共查询到20条相似文献,搜索用时 15 毫秒
1.
A high-performance method was developed for protein secondary structure prediction based on the dual-layer support vector machine (SVM) and position-specific scoring matrices (PSSMs). SVM is a new machine learning technology that has been successfully applied in solving problems in the field of bioinformatics. The SVM's performance is usually better than that of traditional machine learning approaches. The performance was further improved by combining PSSM profiles with the SVM analysis. The PSSMs were generated from PSI-BLAST profiles, which contain important evolution information. The final prediction results were generated from the second SVM layer output. On the CB513 data set, the three-state overall per-residue accuracy, Q3, reached 75.2%, while segment overlap (SOV) accuracy increased to 80.0%. On the CB396 data set, the Q3 of our method reached 74.0% and the SOV reached 78.1%. A web server utilizing the method has been constructed and is available at http://www.bioinfo.tsinghua.edu.cn/pmsvm. 相似文献
2.
A simple and fast approach to prediction of protein secondary structure from multiply aligned sequences with accuracy above 70%.
下载免费PDF全文

P. K. Mehta J. Heringa P. Argos 《Protein science : a publication of the Protein Society》1995,4(12):2517-2525
To improve secondary structure predictions in protein sequences, the information residing in multiple sequence alignments of substituted but structurally related proteins is exploited. A database comprised of 70 protein families and a total of 2,500 sequences, some of which were aligned by tertiary structural superpositions, was used to calculate residue exchange weight matrices within alpha-helical, beta-strand, and coil substructures, respectively. Secondary structure predictions were made based on the observed residue substitutions in local regions of the multiple alignments and the largest possible associated exchange weights in each of the three matrix types. Comparison of the observed and predicted secondary structure on a per-residue basis yielded a mean accuracy of 72.2%. Individual alpha-helix, beta-strand, and coil states were respectively predicted at 66.7, and 75.8% correctness, representing a well-balanced three-state prediction. The accuracy level, verified by cross-validation through jack-knife tests on all protein families, dropped, on average, to only 70.9%, indicating the rigor of the prediction procedure. On the basis of robustness, conceptual clarity, accuracy, and executable efficiency, the method has considerable advantage, especially with its sole reliance on amino acid substitutions within structurally related proteins. 相似文献
3.
A. A. Mironov 《Molecular Biology》2007,41(4):642-649
RNA secondary structure prediction is one of the classic problems of bioinformatics. The most efficient approaches to solving this problem are based on comparative analysis. As a rule, multiple RNA sequence alignment and subsequent determination of a common secondary structure are used. A new algorithm was developed to obviate the need for preliminary multiple sequence alignment. The algorithm is based on a multilevel MEME-like iterative search for a generalized profile. The search for common blocks in RNA sequences is carried out at the first level. Then the algorithm refines the chains consisting of these blocks. Finally, the search for sets of common helices, matched with alignment blocks, is carried out. The algorithm was tested with a tRNA set containing additional junk sequences and with RFN riboswitches. The algorithm is available at http://bioinf.fbb.msu.ru/RNAAlign. 相似文献
4.
Constructing amino acid residue substitution classes maximally indicative of local protein structure
Using an information theoretic formalism, we optimize classes of amino acid substitution to be maximally indicative of local protein structure. Our statistically-derived classes are loosely identifiable with the heuristic constructions found in previously published work. However, while these other methods provide a more rigid idealization of physicochemically constrained residue substitution, our classes provide substantially more structural information with many fewer parameters. Moreover, these substitution classes are consistent with the paradigmatic view of the sequence-to-structure relationship in globular proteins which holds that the three-dimensional architecture is predominantly determined by the arrangement of hydrophobic and polar side chains with weak constraints on the actual amino acid identities. More specific constraints are imposed on the placement of prolines, glycines, and the charged residues. These substitution classes have been used in highly accurate predictions of residue solvent accessibility. They could also be used in the identification of homologous proteins, the construction and refinement of multiple sequence alignments, and as a means of condensing and codifying the information in multiple sequence alignments for secondary structure prediction and tertiary fold recognition. © 1996 Wiley-Liss, Inc. 相似文献
5.
Information on relative solvent accessibility (RSA) of amino acid residues in proteins provides valuable clues to the prediction of protein structure and function. A two-stage approach with support vector machines (SVMs) is proposed, where an SVM predictor is introduced to the output of the single-stage SVM approach to take into account the contextual relationships among solvent accessibilities for the prediction. By using the position-specific scoring matrices (PSSMs) generated by PSI-BLAST, the two-stage SVM approach achieves accuracies up to 90.4% and 90.2% on the Manesh data set of 215 protein structures and the RS126 data set of 126 nonhomologous globular proteins, respectively, which are better than the highest published scores on both data sets to date. A Web server for protein RSA prediction using a two-stage SVM method has been developed and is available (http://birc.ntu.edu.sg/~pas0186457/rsa.html). 相似文献
6.
Using information from sequence alignments significantly improves protein secondary structure prediction. Typically, more divergent profiles yield better predictions. Recently, various groups have shown that accuracy can be improved significantly by using PSI-BLAST profiles to develop new prediction methods. Here, we focused on the influences of various alignment strategies on two 8-year-old PHD methods. The following results stood out. (i) PHD using pairwise alignments predicts about 72% of all residues correctly in one of the three states: helix, strand, and other. Using larger databases and PSI-BLAST raised accuracy to 75%. (ii) More than 60% of the improvement originated from the growth of current sequence databases; about 20% resulted from detailed changes in the alignment procedure (substitution matrix, thresholds, and gap penalties). Another 20% of the improvement resulted from carefully using iterated PSI-BLAST searches. (iii) It is of interest that we failed to improve prediction accuracy further when attempting to refine the alignment by dynamic programming (MaxHom and ClustalW). (iv) Improvement through family growth appears to saturate at some point. However, most families have not reached this saturation. Hence, we anticipate that prediction accuracy will continue to rise with database growth. 相似文献
7.
Routinely used multiple-sequence alignment methods use only sequence information. Consequently, they may produce inaccurate alignments. Multiple-structure alignment methods, on the other hand, optimize structural alignment by ignoring sequence information. Here, we present an optimization method that unifies sequence and structure information. The alignment score is based on standard amino acid substitution probabilities combined with newly computed three-dimensional structure alignment probabilities. The advantage of our alignment scheme is in its ability to produce more accurate multiple alignments. We demonstrate the usefulness of the method in three applications: 1) computing more accurate multiple-sequence alignments, 2) analyzing protein conformational changes, and 3) computation of amino acid structure-sequence conservation with application to protein-protein docking prediction. The method is available at http://bioinfo3d.cs.tau.ac.il/staccato/. 相似文献
8.
Detection of homologous proteins with low-sequence identity to a given target (remote homologues) is routinely performed with alignment algorithms that take advantage of sequence profile. In this article, we investigate the efficacy of different alignment procedures for the task at hand on a set of 185 protein pairs with similar structures but low-sequence similarity. Criteria based on the SCOP label detection and MaxSub scores are adopted to score the results. We investigate the efficacy of alignments based on sequence-sequence, sequence-profile, and profile-profile information. We confirm that with profile-profile alignments the results are better than with other procedures. In addition, we report, and this is novel, that the selection of the results of the profile-profile alignments can be improved by using Shannon entropy, indicating that this parameter is important to recognize good profile-profile alignments among a plethora of meaningless pairs. By this, we enhance the global search accuracy without losing sensitivity and filter out most of the erroneous alignments. We also show that when the entropy filtering is adopted, the quality of the resulting alignments is comparable to that computed for the target and template structures with CE, a structural alignment program. 相似文献
9.
Knowing protein structure and inferring its function from the structure are one of the main issues of computational structural biology, and often the first step is studying protein secondary structure. There have been many attempts to predict protein secondary structure contents. Previous attempts assumed that the content of protein secondary structure can be predicted successfully using the information on the amino acid composition of a protein. Recent methods achieved remarkable prediction accuracy by using the expanded composition information. The overall average error of the most successful method is 3.4%. Here, we demonstrate that even if we only use the simple amino acid composition information alone, it is possible to improve the prediction accuracy significantly if the evolutionary information is included. The idea is motivated by the observation that evolutionarily related proteins share the similar structure. After calculating the homolog-averaged amino acid composition of a protein, which can be easily obtained from the multiple sequence alignment by running PSI-BLAST, those 20 numbers are learned by a multiple linear regression, an artificial neural network and a support vector regression. The overall average error of method by a support vector regression is 3.3%. It is remarkable that we obtain the comparable accuracy without utilizing the expanded composition information such as pair-coupled amino acid composition. This work again demonstrates that the amino acid composition is a fundamental characteristic of a protein. It is anticipated that our novel idea can be applied to many areas of protein bioinformatics where the amino acid composition information is utilized, such as subcellular localization prediction, enzyme subclass prediction, domain boundary prediction, signal sequence prediction, and prediction of unfolded segment in a protein sequence, to name a few. 相似文献
10.
Combining evolutionary information and neural networks to predict protein secondary structure 总被引:1,自引:0,他引:1
Using evolutionary information contained in multiple sequence alignments as input to neural networks, secondary structure can be predicted at significantly increased accuracy. Here, we extend our previous three-level system of neural networks by using additional input information derived from multiple alignments. Using a position-specific conservation weight as part of the input increases performance. Using the number of insertions and deletions reduces the tendency for overprediction and increases overall accuracy. Addition of the global amino acid content yields a further improvement, mainly in predicting structural class. The final network system has a sustained overall accuracy of 71.6% in a multiple cross-validation test on 126 unique protein chains. A test on a new set of 124 recently solved protein structures that have no significant sequence similarity to the learning set confirms the high level of accuracy. The average cross-validated accuracy for all 250 sequence-unique chains is above 72%. Using various data sets, the method is compared to alternative prediction methods, some of which also use multiple alignments: the performance advantage of the network system is at least 6 percentage points in three-state accuracy. In addition, the network estimates secondary structure content from multiple sequence alignments about as well as circular dichroism spectroscopy on a single protein and classifies 75% of the 250 proteins correctly into one of four protein structural classes. Of particular practical importance is the definition of a position-specific reliability index. For 40% of all residues the method has a sustained three-state accuracy of 88%, as high as the overall average for homology modelling. A further strength of the method is greatly increased accuracy in predicting the placement of secondary structure segments. © 1994 Wiley-Liss, Inc. 相似文献
11.
Sen TZ Cheng H Kloczkowski A Jernigan RL 《Protein science : a publication of the Protein Society》2006,15(11):2499-2506
The major aim of tertiary structure prediction is to obtain protein models with the highest possible accuracy. Fold recognition, homology modeling, and de novo prediction methods typically use predicted secondary structures as input, and all of these methods may significantly benefit from more accurate secondary structure predictions. Although there are many different secondary structure prediction methods available in the literature, their cross-validated prediction accuracy is generally <80%. In order to increase the prediction accuracy, we developed a novel hybrid algorithm called Consensus Data Mining (CDM) that combines our two previous successful methods: (1) Fragment Database Mining (FDM), which exploits the Protein Data Bank structures, and (2) GOR V, which is based on information theory, Bayesian statistics, and multiple sequence alignments (MSA). In CDM, the target sequence is dissected into smaller fragments that are compared with fragments obtained from related sequences in the PDB. For fragments with a sequence identity above a certain sequence identity threshold, the FDM method is applied for the prediction. The remainder of the fragments are predicted by GOR V. The results of the CDM are provided as a function of the upper sequence identities of aligned fragments and the sequence identity threshold. We observe that the value 50% is the optimum sequence identity threshold, and that the accuracy of the CDM method measured by Q(3) ranges from 67.5% to 93.2%, depending on the availability of known structural fragments with sufficiently high sequence identity. As the Protein Data Bank grows, it is anticipated that this consensus method will improve because it will rely more upon the structural fragments. 相似文献
12.
13.
Dietlind L. Gerloff Fred E. Cohen Chantal Korostensky Marcel Turcotte Gaston H. Gonnet Steven A. Benner 《Proteins》1997,27(3):450-458
A secondary structure has been predicted for the heat shock protein HSP90 family from an aligned set of homologous protein sequences by using a transparent method in both manual and automated implementation that extracts conformational information from patterns of variation and conservation within the family. No statistically significant sequence similarity relates this family to any protein with known crystal structure. However, the secondary structure prediction, together with the assignment of active site positions and possible biochemical properties, suggest that the fold is similar to that seen in N-terminal domain of DNA gyrase B (the ATPase fragment). Proteins 27:450–458, 1997. © 1997 Wiley-Liss, Inc. 相似文献
14.
We address the problem of predicting solvent accessible surface area (ASA) of amino acid residues in protein sequences, without classifying them into buried and exposed types. A two-stage support vector regression (SVR) approach is proposed to predict real values of ASA from the position-specific scoring matrices generated from PSI-BLAST profiles. By adding SVR as the second stage to capture the influences on the ASA value of a residue by those of its neighbors, the two-stage SVR approach achieves improvements of mean absolute errors up to 3.3%, and correlation coefficients of 0.66, 0.68, and 0.67 on the Manesh dataset of 215 proteins, the Barton dataset of 502 nonhomologous proteins, and the Carugo dataset of 338 proteins, respectively, which are better than the scores published earlier on these datasets. A Web server for protein ASA prediction by using a two-stage SVR method has been developed and is available (http://birc.ntu.edu.sg/~ pas0186457/asa.html). 相似文献
15.
The contact number of an amino acid residue in a protein structure is defined by the number of C(beta) atoms around the C(beta) atom of the given residue, a quantity similar to, but different from, solvent accessible surface area. We present a method to predict the contact numbers of a protein from its amino acid sequence. The method is based on a simple linear regression scheme and predicts the absolute values of contact numbers. When single sequences are used for both parameter estimation and cross-validation, the present method predicts the contact numbers with a correlation coefficient of 0.555 on average. When multiple sequence alignments are used, the correlation increases to 0.627, which is a significant improvement over previous methods. In terms of discrete states prediction, the accuracies for 2-, 3-, and 10-state predictions are, respectively, 71.4%, 54.1%, and 18.9% with residue type-dependent unbiased thresholds, and 76.3%, 59.2%, and 21.8% with residue type-independent unbiased thresholds. The difference between accessible surface area and contact number from a prediction viewpoint and the application of contact number prediction to three-dimensional structure prediction are discussed. 相似文献
16.
Improving fold recognition without folds 总被引:4,自引:0,他引:4
The most reliable way to align two proteins of unknown structure is through sequence-profile and profile-profile alignment methods. If the structure for one of the two is known, fold recognition methods outperform purely sequence-based alignments. Here, we introduced a novel method that aligns generalised sequence and predicted structure profiles. Using predicted 1D structure (secondary structure and solvent accessibility) significantly improved over sequence-only methods, both in terms of correctly recognising pairs of proteins with different sequences and similar structures and in terms of correctly aligning the pairs. The scores obtained by our generalised scoring matrix followed an extreme value distribution; this yielded accurate estimates of the statistical significance of our alignments. We found that mistakes in 1D structure predictions correlated between proteins from different sequence-structure families. The impact of this surprising result was that our method succeeded in significantly out-performing sequence-only methods even without explicitly using structural information from any of the two. Since AGAPE also outperformed established methods that rely on 3D information, we made it available through. If we solved the problem of CPU-time required to apply AGAPE on millions of proteins, our results could also impact everyday database searches. 相似文献
17.
Protein sequences containing more than one structural domain are problematic when used in homology searches where they can either stop an iterative database search prematurely or cause an explosion of a search to common domains. We describe a method, DOMAINATION, that infers domains and their boundaries in a query sequence from local gapped alignments generated using PSI-BLAST. Through a new technique to recognize domain insertions and permutations, DOMAINATION submits delineated domains as successive database queries in further iterative steps. Assessed over a set of 452 multidomain proteins, the method predicts structural domain boundaries with an overall accuracy of 50% and improves finding distant homologies by 14% compared with PSI-BLAST. DOMAINATION is available as a web based tool at http://mathbio.nimr.mrc.ac.uk, and the source code is available from the authors upon request. 相似文献
18.
In this study, we show that it is possible to increase the performance over PSI-BLAST by using evolutionary information for both query and target sequences. This information can be used in three different ways: by sequence linking, profile-profile alignments, and by combining sequence-profile and profile-sequence searches. If only PSI-BLAST is used, 16% of superfamily-related protein domains can be detected at 90% specificity, but if a sequence-profile and a profile-sequence search are combined, this is increased to 20%, profile-profile searches detects 19%, whereas a linking procedure identifies 22% of these proteins. All three methods show equal performance, but the best combination of speed and accuracy seems to be obtained by the combined searches, because this method shows a good performance even at high specificity and the lowest computational cost. In addition, we show that the E-values reported by all these methods, including PSI-BLAST, underestimate the true rate of false positives. This behavior is seen even if a very strict E-value cutoff and a limited number of iterations are used. However, the difference is more pronounced with a looser E-value cutoff and more iterations. 相似文献
19.
Most threading methods predict the structure of a protein using only a single template. Due to the increasing number of solved structures, a protein without solved structure is very likely to have more than one similar template structures. Therefore, a natural question to ask is if we can improve modeling accuracy using multiple templates. This article describes a new multiple-template threading method to answer this question. At the heart of this multiple-template threading method is a novel probabilistic-consistency algorithm that can accurately align a single protein sequence simultaneously to multiple templates. Experimental results indicate that our multiple-template method can improve pairwise sequence-template alignment accuracy and generate models with better quality than single-template models even if they are built from the best single templates (P-value <10(-6)) while many popular multiple sequence/structure alignment tools fail to do so. The underlying reason is that our probabilistic-consistency algorithm can generate accurate multiple sequence/template alignments. In another word, without an accurate multiple sequence/template alignment, the modeling accuracy cannot be improved by simply using multiple templates to increase alignment coverage. Blindly tested on the CASP9 targets with more than one good template structures, our method outperforms all other CASP9 servers except two (Zhang-Server and QUARK of the same group). Our probabilistic-consistency algorithm can possibly be extended to align multiple protein/RNA sequences and structures. 相似文献
20.
I. I. Litvinov M. Yu. Lobanov A. A. Mironov A. V. Finkelshtein M. A. Roytberg 《Molecular Biology》2006,40(3):474-480
The most popular algorithms employed in the pairwise alignment of protein primary structures (Smith-Watermann (SW) algorithm, FASTA, BLAST, etc.) only analyze the amino acid sequence. The SW algorithm is the most accurate, yielding alignments that agree best with superimpositions of the corresponding spatial structures of proteins. However, even the SW algorithm fails to reproduce the spatial structure alignment when the sequence identity is lower than 30%. The objective of this work was to develop a new and more accurate algorithm taking the secondary structure of proteins into account. The alignments generated by this algorithm and having the maximal weight with the secondary structure considered proved to be more accurate than SW alignments. With sequences having less than 30% identity, the accuracy (i.e., the portion of reproduced positions of a reference alignment obtained by superimposing the protein spatial structures) of the new algorithm is 58 vs. 35% of the SW algorithm. The accuracy of the new algorithm is much the same with secondary structures established experimentally or predicted theoretically. Hence, the algorithm is applicable to proteins with unknown spatial structures. The program is available at ftp://194.149.64.196/STRUSWER/. 相似文献