首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R W Noble  A DeYoung  D L Rousseau 《Biochemistry》1989,28(12):5293-5297
The spin equilibria of several derivatives of human methemoglobin were probed by resonance Raman scattering. The intensity of lines in the Raman spectrum gives a measure of the high-spin (S = 5/2) to low-spin (S = 1/2) ratio which agrees well with the spin equilibria determined from direct magnetic susceptibility measurements. The addition of bezafibrate (BZF) to methemoglobin in the absence of organic phosphate, IHP, has very little effect on the spin equilibrium, whereas in the presence of IHP it augments the change in spin significantly. When both IHP and BZF are added to the mixed-spin derivatives (H2O, SCN-, OCN-, and NO2-) of human methemoglobin, the spin equilibrium is shifted toward higher spin by about 700 cal/mol, similar to the spin change detected in derivatives of carp methemoglobin upon addition of IHP alone. These data support a general mechanism for the allosteric transition in which a constant fraction of the cooperative energy (approximately 20%) is detected at the heme of the ferric ligand-bound forms.  相似文献   

2.
The properties of human methemoglobin have been investigated under a wide variety of conditions to determine its conformation and to test for evidence of the T state conformation which has been proposed by Perutz to exist in the presence of high spin ligands and inositol hexaphosphate (IHP). Subunit dissociation was measured as a criterion for the T state since marked differences in the tetramer-dimer equilibrium exist for oxyhemoglobin (R state) and deoxyhemoglobin (T state). In the absence of IHP, complexes of methemoglobin with both high spin ligands (water, fluoride) or low spin ligands (azide, cyanide) show extensive dissociation in 2,2-bis(hydroxymethyl)-2,2',2"-nitriloethanol buffers, pH 6, 0.1 M NaCl, with values of the tetramer-dimer dissociation constant (K4,2) near 10-5 M. The addition of IHP lowers K4,2 to a value near 10-5 M for all forms of methemoglobin. Combination of IHP with methemoglobin promotes a conformational change, but the change is apparently independence of spin state. The conformation acquired in the presence of IHP is not identical with the T state (K4,2 similar to 10-12 M) and can also occur with hemoglobin in the ferrous form, as revealed by a substantial reduction in K4,2 for CO-hemoglobin upon addition of IHP. Subunit dissociation has also been measured using the haptoglobin reaction, since haptoglobin binds only to hemoglobin dimers. The haptoglobin experiments give results that are qualitatively in agreement with the conclusions reached by ultracentrifuge measurements. Similar results are also obtained by estimating the degree of dissociation on the basis of the material which aggregates following mixing with dithionite. The effect of IHP on azide-binding kinetics with methemoglobin has also been examined. Changes in reactivity is observed upon addition of IHP, but the principal effect is observed upon addition of IHP, but the principal effect is an enhancement of the rate of reaction of the beta chains. Changes in the reactivity of the beta93 sulfhydryl group of methemoglobin also accompany addition of IHP, but in a manner which is largely independent of the spin state of the iron. Similar changes are again found with CO-hemoglobin upon addition of IHP. The rate of binding of bromthymol blue also shows some changes upon addition of IHP, but the changes are more pronounced for deoxyhemoglobin than for methemoglobin. Since the results obtained did not appear to indicate a significant role for spin state in the changes observed, additional studies were undertaken using EPR spectroscopy.  相似文献   

3.
The energetics of signal propagation between different functional domains (i.e. the binding sites for O2, inositol hexakisphospate (IHP), and bezafibrate (BZF)) of human HbA0 was analyzed at different heme ligation states and through the use of a stable, partially heme ligated intermediate. Present data allow three main conclusions to be drawn, and namely: (i) IHP and BZF enhance each others binding as the oxygenation proceeds, the coupling free energy going from close to zero in the deoxy state to -3.4 kJ/mol in the oxygenated form; (ii) the simultaneous presence of IHP and BZF stabilizes the hemoglobin T quaternary structure at very low O2 pressures, but as oxygenation proceeds it does not impair the transition toward the R structure, which indeed occurs also under these conditions; (iii) under room air pressure (i.e. pO2 = 150 torr), IHP and BZF together induce the formation of an asymmetric dioxygenated hemoglobin tetramer, whose features appear reminiscent of those suggested for transition state species (i.e. T- and R-like tertiary conformation(s) within a quaternary R-like structure).  相似文献   

4.
Studies of high spin ferrous and ferric derivatives led us to conclude that in the quaternary R structure the state of the hemes is similar to that in the free alpha and beta subunits, but in the T structure a tension acts on the hemes which tries to pull the iron and the proximal histidine further from the plane of the porphyrin. We have now studied the effect of inositol hexaphosphate (IHP) on the three low spin ferrous compounds of hemoglobin with O2, CO, and NO. IHP failed to switch the quaternary structure of carbonmonoxy- and oxyhemoglobin A to the T state, but merely caused a transition to an as yet undefined modification of the R structure. IHP is known to cause a switch to the T structure in hemoglobin Kansas. We have found that this switch induces red shifts of the visible alpha and beta absorption bands and the appearance of a shoulder on the red side of the alpha band; these changes are very weak in carbonmonoxy- and slightly stronger in oxyhemoglobin Kansas. As already noted by previous authors, addition of IHP to nitrosylhemoglobin A induces all the changes in uv absorption and CD spectra, sulfhydryl reactivities, and exchangeable proton resonances normally associated with the R leads to T transition, and is accompanied by large changes in the Soret and visible absorption bands. Experiments with nitrosyl hybrids show that these changes in absorption are caused predominantly by the hemes in the alpha subunits. In the accompanying paper Maxwell and Caughey (J. C. Maxwell and W. S. Caughey (1976), Biochemistry, following paper in this issue) report that the NO in nitrosylhemoglobin without IHP gives a single ir stretching frequency characteristic for six-coordinated nitrosyl hemes; addition of IHP causes the appearance of a second ir band, of intensity equal to that of the first, which is characteristic for five-coordinated nitrosyl hemes. Taken together, these results show that the R leads to T transition causes either a rupture or at least a very dramatic stretching of the bond from the iron to the heme-linked histidine, such that an equilibrium is set up between five- and six-coordinated hemes, biased toward five-coordinated hemes in the alpha and six-coordinated ones in the beta subunits. The reason why IHP can switch nitrosyl-, but not carbonmonoxy- or oxyhemoglobin A, from the R to the T structure is to be found in the weakening of the iron-histidine bond by the unpaired NO electron and by the very short Fe-NO bond length.  相似文献   

5.
The effects of protein conformation on the spin-state equilibria of several derivatives of carp hemoglobin have been examined. This has been done by measuring the pH dependence of the paramagnetic susceptibilities of these derivatives in the presence and absence of inositol hexakisphosphate, P6-inositol. In all cases the addition of P6-inositol at low pH and the lowering of the pH in the presence of P6-inositol shift the spin-state equilibrium in favor of the high-spin electronic configuration. The P6-inositol and pH dependence of these magnetic properties parallels the pH and P6-inositol dependence of the conformational state of the hemoglobin as determined in earlier studies and further supports a thermodynamic linkage between the electronic state of the iron atoms and the quaternary structure of the hemoglobin molecule.  相似文献   

6.
The cooperative effect of inositol hexakisphosphate (IHP), bezafibrate (BZF), and clofibric acid (CFA) on the spectroscopic (EPR and absorbance) properties of the nitric oxide derivative of ferrous human hemoglobin (HbNO) has been investigated quantitatively. In the presence of IHP, BZF, and CFA, the X-band EPR spectra and the absorption spectra in the Soret region of HbNO display the same basic characteristics described in the presence of 2,3-diphosphoglycerate (2,3-DPG), which have been attributed to a low affinity conformation of the tetramer. Addition to HbNO of two allosteric effectors together (such as IHP and BZF, or IHP and CFA) further stabilizes the low affinity conformation of the ligated hemoprotein (i.e., HbNO). Moreover, in the presence of saturating amounts of IHP, the affinity of BZF and CFA for HbNO increases by about fifteenfold. Likewise, in the presence of both IHP and BZF, as well as in IHP and CFA, the oxygen affinity for ferrous human hemoglobin (Hb) is reduced with respect to that observed in the presence of IHP, BZF, or CFA alone, which in turn is lower than that reported in the absence of any allosteric effector. All the data were obtained at pH 7.0 (in 1.0 × 10−1 M N-[2-hydroxyethyl]piperazine-N′-[2-ethanesulfonic acid]/NaOH buffer system plus 1.0 × 10−1 M NaCl), as well as at 100 K and/or 20°C. The results here reported represent clearcut evidence for the cooperative and specific (i.e., functionally relevant) binding of IHP, BZF, and CFA to Hb.  相似文献   

7.
The relative contributions of the allosteric and affinity factors toward the change in p50 have been calculated for a series of effectors of hemoglobin (Hb). Shifts in the ligand affinity of deoxy Hb and the values for 50% ligand saturation (p50) were obtained from oxygen equilibrium data. Because the high-affinity parameters (liganded conformation) are poorly determined from the equilibrium curves, they were determined from kinetic measurements of the association and dissociation rates with CO as ligand. The CO on-rates were obtained by flash photolysis measurements. The off-rates were determined from the rate of oxidation of HbCO by ferricyanide, or by replacement of CO with NO. The partition function of fully liganded hemoglobin for oxygen and CO is only slightly changed by the effectors. Measurements were made in the presence of the effectors 2,3-diphosphoglycerate (DPG), inositol hexakisphosphate (IHP), bezafibrate (Bzf), and two recently synthesized derivatives of Bzf (LR16 and L35). Values of p50 change by over a factor of 60; the on-rates decrease by nearly a factor of 8, with little change in the off-rates for the liganded conformation. The data indicate that both allosteric and affinity parameters are changed by the effectors; the changes in ligand affinity represent the larger contribution toward shifts in p50.  相似文献   

8.
Magnetic circular dichroism (MCD) spectroscopy has been used to explore the connection between optical spectra and the high spin population of several hemoglobins under various conditions. It is found that the effectiveness of IHP in inducing spectral changes can be markedly affected by solvent. For example, the IHP-induced spectral changes in the visible region for nitritomethemoglobin-A in mixed buffer solvent systems (glycerol or polyethylene glycol (PEG), mw 190–210) are more than double those observed in aqueous buffers. We estimate that IHP induces a mix of R/T forms in bis-tris phosphate buffers, for NO2?metHb that is only about 50% T form. While PEG and glycerol both lead to enhanced IHP-induced spectral differences, they behave differently in two aspects. PEG shifts the visible MCD and absorption spectra of F?metHb-A. supposedly already biased towards the T form by ligand, in the same direction that IHP does. PEG also maximizes the spin state changes with IHP for three R form hemoglobins and N3?metHb-A, and so appears to stabilize the T form in all cases. Glycerol does not. In addition, the apparent binding constant for NO2? to H2OmetHb-A differs between these two solvents. Comparison of the data from several hemoglobins leads to the conclusion that the changes in spin state distributions induced by IHP correlate well with quarternary structure for a given hemoglobin. An analogous correlation amongst various proteins between initial spin state distribution (IHP) absent) and quarternary structure is not found.  相似文献   

9.
The mutations in hemoglobin Nancy beta145(HC2) Tyr leads to Asp and hemoglobin Cochin-Portal-Royal beta146(HC3) His leads to Arg involve residues which are thought to be essential for the full expression of allosteric action in hemoglobin. Relative to the structure of deoxyhemoglobin A, our x-ray study of deoxyhemoglobin Nancy shows severe disordering of the beta chain COOH-terminal tetrapeptide and a possible movement of the beta heme iron atom toward the plane of the porphyrin ring. These structural perturbations result in a high oxygen affinity, reduced Bohr effect, and lack of cooperatively in hemoglobin Nancy. In the presence of inositol hexaphosphate (IHP), the Hill constant for hemoglobin Nancy increases from 1.1 to 2.0. But relative to its action on hemoglobin A, IHP is much less effective in reducing the oxygen affinity and in increasing the Bohr effect of hemoglobin Nancy. This indicates that IHP does not influence the R in equilibrium T equilibrium as much in hemoglobin Nancy as in hemoglobin A, and this probably is due to the disordering of His 143beta which is known to be part of the IHP binding site. IHP is also known to produce large changes in the absorption spectrum of methemoglobin A, but we find that it has no effect on the spectrum of methemoglobin Nancy. In contrast to the large structural changes in deoxyhemoglobin Nancy, the structure of deoxyhemoglobin Cochin-Port-Royal differs from deoxyhemoglobin A only in the position of the side chain of residue 146beta. The intrasubunit salt bridge between His 146beta and Asp 94beta in deoxyhemoglobin A is lost in deoxyhemoglobin Cochin-Portal-Royal with the guanidinium ion of Arg 146beta floating freely in solution. This small difference in structure results in a reduced Bohr effect, but does not cause a change in the Hill coefficient, the response to 2,3-diphosphoglycerate, or the oxygen affinity at physiological pH.  相似文献   

10.
The hyperfine-shifted proton nuclear magnetic resonance (NMR) spectra of the low-spin complexes of human adult methemoglobin were found to be much altered by the addition of inositol hexaphosphate (IHP). The stoichiometry and pH-dependence of IHP binding, and the spin equilibrium of azide methemoglobin are parallel to those of high-spin human methemoglobin and of carp methemoglobin, both of which are proposed to be switched from the R to T states with IHP. The present NMR results show that IHP affects the structure of human methemoglobin regardless of the spin state of the heme iron, suggesting that there is no correspondence between quaternary structure and the spin state of ferric heme iron.  相似文献   

11.
We have applied the residual dipolar coupling (RDC) method to investigate the solution quaternary structures of (2)H- and (15)N-labeled human normal adult recombinant hemoglobin (rHb A) and a low-oxygen-affinity mutant recombinant hemoglobin, rHb(alpha96Val-->Trp), both in the carbonmonoxy form, in the absence and presence of an allosteric effector, inositol hexaphosphate (IHP), using a stretched polyacrylamide gel as the alignment medium. Our recent RDC results [Lukin, J. A., Kontaxis, G., Simplaceanu, V., Yuan, Y., Bax, A., and Ho, C. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 517-520] indicate that the quaternary structure of HbCO A in solution is a dynamic ensemble between two previously determined crystal structures, R (crystals grown under high-salt conditions) and R2 (crystals grown under low-salt conditions). On the basis of a comparison of the geometric coordinates of the T, R, and R2 structures, it has been suggested that the oxygenation of Hb A follows the transition pathway from T to R and then to R2, with R being the intermediate structure [Srinivasan, R., and Rose, G. D. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 11113-11117]. The results presented here suggest that IHP can shift the solution quaternary structure of HbCO A slightly toward the R structure. The solution quaternary structure of rHbCO(alpha96Val-->Trp) in the absence of IHP is similar to that of HbCO A in the presence of IHP, consistent with rHbCO(alpha96Val-->Trp) having an affinity for oxygen lower than that of Hb A. Moreover, IHP has a much stronger effect in shifting the solution quaternary structure of rHbCO(alpha96Val-->Trp) toward the R structure and toward the T structure, consistent with IHP causing a more pronounced decrease in its oxygen affinity. The results presented in this work, as well as other results recently reported in the literature, clearly indicate that there are multiple quaternary structures for the ligated form of hemoglobin. These results also provide new insights regarding the roles of allosteric effectors in regulating the structure and function of hemoglobin. The classical two-state/two-structure allosteric mechanism for the cooperative oxygenation of hemoglobin cannot account for the structural and functional properties of this protein and needs to be revised.  相似文献   

12.
The effect of bezafibrate (BZF) and clofibric acid (CFA) on the spectroscopic (EPR and absorbance) properties of the nitric oxide derivative of ferrous human hemoglobin (HbNO) has been investigated quantitatively. In the presence of BZF and CFA, the X-band EPR spectra and the absorption spectra in the Soret region of HbNO display the same basic characteristics described in the presence of inositol hexakisphosphate (IHP) and 2, 3-diphosphoglycerate (2,3-DPG). Next, in the presence of these allosteric effectors, the oxygen affinity for ferrous human hemoglobin (Hb) is reduced. These findings indicate that BZF and CFA, as already reported for IHP and 2, 3-DPG, induce the stabilization of a low affinity conformation of the ligated hemoprotein (i.e., HbNO). Values of the apparent equilibrium constant for BZF and CFA binding to HbNO (K) are 1.5(+/- 0.2) x 10(-2) M and 2.8(+/- 0.3) x 10(-2) M, respectively, at pH 7.0 (in 0.1 M N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid]/NaOH buffer system plus 0.1 M NaCl) and 20 degrees C. The results reported here represent clearcut evidence for BZF and CFA specific (i.e., functionally relevant) binding to a ligated derivative of Hb (i.e., HbNO).  相似文献   

13.
The effect of inositol hexakisphosphate (IHP) on the spectroscopic (EPR and absorbance) properties of the nitric oxide derivative of ferrous horse and bovine hemoglobin (Hb) has been investigated. In the absence of IHP, the nitric oxide derivative of ferrous horse Hb shows spectroscopic properties similar to those of the corresponding derivative of ferrous human Hb that are generally taken as typical of the high affinity state of tetrametric hemoproteins. Similar to human Hb, the addition of IHP to the nitric oxide derivative of ferrous horse Hb induces a transition toward a species characterized by spectral properties typical of the low affinity state of hemoglobins. Nevertheless, the equilibrium constant for IHP binding to the nitric oxide derivative of ferrous horse Hb (= 1.5 x 10(2) M-1) is much lower than that reported for the association of the polyphosphate to the same derivative of ferrous human Hb (greater than 3 x 10(5) M-1). Conversely, the spectroscopic properties of the nitric oxide derivative of ferrous bovine Hb are characteristic of the low affinity state of tetrameric hemoproteins, both in the absence and in the presence of IHP. These results, taken together with the behavior of the nitric oxide derivative of ferrous human Hb, provide further evidence for the peculiar oxygen binding properties of horse and bovine Hb.  相似文献   

14.
Resonance Raman, optical absorption, and circular dichroism spectroscopic techniques have been used to examine the effect of the addition of inositol hexaphosphate (IHP) to a series of carp and human methemoglobin derivatives. Markers of spin equilibrium in the high-frequency region (1450-1650 cm-1) of the resonance Raman spectrum yield high/low-spin ratios consistent with direct magnetic susceptibility measurements. Changes in the low-frequency region (100-600 cm-1) of the resonance Raman spectrum appear to correlate with the quaternary structure transition. Changes in the ultraviolet absorption spectra and the circular dichroism spectra also appear to be related to the quaternary structure change. By using the resonance Raman spin markers, we find that those derivatives of carp methemoglobin which are in spin equilibrium have a larger ratio of high-spin to low-spin populations than the corresponding derivatives of human methemoglobin. Upon the addition of IHP to the methemoglobins the spin equilibrium is shifted toward a larger high-spin population. This change in equilibrium is larger for the carp protein than for the human protein. We obtain an IHP-induced change in the free energy difference between the high-spin and low-spin states of 300 cal/mol for those human methemoglobins in which a quaternary structure change occurs and 600 cal/mol for carp methemoglobins. Our data are consistent with a quaternary structure change induced by IHP in all the carp methemoglobins studied (F-, H2O, SCN-, NO2-, N3-, and CN-) and in the F-, H2O, and SCN- derivatives of the human protein but not in the NO2-, N3-, and CN- derivatives. The Fe-CN stretching mode has been identified by isotopic substitution and found to be unchanged in frequency in carp CN- metHb when the quaternary structure is changed. On the basis of our results we conclude that the protein forces at the heme due to the addition of IHP do not significantly affect the position of the iron atom with respect to the heme plane. Rather, the changes in spin equilibrium may be caused by protein-induced changes in the orientation of the proximal histidine or tertiary structure changes in the heme pocket which affect the porphyrin macrocycle. Either of these changes, or a combination thereof, leads to changes in the iron d orbital energies and concomitant changes in the spin equilibrium.  相似文献   

15.
 The X-band EPR spectroscopic features of the ferrous nitrosylated derivative of α(Fe)2β(Co)2 and of α(Co)2β(Fe)2 metal hybrids of human hemoglobin (Hb) have been investigated at pH 7.0 and analyzed in parallel with those of the native nitrosylated tetramer (HbNO). The effect of 2,3-biphosphoglycerate (BPG), inositol hexakisphosphate (IHP) and bezafibrate (BZF) has been investigated in order to understand the perturbations induced on α and β subunits in the tetramer by the binding of allosteric effectors. A large perturbation is observed in both subunits upon BZF binding, while in the case of IHP only α-chains are affected; on the other hand, BPG leaves both chains essentially unperturbed. Thus, different binding modes of allosteric effectors to HbNO may occur, and the simultaneous addition of two effector molecules, namely BPG and BZF or IHP and BZF to HbNO, brings about different alterations of the X-band EPR spectroscopic properties. This behavior indicates that the intramolecular communication pathway(s) between the heme and the binding pockets of the heterotropic ligands (i.e., IHP and BZF, or BPG and BZF) are different, leading to distinct structural perturbations. Received: 19 September 1997 / Accepted: 16 December 1997  相似文献   

16.
The equilibria of oxygen binding to and kinetics of CO combination with the symmetrical iron-zinc hybrids of a series of variants of human adult hemoglobin A have been measured at pH 7 in the presence of inositol hexaphosphate (IHP). In addition, the kinetics of CO combination have also been measured in the absence of IHP. The hybrids have the heme groups of either the alpha or the beta subunits replaced by zinc protoporphyrin IX, which is unable to bind a ligand and is a good model for permanently deoxygenated heme. The variants examined involve residues located in the alpha1beta2 interface of the hemoglobin tetramer. Alterations of residues located in the hinge region of the interface are found to affect the properties of both the alpha and the beta subunits of the protein. In contrast, alterations of residues in the switch region of the interface have substantial effects only on the mutant subunit and are poorly communicated to the normal partner subunit. When the logarithms of the rate constants for the combination of the first CO molecule with a single subunit in the presence of IHP are analyzed as functions of the logarithms of the dissociation equilibrium constants for the binding of the first oxygen under the same conditions, a linear relationship is found. The relationship is somewhat different for the alpha and beta subunits, consistent with the well-known differences in the geometries of their ligand binding sites.  相似文献   

17.
In the presence of inositol hexaphosphate (IHP), the rate of hemoglobin oxidation by nitrite was much inhibited; however, that of the hemoglobin oxidation by ferricyanide was much accelerated. The difference in the reaction mode was discussed in relation to the interaction of hemoglobin with IHP. The dissociation constant of IHP to oxyhemoglobin was estimated from the rate of the hemoglobin oxidation by ferricyanide in different concentrations of IHP under oxygen saturated conditions.  相似文献   

18.
S Neya  N Funasaki 《Biochemistry》1986,25(6):1221-1226
The hyperfine-shifted proton NMR spectra of human azidomethemoglobin were examined at 300 MHz in the 2-60 degree C range. From analysis of the temperature-dependent heme methyl shifts, the thermal spin-state equilibria of the alpha and beta subunits were independently analyzed in the intact tetramer. The thermodynamic values of the spin equilibrium of the alpha and beta subunits were comparable, suggesting that the spin equilibrium properties of the constituent subunits are similar to each other. Examination of the azidomethemoglobins reconstituted with deutero- or mesohemin further shows that the alpha and beta subunit difference is still small in these hemoglobins probably due to the smallness of the steric and electronic difference of the heme 2,4-substituents of the examined porphyrins. The similarity of the spin equilibrium profiles of the subunits indicates that the strain imposed from the globin to the heme iron is of comparable magnitude for the alpha and beta subunits within the azidomethemoglobins.  相似文献   

19.
Bezafibrate, an antilipidemic drug, is known as a potent allosteric effector of hemoglobin. The previously proposed mechanism for the allosteric potency of this drug was that it stabilizes and constrains the T-state of hemoglobin by specifically binding to the large central cavity of the T-state. Here we report a new allosteric binding site of fully liganded R-state hemoglobin for this drug. The high resolution crystal structure of horse carbonmonoxyhemoglobin in complex with bezafibrate reveals that the bezafibrate molecule lies near the surface of the E-helix of each alpha subunit and the complex maintains the quaternary structure of the R-state. Binding is caused by the close fit of bezafibrate into the binding pocket, which is composed of some hydrophobic residues and the heme edge, suggesting the importance of hydrophobic interactions. Upon binding of bezafibrate, the distance between Fe and the N epsilon(2) of distal His E7(alpha 58) is shortened by 0.22 A in the alpha subunit, whereas no significant structural changes are transmitted to the beta subunit. Oxygen equilibrium studies of R-state-locked hemoglobin with bezafibrate in a wet porous sol-gel indicate that bezafibrate selectively lowers the oxygen affinity of one type of subunit within the R-state, consistent with the structural data. These results disclose a new allosteric mechanism of bezafibrate and offer the first demonstration of how the allosteric effector interacts with R-state hemoglobin.  相似文献   

20.
Precise oxygen equilibrium curves of human adult hemoglobin were determined by the automatic recording method at several temperatures in the presence and absence of 2,3-diphosphoglycerate (DPG) or inositol hexaphosphate (IHP) with 0.05 M 2,2-bis(hydroxymethyl)-2,2',2'-nitrolotriethanol (bis-tris) buffers (pH 7.4) containing 0.1 M Cl-. The equilibrium data were analyzed according to the Adair scheme, and the heats, deltaHi (i = 1,2,3,4) and the entropy changes, deltaSi (i = 1,2,3,4), for the individual oxygenation steps were obtained. The shape of the equilibrium curve varies on temperature changes whether DPG or IHP is present or absent. In consequence, the deltaHi value depends on i and on the presence of DPG and IHP. Behavior of deltaSi is similar to that of deltaHi. The similar behavior of deltaHi and deltaSi resulted in a compensation phenomenon. The contribution of T cdeltaSi to the free energy change is compensated by the contribution of deltaHi at the first three oxygenation steps but not at the fourth step, and for i = 1,2, and 3 changes of T cdeltaSi value upon the addition of DPG and IHP are compensated by accompanied changes of deltaHi value, where T c (= 260 K) is the compensation temperature. A major part of both the enthalpy-entropy compensation and nonuniformity of deltaHi and deltaSi appears to be attributable to contributions of the oxygen-linked binding of Cl-, DPG and IHP, by hemoglobin. The present results do not necessarily support the earlier idea of Wyman that the cooperative oxygenbinding is essentially an entropy effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号