survival molecules, whereas in others seem to be implicated in accelerating PCD. The molecular mechanism is still under study. Here we present some PCD plant models, focusing on the role of the enzyme responsible for PA conjugation to proteins: transglutaminase (TGase), an enzyme linked with the process of PCD also in some animal models. The role of PAs and plant TGase in the senescence and PCD in flowers, leaf and the self-incompatibility of pollen will be discussed and examined in depth.  相似文献   

20.
Senescence and autophagy play important roles in homeostasis. Cellular senescence and autophagy commonly cause several degenerative processes, including oxidative stress, DNA damage, telomere shortening, and oncogenic stress; hence, both events are known to be interrelated. Autophagy is well known for its disruptive effect on human diseases, and it is currently proposed to have a direct effect on triggering senescence and quiescence. However, it is yet to be proven whether autophagy has a positive or negative impact on senescence. It is known that elevated levels of autophagy induce cell death, whereas inadequate autophagy can trigger cellular senescence. Both have important roles in human diseases such as aging, renal degeneration, neurodegenerative disorders, and cancer. Therefore, this review aims to highlight the relevance of senescence and autophagy in selected human ailments through a summary of recent findings on the connection and effects of autophagy and senescence in these diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号