首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyzed the behavior of interstitial telomeric sequences (ITSs) in the progeny of Chinese Hamster Ovary (CHO) cells exposed to the radiomimetic compound bleomycin (BLM) in order to determine if ITSs play some role in the long-term clastogenic effect of this antibiotic. To this end, CHO cells were treated with a single concentration of BLM (2.5μg/ml), and the frequency of unstable chromosomal aberrations was determined at several times after treatment (18h, and 6, 15 and 34/36 days) by using PNA-FISH with a pan-telomeric probe [(TTAGGG)n repeats]. Cytogenetic analysis revealed a higher frequency of aberrations at 18h and 6 days after treatment in BLM-exposed cultures vs. untreated cultures, although the yield of BLM-induced aberrations decreased on average five times 6 days after treatment compared with the one induced 18h after treatment. Moreover, no significant differences in the frequency of aberrations were observed between untreated and BLM-exposed cells at 15 or 34/36 days after treatment. These data indicate that, in terms of unstable aberrations, the in vitro clastogenic effect of BLM on CHO cells persists for at least 6 days but less than 15 days after exposure. In addition, we found that BLM induces ITSs instability, cytogenetically detectable as acentric fragments (18h after treatment) or additional (new) FISH signals (6 days after treatment). We propose that the delayed effect of BLM on ITSs mainly results from breakage of heterochromatic ITSs blocks and further insertion of these sequences at the sites of monochromatid breaks occurring at G2 phase of the cell cycle, since most of the additional FISH signals were present as single dots and located at interstitial sites of the involved chromosomes.  相似文献   

2.
We analyzed the induction of chromosomal aberrations in Chinese hamster ovary (CHO) cells exposed to the radiomimetic compound streptonigrin (SN), in order to determine whether interstitial telomeric sequences (ITSs) are involved in the long-term clastogenic effect of this antibiotic. CHO cells were treated with a single concentration of SN (100ng/ml), and the frequency of unstable chromosomal aberrations was determined at three times after treatment (18h, and 6 and 15 days) by using PNA-FISH with a pan-telomeric probe. Cytogenetic analysis revealed a higher frequency of aberrations at 18h and 6 days after treatment in SN-exposed cultures vs. untreated cultures. The percentage of damaged cells and the yield of SN-induced aberrations at 6 days after treatment increased on average twofold compared with the ones at 18h after treatment. Moreover, a significant decrease in the frequency of aberrations was observed in SN-exposed cells at 15 days after treatment, resulting in a frequency of aberrations significantly lower than the frequency of aberrations observed in the corresponding control cultures. These data indicate that SN induces delayed chromosomal instability in CHO cells, and that the in vitro clastogenic effect of this compound persists for at least 6 days but less than 15 days after treatment. In addition, we found that SN induces delayed ITSs instability, cytogenetically detectable as additional FISH signals and centromeric breaks involving dissociation of the telomeric signal 6 days after treatment. We propose that the delayed effect of SN on ITSs results from breakage of heterochromatic centromeric ITSs blocks and further insertion of these sequences at the sites of mono- or isochromatid breaks occurring at G2 or G1-S phases of the cell cycle, respectively, since most of the additional FISH signals were present as single or double dots, and located at interstitial sites of the involved chromosomes.  相似文献   

3.
We analyzed the chromosomal aberrations involving telomeres in the progeny of mammalian cells exposed to the radiomimetic compound bleomycin (BLM) in order to determine if this antineoplastic drug induces long-term telomere instability. To this end, rat cells (ADIPO-P2 cell line, derived from adipose cells from Sprague-Dawley rat) were treated with a single concentration of BLM (2.5μg/ml), and chromosomal aberrations were analyzed 18h and 10 days after treatment by using PNA-FISH with a pan-telomeric probe [(TTAGGG)n repeats]. Cytogenetic analysis revealed a higher frequency of aberrations at 18h and 10 days after treatment in BLM-exposed cultures vs. untreated cultures, although the yield of BLM-induced aberrations 10 days after treatment decreased about 25% compared with the one at 18h after treatment. Moreover, the level of telomerase activity in BLM-treated cells compared with that of untreated control cells was significantly higher at 10 days after treatment, but did not differ at 18h after treatment. These data indicate that in terms of unstable aberrations, the in vitro clastogenic effect of BLM on ADIPO-P2 cells persists for at least 10 days after exposure. In addition, our data demonstrate, for the first time, that BLM-induced telomere instability in mammalian cells (cytogenetically detectable as incomplete chromosome elements and telomere FISH signal loss and duplication) persists for several generations after exposure. Moreover, the appearance of telomere fusions in BLM-exposed cells 10 days after treatment suggests that this compound can induce delayed telomere instability. The increase in telomerase activity in BLM-exposed cells 10 days after treatment is accompanied by the presence of aberrations directly related to telomere dysfunction. This fact suggests that telomerase is not directly involved in BLM-induced telomere instability.  相似文献   

4.
Fluorescence in situ hybridization (FISH) with a telomeric peptide nucleic acid (PNA) probe was employed to analyze the induction of incomplete chromosome elements (ICE, i.e., unjoined or “open” chromosome elements with telomeric signal at only one end) and excess acentric fragments (i.e., in excess of fragments resulting from the formation of dicentric and ring chromosomes) by the methylating agent streptozotocin (STZ) in a Chinese hamster embryo (CHE) cell line. CHE cells were treated with 0–4 mM STZ and chromosomal aberrations were analyzed in the first mitosis after treatment using the telomeric probe. Centric (incomplete chromosomes) and acentric (terminal fragments) ICE were the only unstable chromosome-type aberrations induced by STZ in CHE cells. The induction of these aberrations exhibited a curvilinear concentration–response relationship. About 40% of the metaphases present in cell cultures treated with STZ contained one or more pairs of ICE. In STZ-treated cells, ICE were always observed as pairs consisting of an incomplete chromosome and a terminal fragment. Moreover, all of the excess acentric fragments induced by STZ were of terminal type. These results indicate that chromosomal incompleteness is a very common event following exposure to STZ and suggest that all of the excess acentric fragments induced by STZ originate from terminal deletions.  相似文献   

5.
Topoisomerase (Topo) IIIalpha associates with BLM helicase, which is proposed to be important in the alternative lengthening of telomeres (ALT) pathway that allows telomere recombination in the absence of telomerase. Here, we show that human Topo IIIalpha colocalizes with telomeric proteins at ALT-associated promyelocytic bodies from ALT cells. In these cells, Topo IIIalpha immunoprecipitated with telomere binding protein (TRF) 2 and BLM and was shown to be associated with telomeric DNA by chromatin immunoprecipitation, suggesting that these proteins form a complex at telomere sequences. Topo IIIalpha depletion by small interfering RNA reduced ALT cell survival, but did not affect telomerase-positive cell lines. Moreover, repression of Topo IIIalpha expression in ALT cells reduced the levels of TRF2 and BLM proteins, provoked a strong increase in the formation of anaphase bridges, induced the degradation of the G-overhang signal, and resulted in the appearance of DNA damage at telomeres. In contrast, telomere maintenance and TRF2 levels were unaffected in telomerase-positive cells. We conclude that Topo IIIalpha is an important telomere-associated factor, essential for telomere maintenance and chromosome stability in ALT cells, and speculate on its potential mechanistic function.  相似文献   

6.
Considerable interest has been focused on telomerase because of its potential use in assays for cancer diagnosis, and for anti-telomerase drugs as a strategy for cancer chemotherapy. A number of assays based on the polymerase chain reaction (PCR) have been developed for evaluation of telomerase activity. To overcome the disadvantages of the conventional telomerase assay [telomeric repeat amplification protocol (TRAP)] related to PCR artifacts and troublesome post-PCR procedures, we have developed a telomeric repeat elongation (TRE) assay which directly measures telomerase activity as the telomeric elongation rate by biosensor technology using surface plasmon resonance (SPR). 5′-Biotinylated oligomers containing telomeric repeats were immobilized on streptavidin-pretreated dextran sensor surfaces in situ using the BIACORE apparatus. Subsequently, the oligomers associated with the telomerase extracts were elongated in the BIACORE apparatus. The rate of TRE was calculated by measuring the SPR signals. We examined elongation rates by the TRE assay in 18 cancer and three normal human fibroblast cell lines, and 12 human primary carcinomas and matching normal tissues. The elongation rates increased in a concentration- and time-dependent manner. Those of cancer cells were two to 10 times higher than fibroblast cell lines and normal tissues. Telomerase activities and its inhibitory effects of anti-telomerase agents as measured by both the TRE and TRAP assays showed a good correlation. Our assay allows precise quantitative comparison of a wide range of human cells from somatic cells to carcinoma cells. TRE assay is suitable for practical use in the assessment of telomerase activity in preclinical and clinical trials of telomerase-based therapies, because of its reproducibility, rapidity and simplicity.  相似文献   

7.
Although most telomere repeat sequences are found at the ends of chromosomes, some telomeric repeat sequences are also found at intrachromosomal locations in mammalian cells. Several studies have found that these interstitial telomeric repeat sequences can promote chromosome instability in rodent cells, either spontaneously or following ionizing radiation. In the present study we describe the extensive cytogenetic analysis of three different human cell lines with plasmids containing telomeric repeat sequences integrated at interstitial sites. In two of these cell lines, Q18 and P8SX, instability has been detected in the chromosome containing the integrated plasmid, involving breakage/fusion/bridge cycles or amplification of the plasmid DNA, respectively. However, the data suggest that the instability observed is characteristic of the general instability in these cell lines and that the telomeric repeat sequences themselves are not responsible. Consistent with this interpretation, the chromosome containing an integrated plasmid with 500 bp of telomeric repeat sequences is highly stable in the third cell line, SNG28, which has a relatively stable genome. The stability of the chromosome containing the integrated plasmid sequences in SNG28 makes this an excellent cell line to study the effect of ionizing radiation on the stability of interstitial telomeric sequences in human cells.  相似文献   

8.
The effect of recombinant interferon-alpha-2a (rIFN-alpha-2a) on the induction of chromosomal aberrations (CAs) by the radiomimetic antibiotic bleomycin (BLM, 5 microg/ml, 30 min, 37 degrees C) in Chinese hamster ovary (CHO) cells was investigated. Recombinant IFN-alpha-2a (4500-180,000IU/ml) was added to the cell cultures 0.5 or 24h before BLM (and left in the culture medium until the end of treatments) or immediately after BLM treatment (and left in the culture medium until harvesting). Cells were sampled at 18 or 2.5h after the end of treatments, in order to determine, respectively, the effect of rIFN-alpha-2a on the total chromosome damage induced by BLM and on the chromosome damage induced by this antibiotic in the G(2) phase of the cell cycle. A statistically significant increase in the frequency of CAs was observed following treatment with BLM (P<0.05), whereas treatments with rIFN-alpha-2a alone did not produce any significant increase of CAs over control values (P>0.05). The yield of CAs by BLM was significantly inhibited by rIFN-alpha-2a (P<0.05, 65.3% maximum inhibition). A strong inhibitory effect (around 80%) of rIFN-alpha-2a on the yield of BLM-induced CAs in the G(2) phase of the cell cycle was also observed. It is suggested that the inhibitory effect of rIFN-alpha-2a on the induction of CAs by BLM is mainly due to the stimulation of DNA synthesis and repair by the cytokine.  相似文献   

9.
端粒缩短见于星形细胞瘤发展过程中,但其长度在胶质母细胞瘤/细胞系相对稳定,提示胶质瘤细胞内存在端粒修复机制的可能性.为证实此点,利用端粒重复片段扩增技术(TRAP),对8株人/大鼠多形胶质母细胞系的蛋白提取液中端粒酶活性加以测定.结果显示:8例胶质瘤样本的反应液均可见端粒PCR扩增片段;用无DNase的RNase事先处理蛋白提取液,可明显降低或消除PCR产物的出现,说明TRAP反应中的PCR扩增是在端粒酶的介导下进行而非DNA污染或其它端粒修复因子所致.从而不但建立起检测人癌细胞内端粒酶活性的可靠方法,也为针对端粒酶的胶质母细胞瘤生物/药物治疗提供了实验依据.  相似文献   

10.
Telomeres are specialized nucleoproteic complexes localized at the physical ends of linear eukaryotic chromosomes that maintain their stability and integrity. The DNA component of telomeres is characterized by being a G-rich double stranded DNA composed by short fragments tandemly repeated with different sequences depending on the species considered. At the chromosome level, telomeres or, more properly, telomeric repeats--the DNA component of telomeres--can be detected either by using the fluorescence in situ hybridization (FISH) technique with a DNA or a peptide nucleic acid (PNA) (pan)telomeric probe, i.e., which identifies simultaneously all of the telomeres in a metaphase cell, or by the primed in situ labeling (PRINS) reaction using an oligonucleotide primer complementary to the telomeric DNA repeated sequence. Using these techniques, incomplete chromosome elements, acentric fragments, amplification and translocation of telomeric repeat sequences, telomeric associations and telomeric fusions can be identified. In addition, chromosome orientation (CO)-FISH allows to discriminate between the different types of telomeric fusions, namely telomere-telomere and telomere-DNA double strand break fusions and to detect recombination events at the telomere, i.e., telomeric sister-chromatid exchanges (T-SCE). In this review, we summarize our current knowledge of chromosomal aberrations involving telomeres and interstitial telomeric repeat sequences and their induction by physical and chemical mutagens. Since all of the studies on the induction of these types of aberrations were conducted in mammalian cells, the review will be focused on the chromosomal aberrations involving the TTAGGG sequence, i.e., the telomeric repeat sequence that "caps" the chromosomes of all vertebrate species.  相似文献   

11.
Bleomycin (BLM) induces DNA damage in living cells. In this report we analyzed the role of chromatin compactness in the differential response of mosquito (ATC-15) and mammalian (CHO) cells to DNA strand breaks induced by BLM. We used cells unexposed and exposed to sodium butyrate (NaB), which induces chromatin decondensation. By nucleoid sedimentation assay and digestions of nuclei with DNAse I, untreated mosquito cells (no BLM; no NaB) were shown to have more chromatin condensation than untreated CHO cells. By alkaline unwinding ATC-15 cells treated with NaB showed more BLM-induced DNA strand breaks than NaB-untreated CHO cells. The time-course of BLM-induced DNA damage to nuclear DNA was similar for NaB-untreated mammalian and insect cells, but with mosquito cells showing less DNA strand breaks, both at physiological temperatures and at 4 °C. However, when DNA repair was inhibited by low temperatures and chromatin was decondensed by NaB treatments, differences in BLM-induced DNA damage between these cells lines were no longer observed. In both cell lines, NaB did not affect BLM action on cell growth and viability. On the other hand, the low sensitivity of ATC-15 cells to BLM was reflected in their better growth efficiency. These cells exhibited a satisfactory growth at BLM doses that produced a permanent arrest of growth in CHO cells. The data suggest that mosquito cells might have linker DNAs shorter than those of mammalian cells, which would result in the observed both greater chromatin condensation and greater resistance to DNA damage induced by BLM as compared to CHO cells.  相似文献   

12.
Ji ZN  Ye WC  Liu GG  Hsiao WL 《Life sciences》2002,72(1):1-9
23-Hydroxybetulinic acid, a derivative of betulinic acid, was investigated for its apoptotic effect and the associated telomerase activity in human leukemia HL-60 cells. Apoptosis and bcl-2 were determined by flow cytometry analysis. A PCR-based telomeric repeat amplification protocol assay was used to detect telomerase activity. Results showed that 23-hydroxybetulinic acid induced growth arrest and apoptotic cell death in HL-60 cells. The apoptotic events were associated with concurrent down-regulation of bcl-2 and the telomerase activity. Our data suggest that 23-hydroxybetulinic acid may be a potential cytotoxic agent for treatment of cancer.  相似文献   

13.
While studying the inhibition of telomerase activity in Chinese hamster V79 cells using polymerase chain reaction (PCR) based telomeric repeat amplification protocol (TRAP) assay, we had earlier observed that 7-deaza deoxy guanosine triphosphate (7-deaza dGTP) and oligonucleotide (TTAGGG)4 inhibited telomerase activity in vitro. In the present study, we report inhibition of telomerase activity by modified base 7-deaza deoxy adenosine triphosphate (7-deaza dATP) and phosphorothioate TTAGGG (PS-TTAGGG). Both the compounds inhibited telomerase activity in a concentration dependent manner; 8.5 microM of 7-deaza dATP and 0.1 microM of PS-TTAGGG being the concentration for 50% of the maximum inhibition. This observation supports our earlier hypothesis that incorporation of a modified nucleotide into telomere possibly interferes with the recognition of the telomerase and TTAGGG interferes with the RNA component of telomerase. We have further shown that treatment of cells with nicotinamide (NA) and benzamide (BA), well known inhibitors of poly (ADP-ribose) polymerase, reduced telomerase activity. We speculate that modification of the telomeric binding proteins or other components by poly (ADP-ribosyl)ation may be involved in such inhibition.  相似文献   

14.
In this study we investigated whether the radioprotector reduced glutathione (GSH) can reduce the frequency of chromosome aberrations induced by the radiomimetic antitumour drug bleomycin (BLM) in muntjac lymphocytes in vitro. Our results demonstrate that, instead of yielding any protection, the presence of GSH potentiates the clastogenic action of BLM. A significant enhancement in the frequency of rearrangements and deletions was observed and the number of aberrations per metaphase was also enhanced. We suggest that this potentiation may be due to GSH acting as a reducing agent in reactivating oxidised BLM.  相似文献   

15.
Telomere dynamics, chromosomal instability, and cellular viability were studied in serial passages of mouse embryonic stem (ES) cells in which the telomerase RNA (mTER) gene was deleted. These cells lack detectable telomerase activity, and their growth rate was reduced after more than 300 divisions and almost zero after 450 cell divisions. After this growth crisis, survivor cells with a rapid growth rate did emerge. Such survivors were found to maintain functional telomeres in a telomerase-independent fashion. Although telomerase-independent telomere maintenance has been reported for some immortalized mammalian cells, its molecular mechanism has not been elucidated. Characterization of the telomeric structures in one of the survivor mTER(-/-) cell lines showed amplification of the same tandem arrays of telomeric and nontelomeric sequences at most of the chromosome ends. This evidence implicates cis/trans amplification as one mechanism for the telomerase-independent maintenance of telomeres in mammalian cells.  相似文献   

16.
Gene amplification has been associated with multidrug resistance (MDR) in several drug-resistant Chinese hamster ovary (CHO) cell lines which exhibit cross-resistance to other unrelated, cytotoxic drugs. In situ hybridization studies (Teeter et al., J. Cell Biol., in press) suggested the presence of an amplified gene associated with the MDR phenotype on the long arm of either of the largest CHO chromosomes (1 or Z1) in vincristine-resistant cells. In this study, somatic cell hybrids were constructed between these vincristine-resistant CHO cells and drug-sensitive murine cells to determine the functional relationship between the chromosome bearing the amplified sequences and the MDR phenotype. Hybrids exhibited primary drug resistance and MDR in an incomplete dominant fashion. Hybrid clones and subclones segregated CHO chromosomes. Concordant segregation between vincristine resistance, the MDR phenotype, the presence of the MDR-associated amplified sequences, overexpression of the gene located in those sequences, and CHO chromosome Z1 was consistent with the hypothesis that there is an amplified gene on chromosome Z1 of the vincristine-resistant CHO cells which is responsible for the MDR in these cells. A low level of discordance between CHO chromosomes Z8 and 2 and the drug resistance phenotype suggests that these chromosomes may contain genes involved with the MDR phenotype.  相似文献   

17.
Jacob NK  Kirk KE  Price CM 《Molecular cell》2003,11(4):1021-1032
Processing of telomeric DNA is required to generate the 3' G strand overhangs necessary for capping chromosome ends. We have investigated the steps involved in telomere processing by examining G overhang structure in Tetrahymena cells that lack telomerase or have altered telomeric sequences. We show that overhangs are generated by two precise cleavage steps involving nucleases that are robust but lack sequence specificity. Our data suggest that a G overhang binding protein delineates the boundaries for G and C strand cleavage. We also show that telomerase is not the nuclease responsible for G strand cleavage, although telomerase depletion alters the precision of processing. This change in processing indicates that telomerase affects multiple transactions at the telomere and provides a physical footprint for the continued association of telomerase with the telomere after repeat addition is complete.  相似文献   

18.
Telomerase is a ribonucleoprotein enzyme that can elongate telomeric DNA, which is thought to be required for the development of cellular immortality and oncogenesis in mammals. We examined telomerase activity in tissues and primary cultured lymphoid cells of adult penaeid shrimps. Using the telomeric repeat amplification protocol (TRAP), we studied the characteristics of a putative novel telomerase in Penaeus japonicus. This telomerase could be inactivated by heating or treatment with RNase A or proteinase K. At elongation, this telomerase required dATP, dGTP, and dTTP, but not dCTP, as substrates. Sequence analysis of the TRAP product revealed that this telomerase synthesized (TTAGG)n repeated sequences. The activity of this telomerase was decreased but still readily detectable in 100 ng of protein extract from lymphoid tissue. The telomerase activity was detected in all examined tissues including testis, ovary, lymphoid, heart, hepatopancreas, and muscle. The highest telomerase activity was in the extract of ovarian tissues. In primary cultured lymphoid cells, the telomerase activity was retained. Thus, primary cultured lymphoid cells of Penaeus japonicus possess one of the factors necessary for cell line establishment.  相似文献   

19.
A simple, quick and sensitive method was used to detect telomerase activity in Plasmodium falciparum. The telomeric repeat amplification protocol (TRAP assay) was modified using electrophoresis and staining with SYBR-green I to detect telomerase activity in a range of 10 to 10(7) parasites. This might be a useful way to ascertain telomerase activity in different types of nontumor cells.  相似文献   

20.
Telomeres, the noncoding sequences at the ends of chromosomes, progressively shorten with each cellular division. Spermatozoa have very long telomeres but they lack telomerase enzymatic activity that is necessary for de novo synthesis and addition of telomeres. We performed a telomere restriction fragment analysis to compare the telomere lengths in immature rat testis (containing type A spermatogonia) with adult rat testis (containing more differentiated germ cells). Mean telomere length in the immature testis was significantly shorter in comparison to adult testis, suggesting that type A spermatogonia probably have shorter telomeres than more differentiated germ cells. Then, we isolated type A spermatogonia from immature testis, and pachytene spermatocytes and round spermatids from adult testis. Pachytene spermatocytes exhibited longer telomeres compared to type A spermatogonia. Surprisingly, although statistically not significant, round spermatids showed a decrease in telomere length. Epididymal spermatozoa exhibited the longest mean telomere length. In marked contrast, telomerase activity, measured by the telomeric repeat amplification protocol was very high in type A spermatogonia, decreased in pachytene spermatocytes and round spermatids, and was totally absent in epididymal spermatozoa. In summary, these results indicate that telomere length increases during the development of male germ cells from spermatogonia to spermatozoa and is inversely correlated with the expression of telomerase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号