首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oysters are ecosystem engineers in marine ecosystems, but the functions of oyster shell deposits in intertidal salt marshes are not well understood. The annual plant Suaeda linearis is associated with oyster shell deposits in Georgia salt marshes. We hypothesized that oyster shell deposits promoted the distribution of Suaeda linearis by engineering soil conditions unfavorable to dominant salt marsh plants of the region (the shrub Borrichia frutescens, the rush Juncus roemerianus, and the grass Spartina alterniflora). We tested this hypothesis using common garden pot experiments and field transplant experiments. Suaeda linearis thrived in Borrichia frutescens stands in the absence of neighbors, but was suppressed by Borrichia frutescens in the with-neighbor treatment, suggesting that Suaeda linearis was excluded from Borrichia frutescens stands by interspecific competition. Suaeda linearis plants all died in Juncus roemerianus and Spartina alterniflora stands, regardless of neighbor treatments, indicating that Suaeda linearis is excluded from these habitats by physical stress (likely water-logging). In contrast, Borrichia frutescens, Juncus roemerianus, and Spartina alterniflora all performed poorly in Suaeda linearis stands regardless of neighbor treatments, probably due to physical stresses such as low soil water content and low organic matter content. Thus, oyster shell deposits play an important ecosystem engineering role in influencing salt marsh plant communities by providing a unique niche for Suaeda linearis, which otherwise would be rare or absent in salt marshes in the southeastern US. Since the success of Suaeda linearis is linked to the success of oysters, efforts to protect and restore oyster reefs may also benefit salt marsh plant communities.  相似文献   

2.
Plant zonation is one of the most conspicuous ecological features of salt marshes worldwide. In this work we used a combination of field transplant and greenhouse experiments to evaluate the importance of interspecific interactions and physical stress in the determination of the major plant zonation patterns in Central Patagonian salt marshes. There, Spartina alterniflora dominates the low marsh, and Sarcocornia perennis the high marsh. We addressed two questions: (i) What prevents Spartina alterniflora from colonizing the Sarcocornia perennis‐dominated high marsh zone? and (ii) What prevents Sarcocornia perennis from colonizing the Spartina alterniflora‐dominated low marsh zone? Our experimental transplants combined with neighbour exclusion treatments showed that the presence of Sarcocornia perennis negatively affects Spartina alterniflora, preventing it from surviving and/or spreading. Complementary field transplant and greenhouse experiments showed that Sarcocornia perennis did not survive the frequent tidal submersion by approximately 1.5 m of turbid seawater in the Spartina alterniflora zone, but its survival was independent of the presence of Spartina neighbours, and of the strong soil anoxia as well. Our results suggest that Spartina alterniflora is excluded by Sarcocornia perennis towards the low marsh, where frequent and prolonged submersion limit the survival of the latter. We provide and discuss key baseline information to facilitate the future design of ecophysiological experiments designed to accurately identify the exact mechanisms acting in every situation.  相似文献   

3.
Summary Tidal flooding is widely believed to be an important determinant of marsh plant distributions but has rarely been tested in the field. In New England the marsh elder Iva frutescens often dominates the terrestrial border of salt marshes and we examined its flood tolerance and distribution patterns. Marsh elders only occur at elevations where their roots are not subject to prolonged water table flooding. Consequently they are found on the terrestrial border of marshes and at lower elevations associated with drainage ditches and locally elevated surfaces. Marsh elders transplanted to elevations lower than they normally occur died within a year with or without neighbors and greenhouse tests revealed that I. frutescens is much less tolerant of flooded soil conditions than plants found at lower marsh elevations. We also manipulated the water table level of field plots and found that increasing or decreasing water table drainage led to enhanced and diminished I. frutescens performance, respectively. Our results demonstrate the importance of water table dynamics in generating spatial patterns in marsh plant communities and provide further evidence that supports the hypothesis that the seaward distributional limits of marsh plant populations are generally dictated by physical processes.  相似文献   

4.
The Yangtze River delta is characterized by rapidly accreting sediments that form tidal flats that are quickly colonized by emergent vegetation including Scirpus mariqueter and the invasive species Spartina alterniflora. We measured soil surface elevation, water table depth, soil salinity, water content and compaction in the tidal flat, the Scirpus and Spartina zones and their borders to identify relationships between environmental factors and colonization by Scirpus and Spartina. With increasing elevation from tidal flat to Spartina, inundation frequency and duration, moisture and depth to water table decreased whereas soil salinity, temperature and compaction increased. High soil moisture and groundwater and low salinity were the characteristics of the tidal flat and its border with Scirpus. The Spartina zone and its border with Scirpus were characterized by greater salinity and elevation relative to the other zones. Our findings suggest that soil salinity controls patterns of plant zonation in the newly formed tidal salt marshes whereas elevation is of secondary importance. Our results suggest that patterns of vegetation zonation in tidal marshes of the Yangtze River delta are controlled by environmental factors, especially (low) salinity that favors colonization by Scirpus in the lower elevations of the marsh.  相似文献   

5.
In coastal salt marshes, mats of wrack (dead plant stems) that are deposited on the marsh by high tides can kill underlying vegetation and initiate secondary succession. The importance of wrack disturbance in northwest Atlantic salt marshes has been a topic of recent debate. The importance of wrack disturbance in southwest Atlantic salt marshes, which experience a very different climate regime than do northern marshes, has rarely been examined. Working in a Georgia salt marsh, we documented a pattern of positive association between wrack and Batis maritima biomass, and conducted experiments that indicated that wrack was beneficial to Batis maritima. Sampling indicated that natural wrack deposition was correlated with areas of vigorous Batis growth and mild soil conditions. Natural wrack deposition occurred primarily at the highest elevations occupied by Batis maritima (the high Batis zone). Batis plants in the high zone were taller, with more and larger leaves, and contained several times the biomass/unit area than Batis plants at lower elevations. High zone soils had lower salinities, better percolation rates, and a lower organic content than did soils from lower elevations. Experimental manipulations demonstrated that deposition of wrack was partially responsible for these patterns. In each of two experiments, soil salinities were lower and plants taller and larger in the presence of wrack compared to in its absence. Although wrack lowered salinities and enhanced plant growth, the effects were not large enough to completely explain the differences between Batis zones. Instead, wrack probably reinforced pre-existing gradients in flooding and salinity caused by differences in elevation and terrestrial runoff. Our results contrast with previous studies from northern marshes. Because of geographic differences in climate and plant phenology, northern marshes are more likely than southern marshes to receive patches of wrack thick enough to kill underlying vegetation. Plants covered by thin layers of wrack, as commonly occurs in southern marshes, may often grow through the wrack rather than suffer mortality. Also because of climatic differences, wrack is more likely to benefit plants by ameliorating salinity stress in southern marshes, where soil salinities are often hypersaline, than in northern marshes where soils are rarely hypersaline. Although ecological processes may differ between northern and southern salt marshes, these differences may be predictable based on an understanding of geographic variation in climate.  相似文献   

6.
A hydroponic culture experiment was performed to ascertain whether sediment soluble sulfide at in situ concentrations plays a role in the determination of height forms of Spartina alterniflora in salt marshes of the United States. Additional experiments were conducted for both Spartina cynosuroides and Borrichia frutescens to determine if sulfide also influences the overall distribution of these species in the marsh. In situ soluble sulfide concentrations ranged from 0.02 mm in creek bank sites up to 3.0 mm in the inner marsh. In culture treatments, both plant height and biomass production of S. alterniflora were inhibited at a sulfide concentration as low as 1.0 mm , strongly suggesting a role for sulfide in the determination of height forms in the marsh. Production of S. cynosuroides was inhibited at high sulfide concentrations. However, over a range of concentrations similar to in situ values, no significant reduction in growth was observed, indicating sulfide was not a primary determinant of growth in stands of S. cynosuroides on Sapelo Island, Georgia. A sulfide concentration of 0.5 mm inhibited production in B. frutescens. In situ sulfide concentrations as high as 0.5 mm were found only in mixed stands of Juncus roemerianus and B. frutescens.  相似文献   

7.
Anthropogenic climate change is predicted to cause widespread biodiversity loss due to shifts in species' distributions, but these predictions rarely incorporate ecological associations such as zonation. Here, we predict the decline of a diverse assemblage of mid-latitude salt marsh plants, based on an ecosystem warming experiment. In New England salt marshes, a guild of halophytic forbs occupies stressful, waterlogged pannes. At three sites, experimental warming of < 4 °C led to diversity declines in pannes and rapid takeover by a competitive dominant, Spartina patens . In Rhode Island, near their southern range limit, pannes were more sensitive to warming than farther north, and panne area also declined in control plots over the three-season experiment. These results suggest that warming will rapidly reduce plant diversity in New England salt marshes by eliminating a high diversity zone. Biodiversity in zoned ecosystems may be more affected by climate-driven shifts in zonation than by individual species' distribution shifts.  相似文献   

8.
Question: What are the interactive roles of abiotic stress and plant interactions in mediating the zonation of the shrub Tamarix chinensis along a salinity gradient? Location: Yellow River estuary (37°46′N, 119°09′E), northeast China. Methods: We surveyed the zonation of T. chinensis along a salinity gradient and quantified its salt tolerance using a pot experiment. In two field experiments, we transplanted T. chinensis seedlings into salt marsh, transitional zone and upland habitats, manipulated neighbours and quantified survivorship and biomass to examine neighbour effects. We also quantified vegetation effects on abiotic conditions in each zone. Results: Tamarix chinensis dominated the transitional zone, but was absent in upland and salt marsh habitats. In the pot experiment, T. chinensis grew well in freshwater treatments, but was inhibited by increasing salinity. Field experiments revealed that competition from neighbours limited T. chinensis growth in the uplands, while T. chinensis transplants were limited, with or without neighbours, in the salt marsh by high soil salinity. In the transitional zone, however, T. chinensis transplants performed better with than without neighbours. Vegetation removal significantly elevated soil salinity in the transitional zone, but not in other zones. Conclusions: Competition, facilitation and abiotic stress are all important in mediating the zonation of T. chinensis. Within its physiological stress tolerance range, or fundamental niche, it is limited by plant competition in low salinity habitats, and facilitated by neighbours in high salt stress habitats, but cannot survive in salt marshes having salinities above its salt stress tolerance limit. Our results have implications for understanding the relationships between facilitation and stress gradients.  相似文献   

9.
Jana Gesina Engels  Kai Jensen 《Oikos》2010,119(4):679-685
Understanding the mechanisms that shape plant distribution patterns is a major goal in ecology. We investigated the role of biotic interactions (competition and facilitation) and abiotic factors in creating horizontal plant zonation along salinity gradients in the Elbe estuary. We conducted reciprocal transplant experiments with four dominant species from salt and tidal freshwater marshes at two tidal elevations. Ten individuals of each species were transplanted as sods to the opposing marsh type and within their native marsh (two sites each). Transplants were placed at the centre of 9‐m2 plots along a line parallel to the river bank. In order to disentangle abiotic and biotic influences, we set up plots with and without neighbouring vegetation, resulting in five replicates per site. Freshwater species (Bolboschoenus maritimus and Phragmites australis) transplanted to salt marshes performed poorly regardless of whether neighbouring vegetation was present or not, although 50–70% of the transplants did survive. Growth of Phragmites transplants was impaired also by competition in freshwater marshes. Salt marsh species (Spartina anglica and Puccinellia maritima) had extremely low biomass when transplanted to freshwater marshes and 80–100% died in the presence of neighbours. Without neighbours, biomass of salt marsh species in freshwater marshes was similar to or higher than that in salt marshes. Our results indicate that salt marsh species are precluded from freshwater marshes by competition, whereas freshwater species are excluded from salt marshes by physical stress. Thus, our study provides the first experimental evidence from a European estuary for the general theory that species boundaries along environmental gradients are determined by physical factors towards the harsh end and by competitive ability towards the benign end of the gradient. We generally found no significant impact of competition in salt marshes, indicating a shift in the importance of competition along the estuarine gradient.  相似文献   

10.
Recent salt marsh and barrier island restoration efforts in the northern Gulf of Mexico have focused on optimizing self-sustaining attributes of restored marshes to provide maximum habitat value and storm protection to vulnerable coastal communities. Salt marshes in this region are dominated by Spartina alterniflora and Avicennia germinans, two species that are valued for their ability to stabilize soils in intertidal salt marshes. We conducted a controlled greenhouse study to investigate the influences of substrate type, nutrient level, and marsh elevation on the growth and biomass allocation of S. alterniflora and A. germinans, and the consequent effects on soil development and stability. S. alterniflora exhibited optimal growth and survival at the lowest elevation (? 15 cm below the water surface) and was sensitive to high soil salinities at higher elevations (+ 15 cm above the water surface). A. germinans performed best at intermediate elevations but was negatively affected by prolonged inundation at lower elevations. We found that although there was not a strong effect of substrate type on plant growth, the development of stressful conditions due to the use of suboptimal materials would likely be exacerbated by placing the soil at extreme elevations. Soil shear strength was significantly higher in experimental units containing either S. alterniflora or A. germinans compared to unvegetated soils, suggesting that plants effectively contribute to soil strength in newly placed soils of restored marshes. As marsh vegetation plays a critical role in stabilizing shorelines, salt marsh restoration efforts in the northern Gulf of Mexico and other storm impacted coasts should be designed at optimal elevations to facilitate the establishment and growth of key marsh species.  相似文献   

11.
In this study we investigated the potential importance of species identity and herbivore feeding mode in determining the strengths of top-down and bottom-up effects on phytophagous insect densities. In 1998, we conducted two factorial field experiments in which we manipulated host plant quality and intensity of parasitoid attack on three salt marsh herbivores, the planthoppers Prokelisia marginata and Pissonotus quadripustulatus (Homoptera: Delphacidae), which feed only on Spartina alterniflora and Borrichia frutescens, respectively, and the gall fly Asphondylia borrichiae (Diptera: Cecidomyiidae), which feeds only on B. frutescens. We increased plant quality through addition of nitrogen fertilizer, and decreased parasitism by trapping hymenopteran parasitoids continuously throughout the study. Herbivore densities were censused biweekly. Increasing plant quality through fertilization increased the density of all three herbivores within 2 weeks of treatment application, and higher densities were maintained for the duration of the study. Reduction of top-down pressure had no effect on either planthopper species, possibly because of compensatory mortality affecting the two species. In contrast, reduction of parasitism significantly increased the density of A. borrichiae galls, perhaps because development within gall tissue reduces the sources of compensatory mortality affecting this species. The results of this study show that the bottom-up effects of plant quality were strong and consistent for all three species, but the strength of top-down effects differed between the two feeding guilds. Thus, even for herbivores feeding on the same host plant, conclusions drawn regarding the relative importance of top-down and bottom-up effects may vary depending upon the feeding mode of the herbivore.  相似文献   

12.
DNA was extracted from dry standing dead Spartina alterniflora stalks as well as dry Spartina wrack from the North Inlet (South Carolina) and Sapelo Island (Georgia) salt marshes. Partial nifH sequences were PCR amplified, the products were separated by denaturing gradient gel electrophoresis (DGGE), and the prominent DGGE bands were sequenced. Most sequences (109 of 121) clustered with those from α-Proteobacteria, and 4 were very similar (>99%) to that of Azospirillum brasilense. Seven sequences clustered with those from known γ-Proteobacteria and five with those from known anaerobic diazotrophs. The diazotroph assemblages associated with dead Spartina biomass in these two salt marshes were very similar, and relatively few major lineages were represented.  相似文献   

13.
《Ecological Engineering》2007,29(3):245-248
Although much research has focused upon the negative impacts of invasive Spartina alterniflora upon salt marshes dominated by other Spartina spp., little is known about its impacts upon native Scirpus mariqueter marshes. In 1997, S. alterniflora was introduced to the Jiuduansha Shoals, Yangtze Estuary, China, to accelerate the formation of marsh habitat via accretionary processes, with the larger goal of drawing waterfowl away from wetlands near the Pudong International Airport, Shanghai, China. In 2000, a nature reserve was established on the Jiuduansha Shoals, making the impact upon the native S. mariqueter community a high priority for research. Our objective was to quantify the impacts of introduced S. alterniflora and Phragmites australis to the native S. mariqueter-dominated community at this site in four elevation zones, as compared with a nearby natural shoal. We found that species diversity was greater in the lower elevations with the engineering, through elimination of the natural dominance of S. mariqueter. We also found that diversity was lessened in the higher elevations, due to rapid growth and exclusion by the planted S. alterniflora in conjunction with the native P. australis. Moreover, we found that the growth of the native S. mariqueter was stimulated when S. alterniflora was planted nearby. It is quite likely that the net effect of these ecological processes will be to accelerate further accretion, leading to an eventual replacement of the S. mariqueter-dominated community in the long-term. Future management approaches should focus upon harvesting, grazing, and perimeter-ditching the S. alterniflora to avoid this situation.  相似文献   

14.
Efforts are underway to restore tidal flow in New England salt marshes that were negatively impacted by tidal restrictions. We evaluated a planned tidal restoration at Mill Brook Marsh (New Hampshire) and at Drakes Island Marsh (Maine) where partial tidal restoration inadvertently occurred. Salt marsh functions were evaluated in both marshes to determine the impacts from tidal restriction and the responses following restoration. Physical and biological indicators of salt marsh functions (tidal range, surface elevations, soil water levels and salinities, plant cover, and fish use) were measured and compared to those from nonimpounded reference sites. Common impacts from tidal restrictions at both sites were: loss of tidal flooding, declines in surface elevation, reduced soil salinity, replacement of salt marsh vegetation by fresh and brackish plants, and loss of fish use of the marsh.Water levels, soil salinities and fish use increased immediately following tidal restoration. Salt-intolerant vegetation was killed within months. After two years, mildly salt-tolerant vegetation had been largely replaced in Mill Brook Marsh by several species characteristic of both high and low salt marshes. Eight years after the unplanned, partial tidal restoration at Drakes Island Marsh, the vegetation was dominated bySpartina alterniflora, a characteristic species of low marsh habitat.Hydrologic restoration that allowed for unrestricted saltwater exchange at Mill Brook restored salt marsh functions relatively quickly in comparison to the partial tidal restoration at Drakes Island, where full tidal exchange was not achieved. The irregular tidal regime at Drakes Island resulted in vegetation cover and patterns dissimilar to those of the high marsh used as a reference. The proper hydrologic regime (flooding height, duration and frequency) is essential to promote the rapid recovery of salt marsh functions. We predict that functional recovery will be relatively quick at Mill Brook, but believe that the habitat at Drakes Island will not become equivalent to that of the reference marsh unless the hydrology is further modified.Corresponding Editor: R.E. Turner Manuseript  相似文献   

15.
Efforts are underway to restore tidal flow in New England salt marshes that were negatively impacted by tidal restrictions. We evaluated a planned tidal restoration at Mill Brook Marsh (New Hampshire) and at Drakes Island Marsh (Maine) where partial tidal restoration inadvertently occurred. Salt marsh functions were evaluated in both marshes to determine the impacts from tidal restriction and the responses following restoration. Physical and biological indicators of salt marsh functions (tidal range, surface elevations, soil water levels and salinities, plant cover, and fish use) were measured and compared to those from nonimpounded reference sites. Common impacts from tidal restrictions at both sites were: loss of tidal flooding, declines in surface elevation, reduced soil salinity, replacement of salt marsh vegetation by fresh and brackish plants, and loss of fish use of the marsh. Water levels, soil salinities and fish use increased immediately following tidal restoration. Salt-intolerant vegetation was killed within months. After two years, mildly salt-tolerant vegetation had been largely replaced in Mill Brook Marsh by several species characteristic of both high and low salt marshes. Eight years after the unplanned, partial tidal restoration at Drakes Island Marsh, the vegetation was dominated bySpartina alterniflora, a characteristic species of low marsh habitat. Hydrologic restoration that allowed for unrestricted saltwater exchange at Mill Brook restored salt marsh functions relatively quickly in comparison to the partial tidal restoration at Drakes Island, where full tidal exchange was not achieved. The irregular tidal regime at Drakes Island resulted in vegetation cover and patterns dissimilar to those of the high marsh used as a reference. The proper hydrologic regime (flooding height, duration and frequency) is essential to promote the rapid recovery of salt marsh functions. We predict that functional recovery will be relatively quick at Mill Brook, but believe that the habitat at Drakes Island will not become equivalent to that of the reference marsh unless the hydrology is further modified.  相似文献   

16.
Five natural and ten created Spartinaalternifloramarshes in the Lower Galveston BaySystem were compared to determine if there weresignificantly different physical characteristicsassociated with each type of marsh. The saltmarsheswere compared on the basis of microhabitats,length-width ratio, area-perimeter ratio, marsh-wateredge ratio, total size of S. alternifloraplantcommunities, fetch distances, angle of exposure,orientation, and elevation. All physicalmeasurements, except for elevation, were obtained fromphotography analyzed with the use of a GeographicInformation System with digital image processingcapabilities. Differences existed between natural andcreated marshes. The natural marsh sites in this studywere characterized by highly undulant marsh-wateredges, island-like S. alternifloraplant stands,concave shorelines, and low elevations. Createdmarshes were characterized by relatively smoothmarsh-water edges, an unbroken shoreline morphology,convex to straight shoreline configurations, andelevations on the edge and inner portions of the marshhigher than those of natural marshes. The lowelevations of the natural marsh appear to be due tocoastal subsidence in the Galveston Bay area alongwith rising sea level. Reticulated marshes andundulant shorelines appear to be caused by consequentdrowning of the natural marshes. High elevations insome of the created marshes are related to erosion ofthe low elevation marsh or deposition of coarsesediments at the marsh-water edge.  相似文献   

17.
Along the Atlantic coast of South America, the northern salt marshes (lower than 43°S) are dominated by Spartina species while the southern salt marshes (greater than 43°S) are dominated by Sarcocornia perennis. The most abundant Spartina species are Spartina densiflora which is present in most coastal marshes, and Spartina alterniflora that was never recorded above the ~42°25′S. It is not clear why S. alterniflora has not succeeded in the southern marshes, in which the low marsh zone remains as an extensive bared mud flat. We address the hypothesis that the absence of S. alterniflora in the south is driven by the cold temperatures inversely related with increasing latitudes along the East coast of Patagonia. To evaluate this hypothesis, we carried out an experiment in which we manipulated the temperature in combination with frost formation and photoperiod. We found that cold temperature produced a negative effect on S. alterniflora, and this effect seems accentuated by the frost but not by the reduction in the photoperiod. Our results support the hypothesis that the absence of S. alterniflora in the southernmost salt marshes of Patagonia is a consequence of the frost as an outcome of the co-occurrence of low temperature and high humidity. The importance of our results are discussed in the context of the global warming and how Spartina species enlarge their distributional range toward higher latitudes.  相似文献   

18.
Intertidal salt marshes are considered harsh habitats where relatively few stress-resistant species survive. Most studies on non-native species in marshes describe terrestrial angiosperms. We document that a non-native marine macroalga, Gracilaria vermiculophylla, is abundant throughout Virginia’s Atlantic coastline. We sampled eight marshes, characterized by low slopes and by the presence of the tube-building polychaete Diopatra cuprea on adjacent mudflats, which have been shown previously to be associated with G. vermiculophylla. G. vermiculophylla was found in 71% of the sampled quadrats on the border between the mudflat and tall Spartina alterniflora, 51% within the tall S. alterniflora zone, and 12% further inland. We also tagged G. vermiculophylla from two habitats: (1) unattached G. vermiculophylla within marshes and (2) G. vermiculophylla ‘incorporated’ onto D. cuprea tubes on the adjacent mudflats. Of the incorporated thalli, 3–9% ended up in the marsh, demonstrating connectivity between habitats. In addition, 21% of unattached thalli remained for 2 weeks within the marsh, suggesting that entanglement around marsh plants reduces tidal drift. Growth experiments in mesh bags indicate that most of the G. vermiculophylla transferred from the lagoon to the marsh decomposed there, potentially enhancing local nutrient levels. Finally, we document that G. vermiculophylla in marshes had a reduced associated flora and fauna compared to G. vermiculophylla on the adjacent Diopatra mudflats. In conclusion, unattached G. vermiculophylla is abundant along marsh borders in the tall S. alterniflora zone in Virginia, and we hypothesize that this non-native species has significant impacts in terms of marsh habitat complexity, species abundance and diversity, nutrient dynamics, productivity, and trophic interactions.  相似文献   

19.
He Q  Cui B  An Y 《PloS one》2012,7(3):e33164

Background

Biological invasions have become the focus of considerable concern and ecological research, yet the relative importance of abiotic and biotic factors in controlling the invasibility of habitats to exotic species is not well understood. Spartina species are highly invasive plants in coastal wetlands; however, studies on the factors that control the success or failure of Spartina invasions across multiple habitat types are rare and inconclusive.

Methodology and Principal Findings

We examined the roles of physical stress and plant interactions in mediating the establishment of the smooth cordgrass, Spartina alterniflora, in a variety of coastal habitats in northern China. Field transplant experiments showed that cordgrass can invade mudflats and low estuarine marshes with low salinity and frequent flooding, but cannot survive in salt marshes and high estuarine marshes with hypersaline soils and infrequent flooding. The dominant native plant Suaeda salsa had neither competitive nor facilitative effects on cordgrass. A common garden experiment revealed that cordgrass performed significantly better when flooded every other day than when flooded weekly. These results suggest that physical stress rather than plant interactions limits cordgrass invasions in northern China.

Conclusions and Significance

We conclude that Spartina invasions are likely to be constrained to tidal flats and low estuarine marshes in the Yellow River Delta. Due to harsh physical conditions, salt marshes and high estuarine marshes are unlikely to be invaded. These findings have implications for understanding Spartina invasions in northern China and on other coasts with similar biotic and abiotic environments.  相似文献   

20.
The haying of salt marshes, a traditional activity since colonial times in New England, still occurs in about 400 ha of marsh in the Plum Island Sound estuary in northeastern Massachusetts. We took advantage of this haying activity to investigate how the periodic large-scale removal of aboveground biomass affects a number of marsh processes. Hayed marshes were no different from adjacent reference marshes in plant species density (species per area) and end-of-year aboveground biomass, but did differ in vegetation composition. Spartina patens was more abundant in hayed marshes than S. alterniflora, and the reverse was true in reference marshes. The differences in relative covers of these plant species were not associated with any differences between hayed and reference marshes in the elevations of the marsh platform. Instead it suggested that S. patens was more tolerant of haying than S. alterniflora. Spartina patens had higher stem densities in hayed marshes than it did in reference marshes, suggesting that periodic cutting stimulated tillering of this species. Although we predicted that haying would stimulate benthic chlorophyll production by opening up the canopy, we found differences to be inconsistent, possibly due to the relatively rapid regrowth of S. patens and to grazing by invertebrates on the algae. The pulmonate snail, Melampus bidendatus was depleted in its δ13C content in the hayed marsh compared to the reference, suggesting a diet shift to benthic algae in hayed marshes. The stable isotope ratios of a number of other consumer species were not affected by haying activity. Migratory shorebirds cue in to recently hayed marshes and may contribute to short term declines in some invertebrate species, however, the number of taxa per unit area of marsh surface invertebrates and their overall abundances were unaffected by haying over the long term. Haying had no impact on nutrient concentrations in creeks just downstream from hayed plots, but the sediments of hayed marshes were lower in total N and P compared to references. In sum, haying appeared to affect plant species composition but had only short-term affects on consumer organisms. This contrasts with many grassland ecosystems, where an intermediate level of disturbance, such as by grazing, increases species diversity and may stimulate productivity. From a management perspective, periodic mowing could be a way to maintain S. patens habitats and the suite of species with which they are associated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号