首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
EST2 is a novel thermophilic carboxylesterase, isolated and cloned from Alicyclobacillus (formerly Bacillus) acidocaldarius, which optimally hydrolyses esters with acyl chain lengths of six to eight carbon atoms at 70 degrees C. On the basis of the amino acid sequence homology, it has been classified as a member of the mammalian hormone-sensitive lipase (HSL) subfamily.The crystal structure of EST2, complexed with a sulphonyl derivative, has been determined at 2.6 A resolution by a multiple wavelength anomalous diffraction experiment on a seleno-methionine derivative. EST2 presents a canonical alpha/beta hydrolase core, shielded at the C-terminal side by a cap region built up of five helices. It contains the lipase-like catalytic triad, Ser155, His282 and Asp252, whereby the nucleophile is covalently modified. This allows an unambiguous view of the putative active site of EST2, detecting the oxyanion hole, in whose formation the amino acid sequence motif His81-Gly82-Gly83-Gly84 is involved, and the hydrophobic binding pocket for the acyl chain. The structural model here reported provides the first example of a transition state analogue of an esterase/lipase belonging to the HSL group, thus affording useful information for the design of medical inhibitors. Moreover, as the first X-ray structure of a thermophilic carboxylesterase, the comparison with its mesophilic homologue, the Brefeldin A esterase (BFAE) from Bacillus subtilis, allows the identification of putative determinants of thermal stability.  相似文献   

2.
Organophosphate (OP) insecticide resistance in certain strains of Musca domestica is associated with reduction in the carboxylesterase activity of a particular esterase isozyme. This has been attributed to a 'mutant ali-esterase hypothesis', which invokes a structural mutation to an ali-esterase resulting in the loss of its carboxylesterase activity but acquisition of OP hydrolase activity. It has been shown that the mutation in Lucilia cuprina is a Gly137-->Asp substitution in the active site of an esterase encoded by the Lc alpha E7 gene (Newcomb, R.D., Campbell, P.M., Ollis, D.L., Cheah, E., Russell, R.J., Oakeshott, J.G., 1997. A single amino acid substitution converts a carboxylesterase to an organophosphate hydrolase and confers insecticide resistance on a blowfly. Proc. Natl. Acad. Sci. USA 94, 7464-7468). We now report the cloning and characterisation of the orthologous M. domestica Md alpha E7 gene, including the sequencing of cDNAs from the OP resistant Rutgers and OP susceptible sbo and WHO strains. The Md alpha E7 gene has the same intron structure as Lc alpha E7 and encodes a protein with 76% amino acid identity to Lc alpha E7. Comparisons between susceptible and resistance alleles show resistance in M. domestica is associated with the same Gly137-->Asp mutation as in L. cuprina. Bacterial expression of the Rutgers allele shows its product has OP hydrolase activity. The data indicate identical catalytic mechanisms have evolved in orthologous Md alpha E7 and Lc alpha E7 molecules to endow diazinon-type resistance on the two species of higher Diptera.  相似文献   

3.
The gene encoding a 23 kDA serine esterase from the cyanobacterium Spirulina platensis has been identified, cloned, characterized and expressed in Escherichia coli. The primary structure of the esterase deduced from the DNA sequence displayed 32% sequence identity with the carboxylesterase (esterase II) encoded by estB of Pseudomonas fluorescens; the highest degree of homology is found in a stretch of 11 identical or highly conserved amino acid residues corresponding to the GXSXG consensus motif found in the catalytic site of many serine proteases, lipases and esterases.  相似文献   

4.
The gene encoding a 23 kDA serine esterase from the cyanobacterium Spirulina platensis has been identified, cloned, characterized and expressed in Escherichia coli. The primary structure of the esterase deduced from the DNA sequence displayed 32% sequence identity with the carboxylesterase (esterase II) encoded by estB of Pseudomonas fluorescens; the highest degree of homology is found in a stretch of 11 identical or highly conserved amino acid residues corresponding to the GXSXG consensus motif found in the catalytic site of many serine proteases, lipases and esterases.  相似文献   

5.
J D McGhee 《Biochemistry》1987,26(13):4101-4107
The major intestinal esterase from the nematode Caenorhabditis elegans has been purified to essential homogeneity. Starting from whole worms, the overall purification is 9000-fold with a 10% recovery of activity. The esterase is a single polypeptide chain of Mr 60,000 and is stoichiometrically inhibited by organophosphates. Substrate preferences and inhibition patterns classify the enzyme as a carboxylesterase (EC 3.1.1.1), but the physiological function is unknown. The sequence of 13 amino acid residues at the esterase N-terminus has been determined. This partial sequence shows a surprisingly high degree of similarity to the N-terminal sequence of two carboxylesterases recently isolated from Drosophila mojavensis [Pen, J., van Beeumen, J., & Beintema, J. J. (1986) Biochem. J. 238, 691-699].  相似文献   

6.
Two esterase cDNA sequences were obtained from susceptible and organophosphorus resistant strains of Boophilus microplus. Both sequences have a high degree of homology to carboxylesterase B. One gene has identical sequences in both strains and the other showed two point mutations. One mutation produces an amino acid substitution when the amino acid sequence is deduced, this mutation was detected in six different populations susceptible and resistant to insecticides, but a pyrethroid resistant strain was the only one that showed only the mutant allele. Identification of this mutation and the strong signal detected in southern blot with this strain, suggest that esterases are contributing to detoxification of pyrethroid compounds, as a resistant mechanism in Mexican strains of the southern cattle tick.  相似文献   

7.
Lysosomal beta-glucuronidase shows a dual localization in mouse liver, where a significant fraction is retained in the endoplasmic reticulum (ER) by interaction with an ER-resident carboxyl esterase called egasyn. This interaction of mouse egasyn (mEg) with murine beta-glucuronidase (mGUSB) involves binding of the C-terminal 8 residues of the mGUSB to the carboxylesterase active site of the mEg. We isolated the recombinant human homologue of the mouse egasyn cDNA and found that it too binds human beta-glucuronidase (hGUSB). However, the binding appears not to involve the active site of the human egasyn (hEg) and does not involve the C-terminal 18 amino acids of hGUSB. The full-length cDNA encoding hEg was isolated from a human liver cDNA library using full-length mEg cDNA as a probe. The 1941-bp cDNA differs by only a few bases from two previously reported cDNAs for human liver carboxylesterase, allowing the anti-human carboxylesterase antiserum to be used for immunoprecipitation of human egasyn. The cDNA expressed bis-p-nitrophenyl phosphate (BPNP)-inhibitable esterase activity in COS cells. When expressed in COS cells, it is localized to the ER. The intracellular hEg coimmunoprecipitated with full-length hGUSB and with a truncated hGUSB missing the C-terminal 18-amino-acid residue when extracts of COS cells expressing both proteins were treated with anti-hGUSB antibody. It did not coimmunoprecipitate with mGUSB from extracts of coexpressing COS cells. Unlike mEg, hEg was not released from the hEg-GUSB complex with BPNP. Thus, hEg resembles mEg in that it binds hGUSB. However, it differs from mEg in that (i) it does not appear to use the esterase active site for binding since treatment with BPNP did not release hEg from hGUSB and (ii) it does not use the C terminus of GUSB for binding, since a C-terminal truncated hGUSB (the C-terminal 18 amino acids are removed) bound as well as nontruncated hGUSB. Evidence is presented that an internal segment of 51 amino acids between 228 and 279 residues contributes to binding of hGUSB by hEg.  相似文献   

8.
A novel esterase gene was isolated by functional screening of a metagenomic library prepared from an activated sludge sample. The gene (est-XG2) consists of 1,506 bp with GC content of 74.8 %, and encodes a protein of 501 amino acids with a molecular mass of 53 kDa. Sequence alignment revealed that Est-XG2 shows a maximum amino acid identity (47 %) with the carboxylesterase from Thermaerobacter marianensis DSM 12885 (YP_004101478). The catalytic triad of Est-XG2 was predicted to be Ser192-Glu313-His412 with Ser192 in a conserved pentapeptide (GXSXG), and further confirmed by site-directed mutagenesis. Phylogenetic analysis suggested Est-XG2 belongs to the bacterial lipase/esterase family VII. The recombinant Est-XG2, expressed and purified from Escherichia coli, preferred to hydrolyze short and medium length p-nitrophenyl esters with the best substrate being p-nitrophenyl acetate (K m and k cat of 0.33 mM and 36.21 s?1, respectively). The purified enzyme also had the ability to cleave sterically hindered esters of tertiary alcohols. Biochemical characterization of Est-XG2 revealed that it is a thermophilic esterase that exhibits optimum activity at pH 8.5 and 70 °C. Est-XG2 had moderate tolerance to organic solvents and surfactants. The unique properties of Est-XG2, high thermostability and stability in the presence of organic solvents, may render it a potential candidate for industrial applications.  相似文献   

9.
10.
6-Aminohexanoate-dimer hydrolase (EII), responsible for the degradation of nylon-6 industry by-products, and its analogous enzyme (EII') that has only approximately 0.5% of the specific activity toward the 6-aminohexanoate-linear dimer, are encoded on plasmid pOAD2 of Arthrobacter sp. (formerly Flavobacterium sp.) KI72. Here, we report the three-dimensional structure of Hyb-24 (a hybrid between the EII and EII' proteins; EII'-level activity) by x-ray crystallography at 1.8 A resolution and refined to an R-factor and R-free of 18.5 and 20.3%, respectively. The fold adopted by the 392-amino acid polypeptide generated a two-domain structure that is similar to the folds of the penicillin-recognizing family of serine-reactive hydrolases, especially to those of d-alanyl-d-alanine-carboxypeptidase from Streptomyces and carboxylesterase from Burkholderia. Enzyme assay using purified enzymes revealed that EII and Hyb-24 possess hydrolytic activity for carboxyl esters with short acyl chains but no detectable activity for d-alanyl-d-alanine. In addition, on the basis of the spatial location and role of amino acid residues constituting the active sites of the nylon oligomer hydrolase, carboxylesterase, d-alanyl-d-alanine-peptidase, and beta-lactamases, we conclude that the nylon oligomer hydrolase utilizes nucleophilic Ser(112) as a common active site both for nylon oligomer-hydrolytic and esterolytic activities. However, it requires at least two additional amino acid residues (Asp(181) and Asn(266)) specific for nylon oligomer-hydrolytic activity. Here, we propose that amino acid replacements in the catalytic cleft of a preexisting esterase with the beta-lactamase fold resulted in the evolution of the nylon oligomer hydrolase.  相似文献   

11.
The carboxylesterase, a 34 kDa monomeric enzyme, was purified from the thermoacidophilic archaeon Sulfolobus solfataricus P1. The optimum temperature and pH were 85 degrees C and 8.0, respectively. The enzyme showed remarkable thermostability: 41% of its activity remained after 5 days of incubation at 80 degrees C. In addition, the purified enzyme exhibited stability against denaturing agents, including various detergents, urea, and organic solvents. The enzyme has broad substrate specificity towards various PNP esters and short acyl chain triacylglycerols such as tributyrin (C4:0). Among the PNP esters tested, the best substrate was PNP-caprylate (C8) with Km and kcat values of 71 microM and 14,700 s(-1), respectively. The carboxylesterase gene consisted of 915 bp corresponding to 305 amino acid residues. We demonstrated that active recombinant S. solfataricus carboxylesterase could be expressed in Escherichia coli. The enzyme was identified as a serine esterase belonging to mammalian hormone-sensitive lipases (HSL) family and contained a catalytic triad composed of serine, histidine, and aspartic acid in the active site.  相似文献   

12.
Carboxylesterase NP of Bacillus subtilis Thai I-8, characterized in 1992 as a very enantioselective (S)-naproxen esterase, was found to show no enantiopreference towards (S)-1,2-O-isopropylideneglycerol (IPG) esters. The ybfK gene was identified by the B. subtilis genome project as an unknown gene with homology to carboxylesterase NP. The purpose of the present study was to characterize the ybfK gene product in order to determine whether this paralogue of carboxylesterase NP had an altered or enhanced stereospecificity. The ybfK gene was cloned and expressed in B. subtilis using a combination of two strong promoters in a multicopy vector. The enzyme was purified from the cytoplasm of B. subtilis by means of anion exchange and hydrophobic interaction chromatography. The purified YbfK is an enzyme of 296 amino acids and shows an apparent molecular mass of 32 kDa (SDS/PAGE). Comparison of the activities of YbfK and carboxylesterase NP towards caprylate esters of IPG revealed that YbfK produces (S)-IPG with 99.9% enantioselectivity. Therefore, we conclude that we have isolated a paralogue of carboxylesterase NP that can be used for the enantioselective production of (S)-IPG.  相似文献   

13.
The role of amino acid residues in the enzymatic activity of carboxylesterase from Arthrobacter globiformis was analyzed by diisopropyl fluorophosphate (DFP) labeling and site-directed mutagenesis. The electrospray ionization mass spectrometric (ESI-MS) analysis of the esterase, covalently labeled by DFP, showed stoichiometric incorporation of the inhibitor into the enzyme. The further comparison of endopeptidase-digested fragments between native and DFP-labeled esterase by fast atom bombardment mass spectrometric (FAB-MS) analysis as well as site-directed mutagenesis indicated that Ser59 in the consensus sequence Ser-X-X-Lys, which is conserved exclusively in penicillin-binding proteins and some esterases, served as a catalytic nucleophile. In addition, the results obtained from analysis of the mutants at position 62 suggested the importance of the basic amino acid side chain at this position, and suggested the significance of this residue acting directly as a general base rather than its involvement in the maintenance of the optimum hydrogen-bonding network at the active site.  相似文献   

14.
Esterase D-1 (carboxylesterase; carboxylic-ester hydrolase, EC 3.1.1.1) was purified to homogeneity and esterase D-2 was highly purified from human erythrocytes. A new procedure, which included fractionation with ammonium sulfate, hydrophobic chromatography on a Toyopearl HW-65 column, and chromatographies on CM-cellulose and hydroxylapatite columns, was developed. Esterases D-1 and D-2 were purified about 9000- and 5600-fold over the precipitates with 65% saturated ammonium sulfate in 14 and 35% yields, respectively. The minimum molecular weights of esterases D-1 and D-2 were estimated to be 35,000 based on the mobilities on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with or without 2-mercaptoethanol. The molecular weights of both enzymes were calculated to be 76,000 by gel filtration. These findings indicated that these two enzymes consisted of dimer without an intermolecular disulfide bond(s). Amino acid analysis of esterase D-1 showed that the total residues of aspartic acid plus asparagine, glutamic acid plus glutamine, glycine, and leucine represent about 40% of the total amino acid residues. Esterases D-1 and D-2 have almost identical biochemical characteristics, including Km values, sensitivities to sulfhydryl reagents, and molecular weights. Esterase D-2 cross-reacted with a rabbit antibody raised against the purified esterase D-1.  相似文献   

15.
Site-directed mutagenesis is used to identify amino acid residues that dictate reported differences in substrate specificity between rat hepatic neutral cytosolic cholesteryl ester hydrolase (hncCEH) and rat lung carboxylesterase (LCE), proteins differing by only 4 residues in their primary sequences. Beginning with LCE, the substitution Met(423) --> Ile(423) alone or in combination with other mutations increased activity with p-nitrophenylcaprylate (PNPC) relative to more hydrophilic p-nitrophenylacetate (PNPA), typical of hncCEH. The substitution Thr(444) --> Met(444) was necessary but not sufficient for expression of cholesteryl esterase activity in COS-7 cells. The substitution Asn(506) --> Ser(506), creating a potential phosphorylation site, uniformly increased activity with both PNPA and PNPC, was necessary but not sufficient for expression of cholesteryl esterase activity and conferred susceptibility to activation by cAMP-dependent protein kinase, a property of hncCEH. The 3 mutations in combination were necessary and sufficient for expression of cholesteryl esterase activity by the mutated LCE. The substitution Gln(186) --> Arg(186) selectively reduced esterase activity with PNPA and PNPC but was not required for cholesteryl esterase activity. Homology modeling from x-ray structures of acetylcholinesterases is used to propose three-dimensional models for hncCEH and LCE that provide insight into the effects of these mutations on substrate specificity.  相似文献   

16.
Formation of fatty acid ethyl esters (FAEEs, catalyzed by FAEE synthase) has been implicated in the pathogenesis of chronic pancreatitis. In previous studies, we demonstrated that FAEE synthase, purified from rat liver microsomes, is identical to rat liver carboxylesterase (pI 6.1), and structurally and functionally different than that from pancreas. In this study, we purified and characterized rat pancreatic microsomal FAEE synthase, and determined its relationship with rat pancreatic cholesterol esterase (ChE). Since most of the serine esterases express p-nitrophenyl acetate (PNPA)-hydrolyzing activity as well as synthetic activity to form fatty acid esters or amides with a wide spectrum of alcohols and amines, respectively, we used PNPA-hydrolyzing activity to monitor the purification of FAEE synthase during various chromatographic purification steps. Synthesizing activity towards FAEEs, fatty acid methyl esters, and fatty acid anilides was measured only in the pooled fractions. At each step of purification (ammonium sulfate saturation, Q Sepharose XL, and heparin-agarose column chromatographies, and high performance liquid chromatography (anion exchange and gel filtration)) synthetic as well as hydrolytic activities copurified. Using ethanol, methanol, or aniline as substrates, the ester or anilide synthesizing activity of the purified protein was found to be 8709, 13000, and 2201 nmol/h/mg protein, respectively. The purified protein displayed a single band with an estimated molecular mass of approximately 68 kD upon SDS-PAGE under reduced denaturing conditions, cross-reacted with antisera against rat pancreatic ChE and showed 100% N-terminal sequence homology of the first 15 amino acids to that of rat pancreatic ChE. These results suggest that the purified protein has broad substrate specificity towards the conjugation of endogenous long chain fatty acids with substrates having hydroxyl and amino groups and is identical to ChE.  相似文献   

17.
A carboxylesterase that is responsible for conversion of 1,4-butanediol diacrylate (BDA) to 4-hydroxybutyl acrylate (4HBA) was found in Brevibacterium lines IFO 12171, and purified to homogeneity. The purified enzyme was active toward a variety of diesters of ethylene glycol, 1,4-butanediol, and 1,6-hexanediol. The K(m) and kcat of the enzyme for BDA were 3.04 mM and 203,000 s-1, respectively. The reaction with the purified enzyme gave 98 mM 4HBA from 100 mM BDA for 60 min. The enzyme gene was cloned from the chromosomal DNA of the bacterium. The open reading frame encoding the enzyme was 1176 bp long, corresponding to a protein of 393 amino acid residues (molecular mass = 42,569 Da). The deduced amino acid sequence contained the tetra peptide motif sequence, STTK, and the serine residue was confirmed to be the catalytic center of BDA esterase by site-directed mutagenesis for several amino acid residues. The gene was expressed in Escherichia coli under the control of the lac promoter, and the gene product (a fusion protein with 6 amino acid residues from beta-galactosidase) showed the same catalytic properties as the enzyme from the parent strain.  相似文献   

18.
Physical and chemical characterization of a horse serum carboxylesterase   总被引:3,自引:0,他引:3  
The serine carboxylesterase from horse serum was characterized by amino acid composition, peptide mapping, molecular and subunit weights, and sequencing of the amino acids around the essential serine residue at the active site. A protocol was developed for using reversed-phase high-performance liquid chromatography as the final step to obtain homogeneous preparations of horse serum carboxylesterase. Amounts sufficient for determining the amino acid composition and for peptide maps were obtained from a partially purified starting material which contained approximately 55% carboxylesterase. The amino acid composition, like the subunit weight (70,800 +/- 1400), was similar to the corresponding values reported for other serine carboxylesterases. However, the amino acid sequence of the tryptic digest fragment containing the essential nucleophilic seryl residue differed significantly from the corresponding sequences of other mammalian serine carboxylesterases.  相似文献   

19.
A highly enantioselective l-menthyl acetate esterase was purified to homogeneity from Burkholderia cepacia ATCC 25416, with a recovery of 4.8% and a fold purification of 22.7. The molecular weight of the esterase was found to be 37 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The N-terminal amino acid sequence was “MGARTDA”, and there was no homology in contrast to other Burkholderia sp. esterases. This enzyme preferentially hydrolyzed short-chain fatty acid esters of menthol with high stereospecificity and high hydrolytic activity, while long-chain l-menthyl esters were poor substrates. Considered its substrate specificity and N-terminal sequence, this esterase was concluded as a new enzyme belonging to the carboxylesterase group (EC 3.1.1.1) of esterase family. The optimum temperature and pH for enzyme activity using racemic menthyl acetate as substrate were 30 °C and 7.0, respectively. The esterase was more stable in the pH range of 7.0–9.0 and temperature range of 30–40 °C. Hydrolytic activity was enhanced by Ca2+, K+ and Mg2+, but completely inhibited by Hg2+, Cu2+, ionic detergents and phenylmethylsulfonyl fluoride (PMSF) at 0.01 M concentration.  相似文献   

20.
A strain of Mexican Boophilus microplus (Cz) collected near Coatzacoalcos, Veracruz, Mexico, exhibits a moderate, but significant, level of permethrin resistance. Unlike other highly permethrin resistant strains, the Cz strain does not have a mutation within the sodium channel gene that results in target-site insensitivity. However, the Cz strain possesses a substantial increase in general and permethrin esterase activity relative to highly permethrin resistant and control strains suggesting the involvement of a metabolic esterase(s) in the expression of permethrin resistance. We report the isolation of a 62.8 kDa protein from Cz strain larvae that we think is the esterase previously reported as Cz EST9. In addition, internal amino acid sequence data obtained from the 62.8 kDa protein suggest that it is the gene product of a previously reported B. microplus carboxylesterase cDNA. We propose that the 62.8 kDa protein (Cz EST9) has permethrin hydrolytic activity and as a result plays an important role in Cz strain resistance to permethrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号