首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZipA is an essential cell division protein in Escherichia coli that is recruited to the division site early in the division cycle. As it is anchored to the membrane and interacts with FtsZ, it is a candidate for tethering FtsZ filaments to the membrane during the formation of the Z ring. In this study, we have investigated the requirements for ZipA localization to the division site. ZipA requires FtsZ, but not FtsA or FtsI, to be localized, indicating that it is recruited by FtsZ. Consistent with this, apparently normal Z rings are formed in the absence of ZipA. The interaction between FtsZ and ZipA occurs through their carboxy-terminal domains. Although a MalE-ZipA fusion binds to FtsZ filaments, it does not affect the GTPase activity or dynamics of the filaments. These results are consistent with ZipA acting after Z ring formation, possibly to link the membrane to FtsZ filaments during invagination of the septum.  相似文献   

2.
Plastids, an essential group of plant cellular organelles, proliferate by division to maintain continuity through cell lineages in plants. In recent years, it was revealed that the bacterial cell division protein FtsZ is encoded in the nuclear genome of plant cells, and plays a major role in the plastid division process forming a ring along the center of plastids. Although the best-characterized type of plastid division so far is the division with a single FtsZ ring at the plastid midpoint, it was recently reported that in some plant organs and tissues, plastids are pleomorphic and form multiple FtsZ rings. However, the pleomorphic plastid division mechanism, such as the formation of multiple FtsZ rings, the constriction of plastids and the behavior of plastid (pt) nucleoids, remains totally unclear. To elucidate these points, we used the cultured cell line, tobacco (Nicotiana tabacum L.) Bright Yellow-2, in which plastids are pleomorphic and show dynamic morphological changes during culture. As a result, it was revealed that as the plastid elongates from an ellipsoid shape to a string shape after medium renewal, FtsZ rings are multiplied almost orderly and perpendicularly to the long axis of plastids. Active DNA synthesis of pt nucleoids is induced by medium transfer, and the division and the distribution of pt nucleoids occur along with plastid elongation. Although it was thought that the plastid divides with simultaneous multiple constrictions at all the FtsZ ring sites, giving rise to many small plastids, we found that the plastids generally divide constricting at only one FtsZ ring site. Moreover, using electron microscopy, we revealed that plastid-dividing (PD) rings are observed only at the constriction site, and not at swollen regions. These results indicate that in the pleomorphic plastid division with multiple FtsZ rings, the formation of PD rings occurs at a limited FtsZ ring site for one division. Multiplied FtsZ rings seem to localize in advance at the expected sites of division, and the formation of a PD ring at each FtsZ ring site occurs in a certain order, not simultaneously. Based on these results, a novel model for the pleomorphic plastid division with multiple FtsZ rings is proposed.  相似文献   

3.
4.
Chloroplasts of the unicellular green alga Nannochloris bacillaris Naumann cultured under nutrient‐enriched conditions have multiple rings of FtsZ, a prokaryote‐derived chloroplast division protein. We previously reported that synthesis of excess chloroplast DNA and formation of multiple FtsZ rings occur simultaneously. To clarify the role of multiple FtsZ rings in chloroplast division, we investigated chloroplast DNA synthesis and ring formation in cells cultured under various culture conditions. Cells transferred from a nutrient‐enriched medium to an inorganic medium in the light showed a drop in cell division rate, a reduction in chloroplast DNA content, and changes in the shape of chloroplast nucleoids as cells divided. We then examined DNA synthesis by immunodetecting BrdU incorporated into DNA strands using the anti‐BrdU antibody. BrdU‐labeled nuclei were clearly observed in cells 48 h after transfer into the inorganic medium, while only weak punctate signals were visible in the chloroplasts. In parallel, the number of FtsZ rings decreased from 6 to only 1. When the cells were transferred from an inorganic medium to a nutrient‐enriched medium, the number of cells increased only slightly in the first 12 h after transfer; after this time, however, they started to divide more quickly and increased exponentially. Chloroplast nucleoids changed from punctate to rod‐like structures, and active chloroplast DNA synthesis and FtsZ ring formation were observed. On the basis of our results, we conclude that multiple FtsZ ring assembly and chloroplast DNA duplication under nutrient‐rich conditions facilitate chloroplast division after transfer to oligotrophic conditions without further duplication of chloroplast DNA and formation of new FtsZ rings.  相似文献   

5.
The min system spatially regulates division through the topological regulation of MinCD, an inhibitor of cell division. MinCD was previously shown to inhibit division by preventing assembly of the Z ring (E. Bi and J. Lutkenhaus, J. Bacteriol. 175:1118-1125, 1993); however, this was questioned in a recent report (S. S. Justice, J. Garcia-Lara, and L. I. Rothfield, Mol. Microbiol. 37:410-423, 2000) which indicated that MinCD acted after Z-ring formation and prevented the recruitment of FtsA to the Z ring. This discrepancy was due in part to alternative fixation conditions. We have therefore reinvestigated the action of MinCD and avoided fixation by using green fluorescent protein (GFP) fusions to division proteins. MinCD prevented the localization of both FtsZ-GFP and ZipA-GFP, consistent with it preventing Z-ring assembly. Consistent with a direct interaction between FtsZ and the MinCD inhibitor, we find that increased FtsZ, but not FtsA, suppresses MinCD-induced lethality. Furthermore, strains carrying various alleles of ftsZ, selected on the basis of resistance to the inhibitor SulA, displayed variable resistance to MinCD. These results are consistent with FtsZ as the target of MinCD and confirm that this inhibitor prevents Z-ring assembly.  相似文献   

6.
Beuria TK  Santra MK  Panda D 《Biochemistry》2005,44(50):16584-16593
Bacterial diseases are among the leading causes of human death. The development of antibiotic resistance greatly contributes to the high mortality rate, and thus, the discovery of antibacterial drugs with novel mechanisms of action is needed. In this study, we found that sanguinarine, a benzophenanthridine alkaloid, strongly induced filamentation in both Gram-positive and Gram-negative bacteria and prevented bacterial cell division by inhibiting cytokinesis. Sanguinarine did not perturb the membrane structure in Escherichia coli. However, it perturbed the cytokinetic Z-ring formation in E. coli. In addition, sanguinarine strongly reduced the frequency of the occurrence of Z rings/micrometer of Bacillus subtilis length but did not alter the number of nucleoids/micrometer of cell length. The results suggested that sanguinarine inhibited cytokinesis in B. subtilis by inhibiting Z-ring formation without affecting nucleoid segregation. Sanguinarine inhibited the assembly of purified FtsZ and reduced the bundling of FtsZ protofilaments in vitro. Further, the interaction of sanguinarine to FtsZ was investigated using size-exclusion chromatography, an extrinsic fluorescent probe 1-anilinonaphthalene-8-sulfonic acid, and tryptophan fluorescence of mutated FtsZ (Y371W). Sanguinarine was found to bind to FtsZ with a dissociation constant of 18-30 microM. The results together show that sanguinarine inhibits bacterial division by perturbing FtsZ assembly dynamics in the Z ring and provide evidence in support of the hypothesis that the assembly and bundling of FtsZ play a critical role in bacterial cytokinesis. The results suggest that sanguinarine may be used as a lead compound to develop FtsZ-targeted antibacterial agents.  相似文献   

7.
Mitochondria are derived from free-living alpha-proteobacteria that were engulfed by eukaryotic host cells through the process of endosymbiosis, and therefore have their own DNA which is organized using basic proteins to form organelle nuclei (nucleoids). Mitochondria divide and are split amongst the daughter cells during cell proliferation. Their division can be separated into two main events: division of the mitochondrial nuclei and division of the matrix (the so-called mitochondrial division, or mitochondriokinesis). In this review, we first focus on the cytogenetical relationships between mitochondrial nuclear division and mitochondriokinesis. Mitochondriokinesis occurs after mitochondrial nuclear division, similar to bacterial cytokinesis. We then describe the fine structure and dynamics of the mitochondrial division ring (MD ring) as a basic morphological background for mitochondriokinesis. Electron microscopy studies first identified a small electron-dense MD ring in the cytoplasm at the constriction sites of dividing mitochondria in the slime mold Physarum polycephalum, and then two large MD rings (with outer cytoplasmic and inner matrix sides) in the red alga Cyanidioschyzon merolae. Now MD rings have been found in all eukaryotes. In the third section, we describe the relationships between the MD ring and the FtsZ ring descended from ancestral bacteria. Other than the GTPase, FtsZ, mitochondria have lost most of the proteins required for bacterial cytokinesis as a consequence of endosymbiosis. The FtsZ protein forms an electron transparent ring (FtsZ or Z ring) in the matrix inside the inner MD ring. For the fourth section, we describe the dynamic association between the outer MD ring with a ring composed of the eukaryote-specific GTPase dynamin. Recent studies have revealed that eukaryote-specific GTPase dynamins form an electron transparent ring between the outer membrane and the MD ring. Thus, mitochondriokinesis is thought to be controlled by a mitochondrial division (MD) apparatus including a dynamic trio, namely the FtsZ, MD and dynamin rings, which consist of a chimera of rings from bacteria and eukaryotes in primitive organisms. Since the genes for the MD ring and dynamin rings are not found in the prokaryotic genome, the host genomes may make these rings to actively control mitochondrial division. In the fifth part, we focus on the dynamic changes in the formation and disassembly of the FtsZ, MD and dynamin rings. FtsZ rings are digested during a later period of mitochondrial division and then finally the MD and dynamin ring apparatuses pinched off the daughter mitochondria, supporting the idea that the host genomes are responsible for the ultimate control of mitochondrial division. We discuss the evolution, from the original vesicle division (VD) apparatuses to VD apparatuses including classical dynamin rings and MD apparatuses. It is likely that the MD apparatuses involving the dynamic trio evolved into the plastid division (PD) apparatus in Bikonta, while in Opisthokonta, the MD apparatus was simplified during evolution and may have branched into the mitochondrial fusion apparatus. Finally, we describe the possibility of intact isolation of large MD/PD apparatuses, the identification of all their proteins and their related genes using C. merolae genome information and TOF-MS analyses. These results will assist in elucidating the universal mechanism and evolution of MD, PD and VD apparatuses.  相似文献   

8.
9.
The FtsZ ring assembles between segregated daughter chromosomes in prokaryotic cells and is essential for cell division. To understand better how the FtsZ ring is influenced by chromosome positioning and structure in Escherichia coli , we investigated its localization in parC and mukB mutants that are defective for chromosome segregation. Cells of both mutants at non-permissive temperatures were either filamentous with unsegregated nucleoids or short and anucleate. In parC filaments, FtsZ rings tended to localize only to either side of the central unsegregated nucleoid and rarely to the cell midpoint; however, medial rings reappeared soon after switching back to the permissive temperature. Filamentous mukB cells were usually longer and lacked many potential rings. At temperatures permissive for mukB viability, medial FtsZ rings assembled despite the presence of apparently unsegregated nucleoids. However, a significant proportion of these FtsZ rings were mislocalized or structurally abnormal. The most surprising result of this study was revealed upon further examination of FtsZ ring positioning in anucleate cells generated by the parC and mukB mutants: many of these cells, despite having no chromosome, possessed FtsZ rings at their midpoints. This discovery strongly suggests that the chromosome itself is not required for the proper positioning and development of the medial division site.  相似文献   

10.
Sato M  Nishikawa T  Kajitani H  Kawano S 《Planta》2007,227(1):177-187
Cyanelles of the biflagellate protist Cyanophora paradoxa have retained the peptidoglycan layer, which is critical for division, as indicated by the inhibitory effects of β-lactam antibiotics. An FtsZ ring is formed at the division site during cyanelle division. We used immunofluorescence microscopy to observe the process of FtsZ ring formation, which is expected to lead cyanelle division, and demonstrated that an FtsZ arc and a split FtsZ ring emerge during the early and late stages of cyanelle division, respectively. We used an anti-FtsZ antibody to observe cyanelle FtsZ rings. We observed bright, ring-shaped fluorescence of FtsZ in cyanelles. Cyanelles were kidney-shaped shortly after division. Fluorescence indicated that FtsZ did not surround the division plane at an early stage of division, but rather formed an FtsZ arc localized at the constriction site. The constriction spread around the cyanelle, which gradually became dumbbell shaped. After the envelope’s invagination, the ring split parallel to the cyanelle division plane without disappearing. Treatment of C. paradoxa cells with ampicillin, a β-lactam antibiotic, resulted in spherical cyanelles with an FtsZ arc or ring on the division plane. Transmission electron microscopy of the ampicillin-treated cyanelle envelope membrane revealed that the surface was not smooth. Thus, the inhibition of peptidoglycan synthesis by ampicillin causes the inhibition of septum formation and a marked delay in constriction development. The formation of the FtsZ arc and FtsZ ring is the earliest sign of cyanelle division, followed by constriction and septum formation.  相似文献   

11.
Mycobacterium spp., rod‐shaped cells belonging to the phylum Actinomycetes, lack the Min‐ and Noc/Slm systems responsible for preventing the placement of division sites at the poles or over the nucleoids to ensure septal assembly at mid‐cell. We show that the position for establishment of the FtsZ‐ring in exponentially growing Mycobacterium marinum and Mycobacterium smegmatis cells is nearly random, and that the cells often divide non‐medially, producing two unequal but viable daughters. Septal sites and cellular growth disclosed by staining with the membrane‐specific dye FM4‐64 and fluorescent antibiotic vancomycin (FL‐Vanco), respectively, showed that many division sites were off‐centre, often over the nucleoids, and that apical cell growth was frequently unequal at the two poles. DNA transfer through the division septum was detected, and translocation activity was supported by the presence of a putative mycobacterial DNA translocase (MSMEG2690) at the majority of the division sites. Time‐lapse imaging of single live cells through several generations confirmed both acentric division site placement and unequal polar growth in mycobacteria. Our evidence suggests that post‐septal DNA transport and unequal polar growth may compensate for the non‐medial division site placement in Mycobacterium spp.  相似文献   

12.

Background

Cell division in Bacillus subtilis occurs precisely at midcell. Positional control of cell division is exerted by two mechanisms: nucleoid occlusion, through Noc, which prevents division through nucleoids, and the Min system, where the combined action of the MinC, D and J proteins prevents formation of the FtsZ ring at cell poles or recently completed division sites.

Methodology/Principal Findings

We used a genetic screen to identify mutations in ftsZ that confer resistance to the lethal overexpression of the MinC/MinD division inhibitor. The FtsZ mutants were purified and found to polymerize to a similar or lesser extent as wild type FtsZ, and all mutants displayed reduced GTP hydrolysis activity indicative of a reduced polymerization turnover. We found that even though the mutations conferred in vivo resistance to MinC/D, the purified FtsZ mutants did not display strong resistance to MinC in vitro.

Conclusions/Significance

Our results show that in B. subtilis, overproduction of MinC can be countered by mutations that alter FtsZ polymerization dynamics. Even though it would be very likely that the FtsZ mutants found depend on other Z-ring stabilizing proteins such as ZapA, FtsA or SepF, we found this not to be the case. This indicates that the cell division process in B. subtilis is extremely robust.  相似文献   

13.
Bacterial cell division is orchestrated by the divisome, a protein complex centered on the tubulin homolog FtsZ. FtsZ polymerizes into a dynamic ring that defines the division site, recruits downstream proteins, and directs peptidoglycan synthesis to drive constriction. Recent studies have documented treadmilling of FtsZ polymer clusters both in cells and in vitro. Emerging evidence suggests that FtsZ dynamics are regulated largely by intrinsic properties of FtsZ itself and by the membrane anchoring protein FtsA. Although FtsZ dynamics are broadly required for Z-ring assembly, their role(s) during constriction may vary among bacterial species. These recent advances set the stage for future studies to investigate how FtsZ dynamics are physically and/or functionally coupled to peptidoglycan metabolic enzymes to direct efficient division.  相似文献   

14.
During sporulation, Bacillus subtilis redeploys the division protein FtsZ from midcell to the cell poles, ultimately generating an asymmetric septum. Here, we describe a sporulation-induced protein, RefZ, that facilitates the switch from a medial to a polar FtsZ ring placement. The artificial expression of RefZ during vegetative growth converts FtsZ rings into FtsZ spirals, arcs, and foci, leading to filamentation and lysis. Mutations in FtsZ specifically suppress RefZ-dependent division inhibition, suggesting that RefZ may target FtsZ. During sporulation, cells lacking RefZ are delayed in polar FtsZ ring formation, spending more time in the medial and transition stages of FtsZ ring assembly. A RefZ-green fluorescent protein (GFP) fusion localizes in weak polar foci at the onset of sporulation and as a brighter midcell focus at the time of polar division. RefZ has a TetR DNA binding motif, and point mutations in the putative recognition helix disrupt focus formation and abrogate cell division inhibition. Finally, chromatin immunoprecipitation assays identified sites of RefZ enrichment in the origin region and near the terminus. Collectively, these data support a model in which RefZ helps promote the switch from medial to polar division and is guided by the organization of the chromosome. Models in which RefZ acts as an activator of FtsZ ring assembly near the cell poles or as an inhibitor of the transient medial ring at midcell are discussed.  相似文献   

15.
Pas E  Einav M  Woldringh CL  Zaritsky A 《Biochimie》2001,83(1):121-124
Division planes in Escherichia coli, usually restricted to one dimension of the rod-shaped cell, were induced at all possible planes by transforming the cells to spheroids with mecillinam (inactivating PbpA). Such cells displayed many nucleoids and arcs of FtsZ, genetically tagged to green fluorescent protein, that developed to rings at constriction sites all around their surface. These observations are consistent with the view (Woldringh et al., J. Bacteriol. 176 (1994) 6030-6038) that nucleoids, forced during replication to segregate in the length axis of the cell by the rigid bacillary envelope, induce assembly of FtsZ to division rings in between them.  相似文献   

16.
Bacterial membrane and nucleoids were stained concurrently by the lipophilic styryl dye FM 4-64 [N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)phenyl) hexatrienyl)pyridinium dibromide] and 4',6-diamidino-2-phenylindole (DAPI), respectively, and studied using fluorescence microscopy imaging. Observation of plasmolysed cells indicated that FM 4-64 stained the inner membrane preferentially. In live Escherichia coli pbpB cells and filaments, prepared on wet agar slabs, an FM 4-64 staining pattern developed in the form of dark bands. In dividing cells, the bands occurred mainly at the constriction sites and, in filaments, between partitioning nucleoids. The FM 4-64 pattern of dark bands in filaments was abolished after inhibiting protein synthesis with chloramphenicol. It is proposed that the staining patterns reflect putative membrane domains formed by DNA-membrane interactions and have functional implications in cell division.  相似文献   

17.
Assembly of the tubulin-like protein FtsZ at or near the cytoplasmic membrane is one of the earliest steps in division of bacteria such as Escherichia coli. Exactly what constitutes the site at which FtsZ acts is less clear. To investigate the influence of the membrane phospholipids on FtsZ localization and assembly, we have elaborated with the Langmuir technique a two-lipid monolayer made of dilauryl-phosphatidylethanolamine (DLPE) and dipalmitoyl-phosphatidylglycerol (DPPG). This monolayer comprised stable condensed domains in an expanded continuous phase. In the presence of GTP, FtsZ assembly disrupts the condensed domains within 5 min. After several hours, with or without GTP, FtsZ assembled into large aggregates at the domain interface. We suggest that the GTP-induced polymerization of FtsZ is coupled to the association of FtsZ protofilaments with domain interfaces.  相似文献   

18.
In Escherichia coli the Min system prevents Z ring assembly at cell poles by topologically regulating the division inhibitor MinC. The MinC protein has two domains of equal size and both domains can target FtsZ and block cell division in the proper context. Recently, we have shown that, along with MinD, the C‐terminal domain of MinC (MinCC) competes with FtsA, and to a lesser extent with ZipA, for interaction with the C‐terminal tail of FtsZ to block division. Here we explored the interaction between the N‐terminal domain of MinC (MinCN) and FtsZ. A search for mutations in ftsZ that confer resistance to MinCN identified an α‐helix at the interface of FtsZ subunits as being critical for the activity of MinCN. Focusing on one such mutant FtsZ–N280D, we showed that it greatly reduced the FtsZ–MinC interaction and was resistant to MinCN both in vivo and in vitro. With these results, an updated model for the action of MinC on FtsZ is proposed: MinC interacts with FtsZ to disrupt two interactions, FtsZ–FtsA/ZipA and FtsZ–FtsZ, both of which are essential for Z ring formation.  相似文献   

19.
FtsZ, a bacterial homolog of tubulin, forms a structural element called the FtsZ ring (Z ring) at the predivisional midcell site and sets up a scaffold for the assembly of other cell division proteins. The genetic aspects of FtsZ-catalyzed cell division and its assembly dynamics in Mycobacterium tuberculosis are unknown. Here, with an M. tuberculosis strain containing FtsZ(TB) tagged with green fluorescent protein as the sole source of FtsZ, we examined FtsZ structures under various growth conditions. We found that midcell Z rings are present in approximately 11% of actively growing cells, suggesting that the low frequency of Z rings is reflective of their slow growth rate. Next, we showed that SRI-3072, a reported FtsZ(TB) inhibitor, disrupted Z-ring assembly and inhibited cell division and growth of M. tuberculosis. We also showed that M. tuberculosis cells grown in macrophages are filamentous and that only a small fraction had midcell Z rings. The majority of filamentous cells contained nonring, spiral-like FtsZ structures along their entire length. The levels of FtsZ in bacteria grown in macrophages or in broth were comparable, suggesting that Z-ring formation at midcell sites was compromised during intracellular growth. Our results suggest that the intraphagosomal milieu alters the expression of M. tuberculosis genes affecting Z-ring formation and thereby cell division.  相似文献   

20.

Background

Cell division in Bacillus subtilis takes place precisely at midcell, through the action of Noc, which prevents division from occurring over the nucleoids, and the Min system, which prevents cell division from taking place at the poles. Originally it was thought that the Min system acts directly on FtsZ, preventing the formation of a Z-ring and, therefore, the formation of a complete cytokinetic ring at the poles. Recently, a new component of the B. subtilis Min system was identified, MinJ, which acts as a bridge between DivIVA and MinCD.

Methodology/Principal Findings

We used fluorescence microscopy and molecular genetics to examine the molecular role of MinJ. We found that in the absence of a functional Min system, FtsA, FtsL and PBP-2B remain associated with completed division sites. Evidence is provided that MinCDJ are responsible for the failure of these proteins to localize properly, indicating that MinCDJ can act on membrane integral components of the divisome.

Conclusions/Significance

Taken together, we postulate that the main function of the Min system is to prevent minicell formation adjacent to recently completed division sites by promoting the disassembly of the cytokinetic ring, thereby ensuring that cell division occurs only once per cell cycle. Thus, the role of the Min system in rod-shaped bacteria seems not to be restricted to an inhibitory function on FtsZ polymerization, but can act on different levels of the divisome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号