首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
杨同文  李成伟 《植物学报》2014,49(6):729-737
叶片是植物重要的光合器官, 它的衰老由外界环境刺激和内源发育信号所启动, 复杂的基因调控网络参与衰老过程的精确调控。最新研究表明, 植物通过对基因表达的重编程, 在表观遗传水平上调节着叶片衰老过程。该文简要介绍了表观遗传的分子机制, 在此基础上重点综述了组蛋白修饰、染色质重塑、DNA甲基化及小RNAs途径对叶片衰老调控的最新研究进展, 同时讨论了该领域存在的问题和未来研究方向。  相似文献   

3.
Mammalian fertilization begins with the fusion of two specialized gametes,followed by major epigenetic remodeling leading to the formation of a totipotent embryo.During the development of the pre-implantation embryo,precise reprogramming progress is a prerequisite for avoiding developmental defects or embryonic lethality,but the underlying molecular mechanisms remain elusive.For the past few years,unprecedented breakthroughs have been made in mapping the regulatory network of dynamic epigenomes during mammalian early embryo development,taking advantage of multiple advances and innovations in low-input genome-wide chromatin analysis technologies.The aim of this review is to highlight the most recent progress in understanding the mechanisms of epigenetic remodeling during early embryogenesis in mammals,including DNA methylation,histone modifications,chromatin accessibility and 3D chromatin organization.  相似文献   

4.
马康目  汤雪明 《生命科学》2008,20(3):431-437
细胞核重编程是哺乳动物正常受精胚胎和克隆胚胎发育过程中的一个重要特性,主要是对表观遗传学特征进行重新编写,包括染色质重塑、组蛋白修饰、DNA甲基化、印记基因表达、X染色体失活等表观遗传修饰的改变。通过细胞核重编程,首先,受精卵和克隆胚胎的供体核停止其特有的基因表达程序,恢复为全能状态的基因表达程序;然后,受精胚胎和克隆胚胎的细胞再从全能状态重新进入分化状态,最终形成各种组织和器官。近年来,不少研究表明,克隆胚胎的细胞核重编程存在不同程度的表观遗传修饰异常,可能对克隆及其农业和医学应用有着重要影响。本文就正常和克隆胚胎细胞核重编程的研究进展以及克隆胚胎的细胞核重编程异常对克隆的影响作一综述,并对目前有关治疗性克隆前景的不同看法进行了讨论。  相似文献   

5.
6.
Mammalian epigenomics: reprogramming the genome for development and therapy   总被引:10,自引:0,他引:10  
Reik W  Santos F  Dean W 《Theriogenology》2003,59(1):21-32
Epigenetic modifications of DNA and chromatin are important for genome function during development and in adults. DNA and chromatin modifications have central importance for genomic imprinting and other aspects of epigenetic control of gene expression. In somatic lineages, modifications are generally stably maintained and are characteristic of different specialized tissues. The mammalian genome undergoes major reprogramming of modification patterns in germ cells and in the early embryo. Some of the factors that are involved both in maintenance and in reprogramming, such as methyltransferases, are being identified. Epigenetic reprogramming is deficient in animal cloning, which is a major explanation for the inefficiency of the cloning procedure. Deficiencies in reprogramming are likely to underlie the occurrence of epimutations and of epigenetic inheritance. Environmental factors can alter epigenetic modifications and may thus have long-lasting effects on phenotype. Epigenomics methods are being developed to catalogue genome modifications under normal and pathological conditions. Epigenetic engineering is likely to play an important role in medicine in the future.  相似文献   

7.
The recent fascinating breakthrough in the area of stem cell research is the successful production of cloned animals via nuclear transplantation of somatic nucleus by intrinsic trans-acting factors of oocytes and trans-differentiation of somatic stem cells from adult organs induced by extrinsic growth factors. During the process of nuclear reprogramming, epigenetic modification of the somatic nuclei must be achieved to acquire toti-/pluripotential competence. However, the molecular mechanism involved is largely unknown. It has been shown that DNA methylation, histone acetylation and chromatin structure are involved in the establishment of epigenetic modification. Now it is evident that they function cooperatively to establish and maintain active or inactive chromatin state. Here we discuss the mechanisms of epigenetic modification potentially involved in the event of nuclear reprogramming.  相似文献   

8.
At fertilization, fusion of two differentiated gametes forms the zygote that is capable of forming all of the varied cell lineages of an organism. It is widely thought that the acquisition of totipotency involves extensive epigenetic reprogramming of the germline state into an embryonic state. However, recent data argue that this reprogramming is incomplete and that substantial epigenetic information passes from one generation to the next. In this review we summarize the changes in chromatin states that take place during mammalian gametogenesis and examine the evidence that early mammalian embryogenesis may be affected by inheritance of epigenetic information from the parental generation.  相似文献   

9.
马克学  马克世  席兴字 《遗传》2014,36(5):476-484
表观基因组在配子发生和早期胚胎发育中经历一个重编程过程。因此, 人们认为表观遗传信息不可能代间传递。表观遗传跨代继承表型的出现, 说明某些表观遗传标志可能逃脱了重编程。尽管该观点尚存争议, 但日益增多的实验证据表明表观遗传记忆确实存在于哺乳动物中。由于表观遗传修饰具有可逆性, 表观基因组易受各种环境因子(如化学物质、营养和行为等)的影响而改变。因此, 表观基因组提供了跨代传递环境影响的可能机制。文章介绍了表观遗传跨代继承表型的概念, 论述了表观遗传重编程和表观遗传信息跨代传递的分子机制, 列举了一些环境因子与表观遗传跨代继承性疾病。  相似文献   

10.
Somatic embryogenesis plays a significant role in plant regeneration and requires complex cellular, molecular, and biochemical processes for embryo initiation and development associated with plant epigenetics. Epigenetic regulation encompasses many sensitive events and plays a vital role in gene expression through DNA methylation, chromatin remodelling, and small RNAs. Recently, regulation of epigenetic mechanisms has been recognized as the most promising occurrences during somatic embryogenesis in plants. A few reports demonstrated that the level of DNA methylation can alter in embryogenic cells under in vitro environments. Changes or modification in DNA methylation patterns is linked with regulatory mechanisms of various candidate marker genes, involved in the initiation and development of somatic embryogenesis in plants. This review summarizes the current scenario of the role of epigenetic mechanisms as candidate markers during somatic embryogenesis. It also delivers a comprehensive and systematic analysis of more recent discoveries on expression of embryogenic-regulating genes during somatic embryogenesis, epigenetic variation. Biotechnological applications of epigenetics as well as new opportunities or future perspectives in the development of somatic embryogenesis studies are covered. Further research on such strategies may serve as exciting interaction models of epigenetic regulation in plant embryogenesis and designing novel approaches for plant productivity and crop improvement at molecular levels.  相似文献   

11.
12.
Leaf senescence is regulated through a complex regulatory network triggered by internal and external signals for the reprogramming of gene expression. In plants, the major developmental phase transitions and stress responses are under epigenetic control. In this review, the underlying molecular mechanisms are briefly discussed and evidence is shown that epigenetic processes are also involved in the regulation of leaf senescence. Changes in the chromatin structure during senescence, differential histone modifications determining active and inactive sites at senescence-associated genes and DNA methylation are addressed. In addition, the role of small RNAs in senescence regulation is discussed.  相似文献   

13.
The epigenetic regulation of the floral repressor FLOWERING LOCUS C ( FLC ) is one of the critical factors that determine flowering time in Arabidopsis thaliana . Although many FLC regulators, and their effects on FLC chromatin, have been extensively studied, the epigenetic resetting of FLC has not yet been thoroughly characterized. Here, we investigate the FLC expression during gametogenesis and embryogenesis using FLC::GUS transgenic plants and RNA analysis. Regardless of the epigenetic state in adult plants, FLC expression disappeared in gametophytes. Subsequently, FLC expression was reactivated after fertilization in embryos, but not in the endosperm. Both parental alleles contributed equally to the expression of FLC in embryos. Surprisingly, the reactivation of FLC in early embryos was independent of FRIGIDA (FRI) and SUPPRESSOR OF FRIGIDA 4 (SUF4) activities. Instead, FRI , SUF4 and autonomous-pathway genes determined the level of FLC expression only in late embryogenesis. Many FLC regulators exhibited expression patterns similar to that of FLC , indicating potential roles in FLC reprogramming. An FVE mutation caused ectopic expression of FLC in the endosperm. A mutation in PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1 caused defects in FLC reactivation in early embryogenesis, and maintenance of full FLC expression in late embryogenesis. We also show that the polycomb group complex components, Fertilization-Independent endosperm and MEDEA, which mediate epigenetic regulation in seeds, are not relevant for FLC reprogramming. Based on our results, we propose that FLC reprogramming is composed of three phases: (i) repression in gametogenesis, (ii) reactivation in early embryogenesis and (iii) maintenance in late embryogenesis.  相似文献   

14.
Epigenetics     
《Epigenetics》2013,8(8):823-840
Emerging evidence is shedding light on a large and complex network of epigenetic modifications at play in human stem cells. This “epigenetic landscape” governs the fine-tuning and precision of gene expression programs that define the molecular basis of stem cell pluripotency, differentiation and reprogramming. This review will focus on recent progress in our understanding of the processes that govern this landscape in stem cells, such as histone modification, DNA methylation, alterations of chromatin structure due to chromatin remodeling and non-coding RNA activity. Further investigation into stem cell epigenetics promises to provide novel advances in the diagnosis and treatment of a wide array of human diseases.  相似文献   

15.
16.
The epigenome, which comprises chromatin, associated proteins, and the pattern of covalent modification of DNA by methylation, sets up and maintains gene expression programs. It was originally believed that DNA methylation was the dominant reaction in determining the chromatin structure. However, emerging data suggest that chromatin can affect DNA methylation in both directions, triggering either de novo DNA methylation or demethylation. These events are particularly important for the understanding of cellular transformation, which requires a coordinated change in gene expression profiles. While genetic alterations can explain some of the changes, the important role of epigenetic reprogramming is becoming more and more evident. Cancer cells exhibit a paradoxical coexistence of global loss of DNA methylation with regional hypermethylation.  相似文献   

17.
《Epigenetics》2013,8(7):791-797
  相似文献   

18.
19.
Emerging evidence is shedding light on a large and complex network of epigenetic modifications at play in human stem cells. This “epigenetic landscape” governs the fine-tuning and precision of gene expression programs that define the molecular basis of stem cell pluripotency, differentiation and reprogramming. This review will focus on recent progress in our understanding of the processes that govern this landscape in stem cells, such as histone modification, DNA methylation, alterations of chromatin structure due to chromatin remodeling and non-coding RNA activity. Further investigation into stem cell epigenetics promises to provide novel advances in the diagnosis and treatment of a wide array of human diseases.  相似文献   

20.
Environmental exposures during sensitive windows of development can reprogram normal physiologic responses and alter disease susceptibility later in life in a process known as developmental reprogramming. For example, exposure to the xenoestrogen diethylstilbestrol during reproductive tract development can reprogram estrogen-responsive gene expression in the myometrium, resulting in hyperresponsiveness to hormone in the adult uterus and promotion of hormone-dependent uterine leiomyoma. We show here that the environmental estrogens genistein, a soy phytoestrogen, and the plasticizer bisphenol A, differ in their pattern of developmental reprogramming and promotion of tumorigenesis (leiomyomas) in the uterus. Whereas both genistein and bisphenol A induce genomic estrogen receptor (ER) signaling in the developing uterus, only genistein induced phosphoinositide 3-kinase (PI3K)/AKT nongenomic ER signaling to the histone methyltransferase enhancer of zeste homolog 2 (EZH2). As a result, this pregenomic signaling phosphorylates and represses EZH2 and reduces levels of H3K27me3 repressive mark in chromatin. Furthermore, only genistein caused estrogen-responsive genes in the adult myometrium to become hyperresponsive to hormone; estrogen-responsive genes were repressed in bisphenol A-exposed uteri. Importantly, this pattern of EZH2 engagement to decrease versus increase H3K27 methylation correlated with the effect of these xenoestrogens on tumorigenesis. Developmental reprogramming by genistein promoted development of uterine leiomyomas, increasing tumor incidence and multiplicity, whereas bisphenol A did not. These data show that environmental estrogens have distinct nongenomic effects in the developing uterus that determines their ability to engage the epigenetic regulator EZH2, decrease levels of the repressive epigenetic histone H3K27 methyl mark in chromatin during developmental reprogramming, and promote uterine tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号