首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The glycoprotein envelope surrounding the Xenopus laevis egg is converted from an unfertilizable to a fertilizable form during transit through the pars recta portion of the oviduct. Envelope conversion involves the pars recta protease oviductin, which selectively hydrolyzes envelope glycoprotein gp43 to gp41. Oviductin cDNA was cloned, and sequence analysis revealed that the protease is translated as the N terminus of an unusual mosaic protein. In addition to the oviductin protease domain, a protease domain with low identity to oviductin was present, possessing an apparent nonfunctional catalytic site. Three CUB domains were also present, which are related to the mammalian spermadhesin molecules implicated in mediating sperm-envelope interactions. We propose that during post-translational proteolytic processing of the mosaic oviductin glycoprotein, the processed N-terminal protease domain is released coupled to two C-terminal CUB domains and constitutes the enzymatically active protease molecule. In functional studies, isolated coelomic egg envelopes treated with oviductin purified from the oviduct showed a dramatic increase in sperm binding. This observation established that oviductin alone was the oviductal factor responsible for converting the egg envelope to a sperm-penetrable form, via an increase in sperm binding. Trypsin mimicked oviductin's effect on envelope hydrolysis and sperm binding, demonstrating that gp43 processing is the only requirement for envelope conversion.  相似文献   

2.
Apollon/BRUCE is a giant IAP protein that has BIR and UBC domains in its amino- and carboxy-terminals, respectively. Apollon binds and ubiquitylates SMAC/DIABLO and caspase9, and regulates apoptosis by facilitating proteasomal degradation of these proteins. Apollon overexpression inhibits apoptosis, while its downregulation sensitizes cells to apoptosis, suggesting that Apollon level is important for apoptosis regulation. Here we show that HtrA2/Omi catalytically cleaves Apollon with its serine protease activity. Conversely, Apollon ubiquitylates and facilitates proteasomal degradation of HtrA2 that binds to Apollon through IAP-binding motif. Thus, Apollon and HtrA2 mutually downregulate each other. Expression of catalytically active, but not inactive, HtrA2 induced apoptosis in Apollon-expressing cells. In Apollon-deficient cells, however, expression of catalytically inactive HtrA2 mutant with IAP-binding motif also induced apoptosis. These results indicate that HtrA2 induces apoptosis in two different mechanisms, one with serine protease domain and the other with IAP-binding motif, in Apollon-deficient cells.  相似文献   

3.
We have cloned a human cDNA encoding a new serine protease that has been called polyserase-2 (polyserine protease-2) because it is the second identified human enzyme with several tandem serine protease domains in its amino acid sequence. The first serine protease domain contains all characteristic features of these enzymes, whereas the second and third domains lack one residue of the catalytic triad of serine proteases and are predicted to be catalytically inactive. This complex domain organization is also present in the sequences of mouse and rat polyserase-2 and resembles that of polyserase-1, which also contains three serine protease domains in its amino acid sequence. However, polyserase-2 lacks additional domains present in polyserase-1, including a type II transmembrane motif and a low-density lipoprotein receptor A module. Enzymatic analysis demonstrated that both full-length polyserase-2 and its first serine protease domain hydrolyzed synthetic peptides used for assaying serine proteases. Nevertheless, the activity of the isolated domain was greater than that of the entire protein, suggesting that the two catalytically inactive serine protease domains of polyserase-2 may modulate the activity of the first domain. Northern blot analysis showed that polyserase-2 is expressed in fetal kidney; adult skeletal muscle, liver, placenta, prostate, and heart; and tumor cell lines derived from lung and colon adenocarcinomas. Finally, analysis of post-translational processing mechanisms of polyserase-2 revealed that, contrary to those affecting to the membrane-bound polyserase-1, this novel polyprotein is a secreted enzyme whose three protease domains remain as an integral part of a single polypeptide chain.  相似文献   

4.
This investigation demonstrates the presence and binding of the protein LC8 (described as "protein inhibitor of nNOS" or PIN in some reports) to different components of neuronal nitric oxide synthase (nNOS) in nitrergic varicosities of mice gut. Whole varicosity extracts showed three (320-, 250-, and 155-kDa) nNOS bands with anti-nNOS(1422-1433) antibody and a 10-kDa band with anti-LC8 antibody. The LC8 immunoprecipitate (IP) showed three nNOS bands, suggesting that LC8 was bound with all three forms of nNOS but dissociated from them during SDS-PAGE. Studies using LC8 IP and supernatant and probed with anti-CaM showed that LC8 was not associated with CaM-bound 320-kDa nNOS but was present in the CaM-lacking fraction. Probing these fractions with anti-serine847-P-nNOS showed that 320-kDa serine847-phosphorylated-nNOS consisted of LC8-bound and LC8-lacking components. Subsequent studies with varicosity membrane and cytosolic fractions separately showed that membrane contained CaM-bound and CaM-lacking, serine847-phosphorylated 320-kDa nNOS; both these fractions lacked LC8. On the other hand, the cytosolic fraction contained CaM-lacking, serine847-phosphorylated 320-kDa, 250-kDa, and 155-kDa nNOS bands that were all associated with LC8. These studies, along with in vitro nitric oxide assays, show that in gut nitrergic nerve varicosities 1) all cytosolic serine847-phosphorylated nNOS was catalytically inactive and bound with LC8, and 2) membrane-associated nNOS consisted of catalytically active, CaM-bound and catalytically inactive, CaM-lacking, serine847-phosphorylated nNOSalpha dimers, both of which lacked LC8. These results suggest that LC8 may dissociate from the 320-kDa nNOSalpha dimer upon binding to membrane, thus supporting the view that LC8 may transport nNOSalpha dimer to the varicosity membrane for participation in nitrergic neurotransmission.  相似文献   

5.
The glycoproteins of the Xenopus laevis egg envelope function in fertilization and development. As the unfertilizable coelomic egg transits the pars recta region of the oviduct, it is converted to a fertilizable egg by limited proteolysis of the envelope glycoprotein gp43 to gp41. This conversion is caused by an oviductally secreted serine active site protease, oviductin. We cloned a cDNA for gp43 from an oocyte cDNA library. The cDNA encoded a 454 amino acid protein homologous to the ZPC family of glycoproteins previously shown to be present in mammalian and fish egg envelopes. Conserved ZPC domains and motifs present in the Xenopus sequence included a signal peptide sequence, an N-linked glycosylation site, and 12 aligned Cys residues. In mammalian and Xenopus sequences, a furin-like (convertase) site and a C-terminal transmembrane domain were present reflecting the biosynthesis of ZPC in these species via the secretory glycoprotein pathway. However, fish envelope glycoproteins lack these sequences since they are synthesized via a different route (in the liver, transported to the ovary, and assembled into the egg envelope surrounding the oocyte). Consensus amino acid residues were identified by sequence comparisons of seven ZPC family members; 19% of the amino acid residues were invariant and 48% of the residues were identical in at least four of the seven sequences. The consensus sequence was used to make structure-fertilization function predictions for this phylogenetically conserved family of glycoproteins.  相似文献   

6.
ST14 (suppression of tumorigenicity 14) is a transmembrane serine protease that contains a serine protease catalytic (SP) domain, an SEA domain, two complement subcomponent C1r/s (CUB) domains, and four low density lipoprotein receptor class A domains. Glutathione S-transferase fusion proteins with SP, CUB, and low density lipoprotein receptor domains and their corresponding mutants were generated to analyze protein interactions with these domains. Modified glutathione S-transferase pull-down assays demonstrated the interaction between the SP domain and hepatocyte growth factor activator inhibitor-1. With the same method, a CUB domain-interacting protein was isolated and turned out to be the transmembrane protein with epidermal growth factor-like and two follistatin-like domains 1 (TMEFF1). Quantitative real time PCR revealed that the expression of the TMEFF1 gene was dependent on the transfection of the ST14 gene in the RKO cell line. Our results also suggested that ST14 and TMEFF1 were co-expressed in the human breast cancer cell line MCF7, human placenta, kidney, and liver tissues. Interestingly, these two genes were co-up-regulated in kidney tumors versus normal tissues, consistent with our results that showed the dependence of TMEFF1 expression on ST14 in RKO cells. Finally, homology modeling studies suggested that TMEFF1 might form a complex with ST14 by an interaction between epidermal growth factor and CUB domains.  相似文献   

7.
Lysosomal neuraminidase and beta-galactosidase are present in a complex together with a 32-kDa protective protein. This complex has been purified and the different components have been dissociated using potassium isothiocyanate (KSCN) treatment. beta-Galactosidase remains catalytically active, but neuraminidase loses its activity upon dissociation. The inactive dissociated neuraminidase was purified by removing the remaining non-dissociated beta-galactosidase/protective protein complex using beta-galactosidase-specific affinity chromatography. The dissociated neuraminidase material shows two major polypeptides on SDS-PAGE with an apparent molecular mass of 76 kDa and 66 kDa. Subsequently the 32-kDa protective protein was dissociated from the beta-galactosidase/protective protein complex, and purified. Antibodies raised against the dissociated inactive neuraminidase preparation specifically immunoprecipitate the active neuraminidase present in the complex with beta-galactosidase and protective protein. By immunoblotting evidence is provided that the 76-kDa protein is a subunit of neuraminidase which, in association with the 32-kDa protective protein, is essential for neuraminidase activity.  相似文献   

8.
csp, a gene encoding a protein with high sequence identity to trypsinlike serine protease and CUB domains, was identified from a cDNA library from the olfactory organ (antennular lateral flagellum) of the spiny lobster Panulirus argus. The full-length cDNA sequence of csp is 1801 bp, encoding a protein of 50.25 kD, with three domains: signal peptide, trypsinlike serine protease, and CUB (named for a class of compounds including Complement subcomponents Clr/Cls, Uegf, and Bone morphogenic protein-1). RT-PCR, Northern blots, and immunoblots showed that csp is predominantly expressed in the lateral flagellum and eyestalk. Immunocytochemistry showed that Csp is present in olfactory (aesthetasc) sensilla around auxiliary cells (glia that surround the inner dendrites of olfactory receptor neurons, ORNs) and ORN outer dendrites. We propose that Csp is expressed and secreted by auxiliary cells, associates with ORN cell membranes or extracellular matrix via the CUB domain, and has trypsinlike activity. In the eyestalk, Csp is associated with cells surrounding axons between neuropils of the eyestalk ganglia. Possible functions in the olfactory organ and eyestalk are discussed. To our knowledge, this is the first report from any olfactory system of a gene encoding a protein with serine protease and CUB domains.  相似文献   

9.
Nitric oxide (NO) is responsible for nitrergic neurotransmission in the gut, and its release is dependent on its de novo synthesis by neuronal nitric oxide synthase (nNOS). The magnitude of NO synthesis and release during neurotransmission may be related to the fraction of catalytically active nNOS out of a larger pool of inactive nNOS in the nerve terminals. The purpose of the present study was to identify catalytically active and inactive pools of nNOS in the varicosities from mouse gut. Enteric varicosities were confirmed as nitrergic by colocalization of nNOS with the nerve varicosity marker synaptophysin. Low-temperature SDS-PAGE of these varicosity extracts showed 320-, 250-, and 155-kDa bands when blotted with anti-nNOS(1422-1433) and 320- and 155-kDa bands when blotted with anti-nNOS(1-20) antibodies, respectively. The 320- and 155-kDa bands represent dimers and monomers of nNOSalpha; the 250- and 135-kDa bands represent dimers and monomers of nNOSbeta. Immunoprecipitation with calmodulin (CaM) showed that a portion of nNOSalpha dimer was bound with CaM. On the other hand, a portion of nNOSalpha dimer, nNOSbeta dimer, and all monomers lacked CaM binding. The CaM-lacking nNOS fractions reacted with anti-serine 847-phospho-nNOS. In vitro assays of NO production revealed that only the CaM-bound dimeric nNOSalpha was catalytically active; all other forms were inactive. We suggest that the amount of catalytically active nNOSalpha dimers may be regulated by serine 847 phosphorylation and equilibrium between dimers and monomers of nNOSalpha.  相似文献   

10.
In anurans, protease activity from the pars recta portion of the oviduct (under regulation by 17β-estradiol), is known to cause ultrastructural alterations on the oocyte surface rendering fertilizability. In mammals, the presence of serum proteins in oviductal fluid via transudation is also well known. In the present study we determined the plasma proteins of the anuran Bufo arenarum that are present in pars recta fluid and oocyte extracellular matrix and characterized the 17β-estradiol-induced proteins synthesized de novo and secreted into the pars recta lumen. Rabbit polyclonal antibodies against the soluble proteins in pars recta fluid cross-reacted with anuran plasma proteins and with the extracellular matrix of coelomic eggs based on immunoelectrophoresis and immunohistochemistry, respectively. Using radiolabeled leucine in the absence and presence of 17β-estradiol, we show that a polypeptide of 66 kDa molecular mass is the principal protein synthesized and secreted into the pars recta lumen.  相似文献   

11.
csp, a gene encoding a protein with high sequence identity to trypsinlike serine protease and CUB domains, was identified from a cDNA library from the olfactory organ (antennular lateral flagellum) of the spiny lobster Panulirus argus. The full‐length cDNA sequence of csp is 1801 bp, encoding a protein of 50.25 kD, with three domains: signal peptide, trypsinlike serine protease, and CUB (named for a class of compounds including C omplement subcomponents Clr/Cls, U egf, and B one morphogenic protein‐1). RT‐PCR, Northern blots, and immunoblots showed that csp is predominantly expressed in the lateral flagellum and eyestalk. Immunocytochemistry showed that Csp is present in olfactory (aesthetasc) sensilla around auxiliary cells (glia that surround the inner dendrites of olfactory receptor neurons, ORNs) and ORN outer dendrites. We propose that Csp is expressed and secreted by auxiliary cells, associates with ORN cell membranes or extracellular matrix via the CUB domain, and has trypsinlike activity. In the eyestalk, Csp is associated with cells surrounding axons between neuropils of the eyestalk ganglia. Possible functions in the olfactory organ and eyestalk are discussed. To our knowledge, this is the first report from any olfactory system of a gene encoding a protein with serine protease and CUB domains. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 277–302, 2001  相似文献   

12.
Rabbit proximal nephron segments were microperfused in vitro to determine whether active contraluminal uptake of serine occurs in the renal proximal tubule during bath-to-lumen transport (influx) of the L- and D-isomers in the convoluted (pars convoluta) and straight (pars recta) segments. It is known that several amino acids are actively reabsorbed in the proximal nephron by a mechanism involving co-transport with sodium at the luminal membrane. There is some evidence that certain amino acids may also be accumulated across the contraluminal membrane by an energy-dependent mechanism, indicating that net reabsorption is the result of two oppositely directed active transport processes. During in vitro microperfusion of rabbit proximal nephron segments in this study, inward movement of L- and D-serine occurred in a bath-to-cell direction against a concentration gradient in the range 305-2735:1, indicating active uptake at the contraluminal membrane. The concentration gradients were maintained during influx of both isomers of serine in the proximal tubule. L-Serine accumulation by tubular cells was similar in the pars convoluta and recta, and significantly greater than that of D-serine, which was the same in both regions of the proximal tubule. The data support the conclusion that renal handling of serine involves active contraluminal uptake of the L- and D-isomers in both regions of the proximal tubule, and suggest that contraluminal events play an important role in renal handling of amino acids.  相似文献   

13.
Sea urchin eggs secrete a serine protease activity, CGSP1, at fertilization that is essential for the block to polyspermy. Several targets of this proteolytic activity on the plasma membrane were identified here using a cell surface biotinylation approach. Amino acid microsequencing of one of these proteins led to the identification of a 4.75-kb cDNA clone from a Strongylocentrotus purpuratus ovary cDNA library that encodes a 160-kDa protein called p160. This protein contains five CUB domains and a putative transmembrane domain suggesting that p160 is an integral membrane protein with protein-protein interaction motifs facing the extracellular matrix of the egg. Whole-mount immunolocalization studies demonstrate that p160 is on the surface of the egg, enriched at the tips of microvilli. The protein is removed at fertilization in a protease-dependent manner, and functional assays suggest that p160 serves to link the plasma membrane to the vitelline layer until fertilization. Thus, p160 is a key candidate for a vitelline-layer linker protein, the selective proteolysis of which functions in the block to polyspermy in the sea urchin egg.  相似文献   

14.
Rv3671c, a putative serine protease, is crucial for persistence of Mycobacterium tuberculosis in the hostile environment of the phagosome. We show that Rv3671c is required for M. tuberculosis resistance to oxidative stress in addition to its role in protection from acidification. Structural and biochemical analyses demonstrate that the periplasmic domain of Rv3671c is a functional serine protease of the chymotrypsin family and, remarkably, that its activity increases on oxidation. High-resolution crystal structures of this protease in an active strained state and in an inactive relaxed state reveal that a solvent-exposed disulfide bond controls the protease activity by constraining two distant regions of Rv3671c and stabilizing it in the catalytically active conformation. In?vitro biochemical studies confirm that activation of the protease in an oxidative environment is dependent on this reversible disulfide bond. These results suggest that the disulfide bond modulates activity of Rv3671c depending on the oxidative environment in?vivo.  相似文献   

15.
Cell extracts from Pyrococcus furiosus were found to contain five proteases, two of which (S66 and S102) are resistant to sodium dodecyl sulfate (SDS) denaturation. Cell extracts incubated at 98 degrees C in the presence of 1% SDS for 24 h exhibited substantial cellular proteolysis such that only four proteins could be visualized by amido black-Coomassie brilliant blue staining of SDS-polyacrylamide gels. The SDS-treated extract retained 19% of the initial proteolytic activity as represented by two proteases, S66 (66 kilodaltons [kDa]) and S102 (102 kDa). Immunoblot analysis with guinea pig sera containing antibodies against protease S66 indicated that S66 is related neither to S102 nor to the other proteases. The results of this analysis also suggest that S66 might be the hydrolysis product of a 200-kDa precursor which does not have proteolytic activity. The 24-h SDS-treated extract showed unusually thermostable proteolytic activity; the measured half-life at 98 degrees C was found to be 33 h. Proteases S66 and S102 were also resistant to denaturation by 8 M urea, 80 mM dithiothreitol, and 5% beta-mercaptoethanol. Purified protease S66 was inhibited by phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate but not by EDTA, ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, or iodoacetic acid. These results indicate that S66 is a serine protease. Amino acid ester hydrolysis studies showed that protease S66 was hydrolytically active towards N-benzoyl-L-arginine ethyl ester.  相似文献   

16.
Piao S  Song YL  Kim JH  Park SY  Park JW  Lee BL  Oh BH  Ha NC 《The EMBO journal》2005,24(24):4404-4414
Clip-domain serine proteases (SPs) are the essential components of extracellular signaling cascades in various biological processes, especially in embryonic development and the innate immune responses of invertebrates. They consist of a chymotrypsin-like SP domain and one or two clip domains at the N-terminus. Prophenoloxidase-activating factor (PPAF)-II, which belongs to the noncatalytic clip-domain SP family, is indispensable for the generation of the active phenoloxidase leading to melanization, a major defense mechanism of insects. Here, the crystal structure of PPAF-II reveals that the clip domain adopts a novel fold containing a central cleft, which is distinct from the structures of defensins with a similar arrangement of cysteine residues. Ensuing studies demonstrated that PPAF-II forms a homo-oligomer upon cleavage by the upstream protease and that the clip domain of PPAF-II functions as a module for binding phenoloxidase through the central cleft, while the clip domain of a catalytically active easter-type SP plays an essential role in the rapid activation of its protease domain.  相似文献   

17.
The CLN2 gene mutated in the fatal hereditary neurodegenerative disease late infantile neuronal ceroid lipofuscinosis encodes a lysosomal protease with tripeptidyl-peptidase I activity. To understand the enzymological properties of the protein, we purified and characterized C-terminal hexahistidine-tagged human CLN2p/tripeptidyl-peptidase I produced from insect cells transfected with a baculovirus vector. The N terminus of the secreted 66-kDa protein corresponds to residue 20 of the primary CLN2 gene translation product, indicating removal of a 19-residue signal peptide. The purified protein is enzymatically inactive; however, upon acidification, it is proteolytically processed and concomitantly acquires enzymatic activity. The N terminus of the final 46-kDa processed form (Leu196) corresponds to that of mature CLN2p/tripeptidyl-peptidase I purified from human brain. The activity of the mature enzyme is irreversibly inhibited by the serine esterase inhibitor diisopropyl fluorophosphate, which specifically and stoichiometrically reacts with CLN2p/tripeptidyl-peptidase I at Ser475, demonstrating that this residue represents the active site nucleophile. Expression of wild type and mutant proteins in CHO cells indicate that Ser475, Asp360, Asp517, but not His236 are essential for activity. These data indicate that the CLN2 gene product is synthesized as an inactive proenzyme that is autocatalytically converted to an active serine protease.  相似文献   

18.
Cell extracts from Pyrococcus furiosus were found to contain five proteases, two of which (S66 and S102) are resistant to sodium dodecyl sulfate (SDS) denaturation. Cell extracts incubated at 98 degrees C in the presence of 1% SDS for 24 h exhibited substantial cellular proteolysis such that only four proteins could be visualized by amido black-Coomassie brilliant blue staining of SDS-polyacrylamide gels. The SDS-treated extract retained 19% of the initial proteolytic activity as represented by two proteases, S66 (66 kilodaltons [kDa]) and S102 (102 kDa). Immunoblot analysis with guinea pig sera containing antibodies against protease S66 indicated that S66 is related neither to S102 nor to the other proteases. The results of this analysis also suggest that S66 might be the hydrolysis product of a 200-kDa precursor which does not have proteolytic activity. The 24-h SDS-treated extract showed unusually thermostable proteolytic activity; the measured half-life at 98 degrees C was found to be 33 h. Proteases S66 and S102 were also resistant to denaturation by 8 M urea, 80 mM dithiothreitol, and 5% beta-mercaptoethanol. Purified protease S66 was inhibited by phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate but not by EDTA, ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, or iodoacetic acid. These results indicate that S66 is a serine protease. Amino acid ester hydrolysis studies showed that protease S66 was hydrolytically active towards N-benzoyl-L-arginine ethyl ester.  相似文献   

19.
Previous electron microscopic observations have shown that the acrosome of the sperm of the frog, Xenopus laevis, comprises a membrane-bounded vesicle covering the anterior-most position of the head. We obtained a sperm suspension from the testes and stained it with LysoSensor Green for observation under a confocal laser scanning microscope and found a bright fluorescence reflecting the presence of the acrosomes at the top of the sperm head in about 64% of the sperm, with no deterioration of their capacity to fertilize. About 40% of the sperm with an acrosome underwent an acrosome reaction in response to Ca(2+) ionophore A23187, as evidenced by a loss of LysoSensor Green stainability, accompanied by breakdown of the acrosomal vesicle. About 53% of the sperm bound to isolated vitelline envelopes underwent an acrosome reaction, whereas both jelly water and solubilized vitelline envelopes weakly induced an acrosome reaction. When the sperm were treated with an oviductal extract obtained from the pars recta, but not the pars convoluta region, about 40% of the sperm with acrosomes underwent an acrosome reaction. The substance containing acrosome reaction-inducing activity in the pars recta extract seemed to be a heat-unstable substance with a molecular weight of greater than 10 kDa. The activity was not inhibited by protease inhibitors but required extracellular Ca(2+) ions. These results indicate that the acrosome reaction occurs on the vitelline envelopes in response to the substance deposited from the pars recta during the passage of the oocytes through the oviduct.  相似文献   

20.
SDS-PAGE analyses of the vitelline coats (VCs) of coelomic eggs (CEVC) and uterine eggs (UEVC) of Bufo japonicus revealed that the UEVC lacks the 40K–52K molecular weight components present in the CEVC; this is concomitant with the increased stainability of a 39K component and the appearance of a 36K component. These macromolecular alterations, accompanied by the acquisition of egg fertilizability, were induced when coelomic eggs were treated with the contents of secretory granules obtained from the oviducal pars recta (PRG). Gel-filtration of PRG in combination with hydrolytic assays employing either fluorescamine-labeled CEVC or a variety of synthetic substrates showed that the CEVC to UEVC alterations are ascribable to the action of a protease hydrolyzing specifically peptidyl-Arg-MCAs in a highly Ca2+-dependent way. This enzyme, which has an optimal pH of 8.0–8.2, is inhibited by soybean trypsin inhibitor and leupeptin, as well as by such serine protease inhibitors as DFP and p-APMSF. On the basis of a SDS-PAGE analysis, its molecular weight is estimated to be 66K. Treatment of coelomic eggs with the partially purified PR protease did not render the eggs fertilizable, although CEVC to UEVC macromolecular alterations were effected. We conclude that the action of this oviducal protease in partially hydrolyzing the VC is a prerequisite but insufficient in itself to render the coelomic eggs fully accessible to a fertilizing sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号