首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
广东竹亚科新组合及新异名   总被引:2,自引:0,他引:2  
报道了广东竹亚科13新组合,1新名称和3新异名,其中筋竹属3新组合1新名称,牡竹属4新组合,青篱竹属5组合1新异名,箬竹属2新异名及方竹属1新组合.  相似文献   

2.
Bone morphogenetic protein (BMP) signals regulate the growth and differentiation of diverse lineages. The association of mutations in the BMP type II receptor (BMPRII) with idiopathic pulmonary arterial hypertension suggests an important role of this receptor in vascular remodeling. Pulmonary artery smooth muscle cells lacking BMPRII can transduce BMP signals using ActRIIa (Activin type II receptor). We investigated whether or not BMP signaling via the two receptors leads to differential effects on vascular smooth muscle cells. BMP4, but not BMP7, inhibited platelet-derived growth factor-activated proliferation in wild-type pulmonary artery smooth muscle cells, whereas neither ligand inhibited the growth of BMPRII-deficient cells. Adenoviral gene transfer of BMPRII enabled BMP4, as well as BMP7, to inhibit proliferation in BMPRII-deficient cells. BMP-mediated growth inhibition was also reconstituted by the BMPRII short isoform, lacking the C-terminal domain present in the long form. BMP4, but not BMP7, induced the expression of osteoblast markers in wild-type cells, whereas neither ligand induced these markers in BMPRII-deficient cells. Overexpression of short or long forms of BMPRII in BMPRII-deficient cells enabled BMP4 and BMP7 to induce osteogenic differentiation. Although signaling via BMPRII or ActRIIa transiently activated SMAD1/5/8, only BMPRII signaling led to persistent SMAD1/5/8 activation and sustained increases in Id1 mRNA and protein expression. Pharmacologic blockade of BMP type I receptor function within 24 h after BMP stimulation abrogated differentiation. These data suggest that sustained BMP pathway activation, such as that mediated by BMPRII, is necessary for growth and differentiation control in vascular smooth muscle.  相似文献   

3.
During embryogenesis, bone morphogenetic protein (BMP) signaling needs to be finely tuned in a locally restricted manner. Here, we report a cell-intrinsic mode of BMP response control executed by the membrane protein Jiraiya. In the Xenopus embryo, zygotic Jiraiya, expressed exclusively in the neuroectoderm, is essential and sufficient for limiting dorsal neural development, which is dependent on BMP signals. In animal cap assays, Jiraiya selectively and cell-autonomously inhibits BMP signaling, while Jiraiya's knockdown enhances the signaling. In the cell, Jiraiya selectively forms a complex with type II BMP receptor (BMPRII) and downregulates the cell surface localization of functional BMPRII. This functional interaction with Jiraiya depends on the unique tail domain of BMPRII, and, in particular, the conserved EVNNNG motif, the function of which has been unknown. Thus, Jiraiya represents a cell-intrinsic cutoff mechanism for dynamic responsiveness to BMP signals via subtype-selective receptor control.  相似文献   

4.
The mouse prostate gland develops by branching morphogenesis from the urogenital epithelium and mesenchyme. Androgens and developmental factors, including FGF10 and SHH, promote prostate growth (Berman, D.M., Desai, N., Wang, X., Karhadkar, S.S., Reynon, M., Abate-Shen, C., Beachy, P.A., Shen, M.M., 2004. Roles for Hedgehog signaling in androgen production and prostate ductal morphogenesis. Dev. Biol. 267, 387-398; Donjacour, A.A., Thomson, A.A., Cunha, G.R., 2003. FGF-10 plays an essential role in the growth of the fetal prostate. Dev. Biol. 261, 39-54), while BMP4 signaling from the mesenchyme has been shown to suppresses prostate branching (Lamm, M.L., Podlasek, C.A., Barnett, D.H., Lee, J., Clemens, J.Q., Hebner, C.M., Bushman, W., 2001. Mesenchymal factor bone morphogenetic protein 4 restricts ductal budding and branching morphogenesis in the developing prostate. Dev. Biol. 232, 301-314). Here, we show that Bone Morphogenetic Protein 7 (BMP7) restricts branching of the prostate epithelium. BMP7 is expressed in the periurethral urogenital mesenchyme prior to formation of the prostate buds and, subsequently, in the prostate epithelium. We show that BMP7(lacZ/lacZ) null prostates show a two-fold increase in prostate branching, while recombinant BMP7 inhibits prostate morphogenesis in organ culture in a concentration-dependent manner. We further explore the mechanisms by which the developmental signals may be interpreted in the urogenital epithelium to regulate branching morphogenesis. We show that Notch1 activity is associated with the formation of the prostate buds, and that Notch1 signaling is derepressed in BMP7 null urogenital epithelium. Based on our studies, we propose a model that BMP7 inhibits branching morphogenesis in the prostate and limits the number of domains with high Notch1/Hes1 activity.  相似文献   

5.
Multiple abnormalities of bone morphogenetic protein (BMPs) signaling are implicated in the process of pulmonary arterial hypertension (PAH). BMP4 plays an important role during the process of pulmonary arterial remodeling and mutant of the principle BMP4 receptor, BMP receptors II (BMPRII), is found to associate with the development of PAH. However, the likely mechanism defining the contribution of BMPRII to BMP4 mediated signaling in pulmonary arterial smooth muscle cells (PASMCs) remains comprehensively unclear. We previously found that enhanced store operated calcium entry (SOCE) and basal intracellular calcium concentration [Ca2+]i were induced by BMP4 via upregulation of TRPC1, 4 and 6 expression in PASMCs, and that BMP4 modulated TRPC channel expression through activating p38MAPK and ERK1/2 signaling pathways. In this study, BMPRII siRNA was used to knockdown BMPRII expression to investigate whether BMP4 upregulates the expression of TRPC and activating Smad1/5/8, ERK1/2 and p38MAPK pathway via BMPRII in distal PASMCs. Our results showed that knockdown of BMPRII: 1) attenuated BMP4 induced activation of P-Smad1/5/8, without altering BMP4 induced P-p38MAPK and P-ERK1/2 activation in PASMCs; 2) did not attenuate the BMP4-induced TRPC1, 4 and 6 expression; 3) did not affect BMP4-enhanced SOCE and basal [Ca2+]i. Thus, we concluded that BMP4 activated Smad1/5/8 pathway is BMPRII-dependent, while the BMP4 – ERK/p-P38 – TRPC – SOCE signaling axis are likely mediated through other receptor rather than BMPRII.  相似文献   

6.
Fibroblast proliferation, differentiation, and migration contribute to the characteristic pulmonary vascular remodeling seen in primary pulmonary hypertension (PPH). The identification of mutations in the bone morphogenetic protein type II receptor (BMPRII) in PPH have led us to question what role BMPRII and its ligands play in pulmonary vascular remodeling. Thus, to further understand the functional significance of BMPRII in the pulmonary vasculature, we examined the expression of TGF-beta superfamily receptors in human fetal lung fibroblasts (HFL) and investigated the role of BMP4 on cell cycle regulation, fibroblast proliferation, and differentiation. Furthermore, signaling pathways involved in these processes were examined. HFL expressed BMPRI and BMPRII mRNA and demonstrated specific I(125)-BMP4 binding sites. BMP4 inhibited [(3)H]thymidine incorporation and proliferation of HFL; protein expression was increased for the cell cycle inhibitor p21 and reduced for the positive regulators cyclin D and cdk2 by BMP4. BMP4 induced differentiation of HFL into a smooth muscle cell phenotype since protein expression of alpha-smooth muscle actin and smooth muscle myosin was increased. Furthermore, p38(MAPK), ERK1/2, JNK, and Smad1 were phosphorylated by BMP4. Using specific MAPK inhibitors, a dominant negative Smad1 construct, and Smad1 siRNA, we found that the antiproliferative and prodifferentiation effects of BMP4 were Smad1 dependent with JNK also contributing to differentiation. Because failure of Smad phosphorylation is a major feature of BMPRII mutations, these results imply that BMPRII mutations may promote the expansion of fibroblasts resistant to the antiproliferative, prodifferentiation effects of BMPs and suggest a mechanism for the vascular obliteration seen in familial PPH.  相似文献   

7.
8.
There are more than 30 human transforming growth factor beta/bone morphogenetic protein/growth differentiation factor (TGFbeta/BMP/GDF)-related ligands known to be important during embryonic development, organogenesis, bone formation, reproduction, and other physiological processes. Although select TGFbeta/BMP/GDF proteins were found to interact with type II and type I serine/threonine receptors to activate downstream Smad and other proteins, the receptors and signaling pathways for one-third of these TGFbeta/BMP/GDF paralogs are still unclear. Based on a genomic analysis of the entire repertoire of TGFbeta/BMP/GDF ligands and serine/threonine kinase receptors, we tested the ability of three orphan BMP/GDF ligands to activate a limited number of phylogenetically related receptors. We characterized the dimeric nature of recombinant GDF6 (also known as BMP13), GDF7 (also known as BMP12), and BMP10. We demonstrated their bioactivities based on the activation of Smad1/5/8-, but not Smad2/3-, responsive promoter constructs in the MC3T3 cell line. Furthermore, we showed their ability to induce the phosphorylation of Smad1, but not Smad2, in these cells. In COS7 cells transfected with the seven known type I receptors, overexpression of ALK3 or ALK6 conferred ligand signaling by GDF6, GDF7, and BMP10. In contrast, transfection of MC3T3 cells with ALK3 small hairpin RNA suppressed Smad signaling induced by all three ligands. Based on the coevolution of ligands and receptors, we also tested the role of BMPRII and ActRIIA as the type II receptor candidates for the three orphan ligands. We found that transfection of small hairpin RNA for BMPRII and ActRIIA in MC3T3 cells suppressed the signaling of GDF6, GDF7, and BMP10. Thus, the present approach provides a genomic paradigm for matching paralogous polypeptide ligands with a limited number of evolutionarily related receptors capable of activating specific downstream Smad proteins.  相似文献   

9.
对国产(竹思)(竹劳)竹属(Schizostachyum Nees)进行了系统整理。对属的范围进行了修订,认为本属应包括乔草竹属(Dendrochloa Parkinson),薄竹属(Leptocanna Chia et H.L.Fung),长穗竹属(Teinostachyum Munro)和李海竹属(Neohouzeaua A.Camus),并首次建立了本属的属下分类系统。此外,对二种竹子起了新名:甲竹(Bambusa austro-sinensis Xia)和毛环单竹(B.yunnanensis Xia);作了4个新组合,即Schizostachyum coradatum(Wen et Dai)Xia, S.dumetorum(Hance)Munro var.xinwuense(Wen et J. Y Chin)Xia, Bambusa glaucescens glaucescens(Willd)Sieb. ex Munro var.annulata(W.T.Lin et Z.J.Feng)Xia和B.glaucescens (Willd)Sieb.ex Munro var.pubivagina(W.T.Lin et Z.J.Feng)Xia.  相似文献   

10.
Bone (or body) morphogenetic proteins (BMPs) belong to the TGFβ superfamily and are crucial for embryonic patterning and organogenesis as well as for adult tissue homeostasis and repair. Activation of BMP receptors by their ligands leads to induction of several signaling cascades. Using fluorescence recovery after photobleaching, FRET, and single particle tracking microscopy, we demonstrate that BMP receptor type I and II (BMPRI and BMPRII) have distinct lateral mobility properties within the plasma membrane, which is mandatory for their involvement in different signaling pathways. Before ligand binding, BMPRI and a subpopulation of BMPRII exhibit confined motion, reflecting preassembled heteromeric receptor complexes. A second free diffusing BMPRII population only becomes restricted after ligand addition. This paper visualizes time-resolved BMP receptor complex formation and demonstrates that the lateral mobility of BMPRI has a major impact in stabilizing heteromeric BMPRI-BMPRII receptor complexes to differentially stimulate SMAD versus non-SMAD signaling.  相似文献   

11.
BMP signaling is required for heart formation in vertebrates   总被引:7,自引:0,他引:7  
In these studies, we have taken advantage of a transient transgenic strategy in Xenopus embryos to demonstrate that BMP signaling is required in vivo for heart formation in vertebrates. Ectopic expression of dominant negative Type I (tALK3) or Type II (tBMPRII) BMP receptors in developing Xenopus embryos results in reduction or absence of heart formation. Additionally, blocking BMP signaling in this manner downregulates expression of XNkx2-5, a homeobox gene required for cardiac specification, prior to differentiation. Notably, however, initial expression of XNkx2-5 is not affected. Mutant phenotypes can be rescued by co-injection of mutant with wild-type receptors or co-injection of mutant receptors with XSmad1, a downstream mediator of BMP signaling. Whole-mount in situ analyses indicate that ALK3 and XSmad1 are coexpressed in cardiogenic regions. Together, our results demonstrate that BMP signaling is required for maintenance of XNkx2-5 expression and heart formation and suggest that ALK3, BMPRII, and XSmad1 may mediate this signaling.  相似文献   

12.
Canonical Wnt signaling instructively promotes sensory neurogenesis in early neural crest stem cells (eNCSCs) (Lee, H.Y., M. Kleber, L. Hari, V. Brault, U. Suter, M.M. Taketo, R. Kemler, and L. Sommer. 2004. Science. 303:1020-1023). However, during normal development Wnt signaling induces a sensory fate only in a subpopulation of eNCSCs while other cells maintain their stem cell features, despite the presence of Wnt activity. Hence, factors counteracting Wnt signaling must exist. Here, we show that bone morphogenic protein (BMP) signaling antagonizes the sensory fate-inducing activity of Wnt/beta-catenin. Intriguingly, Wnt and BMP act synergistically to suppress differentiation and to maintain NCSC marker expression and multipotency. Similar to NCSCs in vivo, NCSCs maintained in culture alter their responsiveness to instructive growth factors with time. Thus, stem cell development is regulated by combinatorial growth factor activities that interact with changing cell-intrinsic cues.  相似文献   

13.
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor beta (TGF-beta) superfamily of ligands, which regulate many mammalian physiologic and pathophysiologic processes. BMPs exert their effects through type I and type II serine/threonine kinase receptors and the Smad intracellular signaling pathway. Recently, the glycosylphosphatidylinositol (GPI)-anchored protein DRAGON was identified as a co-receptor for BMP signaling. Here, we investigate whether a homologue of DRAGON, repulsive guidance molecule (RGMa), is similarly involved in the BMP signaling pathway. We show that RGMa enhances BMP, but not TGF-beta, signals in a ligand-dependent manner in cell culture. The soluble extracellular domain of RGMa fused to human Fc (RGMa.Fc) forms a complex with BMP type I receptors and binds directly and selectively to radiolabeled BMP-2 and BMP-4. RGMa mediates BMP signaling through the classical BMP signaling pathway involving Smad1, 5, and 8, and it up-regulates endogenous inhibitor of differentiation (Id1) protein, an important downstream target of BMP signals. Finally, we demonstrate that BMP signaling occurs in neurons that express RGMa in vivo. These data are consistent with a role for RGMa as a BMP co-receptor.  相似文献   

14.
We previously provided evidence that cadherin-6B induces de-epithelialization of the neural crest prior to delamination and is required for the overall epithelial mesenchymal transition (EMT). Furthermore, de-epithelialization induced by cadherin-6B was found to be mediated by BMP receptor signaling independent of BMP. We now find that de-epithelialization is mediated by non-canonical BMP signaling through the BMP type II receptor (BMPRII) and not by canonical Smad dependent signaling through BMP Type I receptor. The LIM kinase/cofilin pathway mediates non-canonical BMPRII induced de-epithelialization, in response to either cadherin-6B or BMP. LIMK1 induces de-epithelialization in the neural tube and dominant negative LIMK1 decreases de-epithelialization induced by either cadherin-6B or BMP. Cofilin is the major known LIMK1 target and a S3A phosphorylation deficient mutated cofilin inhibits de-epithelialization induced by cadherin-6B as well as LIMK1. Importantly, LIMK1 as well as cadherin-6B can trigger ectopic delamination when co-expressed with the competence factor SOX9, showing that this cadherin-6B stimulated signaling pathway can mediate the full EMT in the appropriate context. These findings suggest that the de-epithelialization step of the neural crest EMT by cadherin-6B/BMPRII involves regulation of actin dynamics via LIMK/cofilin.  相似文献   

15.
Bone morphogenetic protein (BMP) signaling regulates many different biological processes, including cell growth, differentiation, and embryogenesis. BMPs bind to heterogeneous complexes of transmembrane serine/threonine (Ser/Thr) kinase receptors known as the BMP type I and II receptors (BMPRI and BMPRII). BMPRII phosphorylates and activates the BMPRI kinase, which in turn activates the Smad proteins. The cytoplasmic region of BMPRII contains a "tail" domain (BMPRII-TD) with no enzymatic activity or known regulatory function. The discovery of mutations associated with idiopathic pulmonary artery hypertension mapping to BMPRII-TD underscores its importance. Here, we report that Tribbles-like protein 3 (Trb3) is a novel BMPRII-TD-interacting protein. Upon BMP stimulation, Trb3 dissociates from BMPRII-TD and triggers degradation of Smad ubiquitin regulatory factor 1 (Smurf1), which results in the stabilization of BMP receptor-regulated Smads and potentiation of the Smad pathway. Downregulation of Trb3 inhibits BMP-mediated cellular responses, including osteoblast differentiation of C2C12 cells and maintenance of the smooth muscle phenotype of pulmonary artery smooth muscle cells. Thus, Trb3 is a critical component of a novel mechanism for regulation of the BMP pathway by BMPRII.  相似文献   

16.
Mortality from prostate cancer (PCa) is due to the formation of metastatic disease. Understanding how that process is regulated is therefore critical. We previously demonstrated that endoglin, a type III transforming growth factor β (TGFβ) superfamily receptor, suppresses human PCa cell invasion and metastasis. Endoglin-mediated suppression of invasion was also shown by us to be dependent upon the type I TGFβ receptor, activin receptor-like kinase 2 (ALK2), and the downstream effector, Smad1. In this study we demonstrate for the first time that two type II TGFβ receptors are required for endoglin-mediated suppression of invasion: activin A receptor type IIA (ActRIIA) and bone morphogenetic protein receptor type II (BMPRII). Downstream signaling through these receptors is predominantly mediated by Smad1. ActRIIA stimulates Smad1 activation in a kinase-dependent manner, and this is required for suppression of invasion. In contrast BMPRII regulates Smad1 in a biphasic manner, promoting Smad1 signaling through its kinase domain but suppressing it through its cytoplasmic tail. BMPRII’s Smad1-regulatory effects are dependent upon its expression level. Further, its ability to suppress invasion is independent of either kinase function or tail domain. We demonstrate that ActRIIA and BMPRII physically interact, and that each also interacts with endoglin. The current findings demonstrate that both BMPRII and ActRIIA are necessary for endoglin-mediated suppression of human PCa cell invasion, that they have differential effects on Smad1 signaling, that they make separate contributions to regulation of invasion, and that they functionally and physically interact.  相似文献   

17.
18.
Activation of bone morphogenetic protein (BMP) receptor II (BMPRII) promotes pulmonary artery endothelial cell (PAEC) survival, proliferation, and migration. Mutations to BMPRII are associated with the development of pulmonary arterial hypertension (PAH). Endothelial dysfunction, including decreased endothelial nitric-oxide synthase (eNOS) activity and loss of bioactive nitric oxide (NO), plays a prominent role in the development of PAH. We hypothesized that stimulation of BMPRII promotes normal PAEC function by activating eNOS. We report that BMPRII ligands, BMP2 and BMP4, (i) stimulate eNOS phosphorylation at a critical regulatory site, (ii) increase eNOS activity, and (iii) result in canonical changes in eNOS protein-protein interactions. The stimulation of eNOS activity by BMPRII ligands was largely dependent on protein kinase A (PKA) activation, as demonstrated using the PKA inhibitors H89 and myristoylated PKI(6-22) amide. PAEC migration stimulated by BMP2 and BMP4 was inhibited by the NOS inhibitor l-nitroarginine methyl ester, providing functional evidence of eNOS activation. Furthermore, BMP2 and BMP4 failed to stimulate eNOS phosphorylation when BMPRII was knocked down by siRNA. Most important to the pathophysiology of the disease, BMP2 and BMP4 failed to stimulate eNOS phosphorylation in PAECs isolated from patients with mutations in the BMPR2 gene. These data demonstrate a new action of BMPs/BMPRII in the pulmonary endothelium and provide novel mechanistic insight into the pathogenesis of PAH.  相似文献   

19.
Signaling of bone morphogenetic protein (BMP) via type I and type II receptors is involved in multiple processes contributing to cardiogenesis. To investigate the role of the BMP type II receptor (BMPRII) in heart development, the BMPRII gene was deleted throughout the embryo during gastrulation using a Mox2-Cre transgene. BMPRIIflox/−;Mox2-Cre mice exhibited cardiac defects including double-outlet right ventricle, ventricular septal defect (VSD), atrioventricular (AV) cushion defects, and thickened valve leaflets. To characterize the tissue-specific functions of BMPRII in cardiogenesis, a series of Cre transgenes (αMHC-, Tie2-, Wnt1-, and SM22α-Cre) was employed. Interestingly, myocardial development was normal when the BMPRII gene was deleted in myocardial cells using Mox2-Cre, αMHC-Cre, or SM22α-Cre transgenes, suggesting that signaling by other BMP type II receptors may compensate for the absence of BMPRII in the myocardial cells. AV cushion defects including atrial septal defect, membranous VSD, and thickened valve leaflets were found in BMPRIIflox/−;Tie2-Cre mice. Abnormal positioning of the aorta was observed in BMPRIIflox/−;Wnt1-Cre and BMPRIIflox/−;SM22α-Cre mice. Taken together, these results demonstrate that endocardial BMPRII expression is required for septal formation and valvulogenesis. Moreover, mesenchymal BMPRII expression in the outflow tract cushion is required for proper positioning of the aorta.  相似文献   

20.
Wishful thinking (Wit) is a Drosophila transforming growth factor-beta (TGFbeta) superfamily type II receptor most related to the mammalian bone morphogenetic protein (BMP) type II receptor, BMPRII. To better understand its function, we undertook a biochemical approach to establish the ligand binding repertoire and downstream signaling pathway. We observed that BMP4 and BMP7, bound to receptor complexes comprised of Wit and the type I receptor thickveins and saxophone to activate a BMP-like signaling pathway. Further we demonstrated that both myoglianin and its most closely related mammalian ligand, myostatin, interacted with a Wit and Baboon (Babo) type II-type I receptor complex to activate TGFbeta/activin-like signaling pathways. These results thereby demonstrate that Wit binds multiple ligands to activate both BMP and TGFbeta-like signaling pathways. Given that myoglianin is expressed in muscle and glial-derived cells, these results also suggest that Wit may mediate myoglianin-dependent signals in the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号