首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interferon-inducible protein kinase PKR interacts with a number of small viral RNA species, including adenovirus VAI RNA and the Epstein-Barr virus-encoded RNA EBER-1. These RNAs bind to PKR and protect protein synthesis from inhibition by double-stranded RNA in the reticulocyte lysate system. Using a peptide phosphorylation assay we show here that EBER-1, like VAI, directly inhibits the activation of purified PKR. A second Epstein-Barr virus RNA, EBER-2, also regulates PKR. EBER-1, EBER-2 and VAI RNA exhibit mutually competitive binding to the native or recombinant enzyme, as assessed by U.V. crosslinking experiments and filter binding assays. The affinities of all three RNAs for PKR in vitro are similar (Kd = ca. 0.3 nM). Since this protein kinase has been proposed to exert a tumour suppressor function in vivo, the ability of EBER-1 to inhibit its activation suggests a role for this small RNA in cell transformation by Epstein-Barr virus.  相似文献   

2.
Inhibition of protein translation plays an important role in apoptosis. While double-stranded RNA-dependent protein kinase (PKR) is named as it is activated by double-stranded RNA produced by virus, its activation induces an inhibition of protein translation and apoptosis via the phosphorylation of the eukaryotic initiation factor 2alpha (eIF2alpha). PKR is also a stress kinase and its levels increase during ageing. Here we show that PKR activation and eIF2alpha phosphorylation play a significant role in apoptosis of neuroblastoma cells and primary neuronal cultures induced by the beta-amyloid (Abeta) peptides, the calcium ionophore A23187 and flavonoids. The phosphorylation of eIF2alpha and the number of apoptotic cells were enhanced in over-expressed wild-type PKR neuroblastoma cells exposed to Abeta peptide, while dominant-negative PKR reduced eIF2alpha phosphorylation and apoptosis induced by Abeta peptide. Primary cultured neurons from PKR knockout mice were also less sensitive to Abeta peptide toxicity. Activation of PKR and eIF2alpha pathway by Abeta peptide are triggered by an increase in intracellular calcium because the intracellular calcium chelator BAPTA-AM significantly reduced PKR phosphorylation. Taken together, these results reveal that PKR and eIF2alpha phosphorylation could be involved in the molecular signalling events leading to neuronal apoptosis and death and could be a new target in neuroprotection.  相似文献   

3.
T L Ung  C Cao  J Lu  K Ozato  T E Dever 《The EMBO journal》2001,20(14):3728-3737
The protein kinase PKR (dsRNA-dependent protein kinase) phosphorylates the eukaryotic translation initiation factor eIF2alpha to downregulate protein synthesis in virus-infected cells. Two double-stranded RNA binding domains (dsRBDs) in the N-terminal half of PKR are thought to bind the activator double-stranded RNA, mediate dimerization of the protein and target PKR to the ribosome. To investigate further the importance of dimerization for PKR activity, fusion proteins were generated linking the PKR kinase domain to heterologous dimerization domains. Whereas the isolated PKR kinase domain (KD) was non-functional in vivo, expression of a glutathione S-transferase-KD fusion, or co-expression of KD fusions containing the heterodimerization domains of the Xlim-1 and Ldb1 proteins, restored PKR activity in yeast cells. Finally, coumermycin-mediated dimerization of a GyrB-KD fusion protein increased eIF2alpha phosphorylation and inhibited reporter gene translation in mammalian cells. These results demonstrate the critical importance of dimerization for PKR activity in vivo, and suggest that a primary function of double-stranded RNA binding to the dsRBDs of native PKR is to promote dimerization and activation of the kinase domain.  相似文献   

4.
Ben-Asouli Y  Banai Y  Pel-Or Y  Shir A  Kaempfer R 《Cell》2002,108(2):221-232
PKR, an interferon (IFN)-inducible protein kinase activated by double-stranded RNA, inhibits translation by phosphorylating the initiation factor eIF2alpha chain. We show that human IFN-gamma mRNA uses local activation of PKR in the cell to control its own translation yield. IFN-gamma mRNA activates PKR through a pseudoknot in its 5' untranslated region. Mutations that impair pseudoknot stability reduce the ability to activate PKR and strongly increase the translation efficiency of IFN-gamma mRNA. Nonphosphorylatable mutant eIF2alpha, knockout of PKR and PKR inhibitors 2-aminopurine, transdominant-negative PKR, or vaccinia E3L correspondingly enhances translation of IFN-gamma mRNA. The potential to form the pseudoknot is phylogenetically conserved. We propose that the RNA pseudoknot acts to adjust translation of IFN-gamma mRNA to the PKR level expressed in the cell.  相似文献   

5.
The RNA-dependent protein kinase (PKR) plays an integral role in the antiviral response to cellular infection. PKR contains three distinct domains consisting of two conserved N-terminal double-stranded RNA (dsRNA)-binding domains, a C-terminal Ser-Thr kinase domain, and a central 80-residue linker. Despite rich structural and biochemical data, a detailed mechanistic explanation of PKR activation remains unclear. Here we provide a framework for understanding dsRNA-dependent activation of PKR using nuclear magnetic resonance spectroscopy, dynamic light scattering, gel filtration, and autophosphorylation kinetics. In the latent state, PKR exists as an extended monomer, with an increase in self-affinity upon dsRNA association. Subsequent phosphorylation leads to efficient release of dsRNA followed by a greater increase in self-affinity. Activated PKR displays extensive conformational perturbations within the kinase domain. We propose an updated model for PKR activation in which the communication between RNA binding, central linker, and kinase domains is critical in the propagation of the activation signal and for PKR dimerization.  相似文献   

6.
Protein kinase R (PKR) is an interferon-induced kinase that plays a pivotal role in the innate immunity pathway. PKR is activated to undergo autophosphorylation upon binding to double-stranded RNAs or RNAs that contain duplex regions. Activated PKR phosphorylates the α subunit of eukaryotic initiation factor 2, thereby inhibiting protein synthesis. PKR is also activated by heparin, a highly sulfated glycosaminoglycan. We have used biophysical methods to define the mechanism of PKR activation by heparin. Heparins as short as hexasaccharide bind strongly to PKR and activate autophosphorylation. In contrast to double-stranded RNA, heparin activates PKR by binding to the kinase domain. Analytical ultracentrifugation measurements support a thermodynamic linkage model where heparin binding allosterically enhances PKR dimerization, thereby activating the kinase. These results indicate that PKR can be activated by small molecules and represents a viable target for the development of novel antiviral agents.  相似文献   

7.
The genome of the human delta hepatitis agent is a circular, highly structured single-stranded RNA lacking regular runs of RNA-RNA duplex longer than 15 bp. We have tested the ability of delta agent RNA to participate in reactions with a protein containing a motif which confers the ability to bind double-stranded RNA (dsRNA). Surprisingly, highly purified delta agent RNA preparations from which all traces of contaminating dsRNA have been removed activate PKR, the dsRNA-dependent protein kinase activity of mammalian cells (also known as DAI, P1-eIF-2, and p68 kinase). This behavior is in marked contrast to the interaction of PKR with a number of other highly structured viral single-stranded RNAs, which inhibit, rather than stimulate, activation of this kinase. PKR activation leads to inhibition of protein synthesis in the rabbit reticulocyte lysate system. Paradoxically, delta RNA failed to elicit the expected PKR-mediated inhibition of cell-free translation. Instead, delta RNA interfered with PKR activation and the translational block induced by dsRNA. We conclude that the interaction of PKR and delta agent RNA may represent a new category of protein-RNA interactions involving the dsRNA binding motif.  相似文献   

8.
Protein kinase regulated by RNA (PKR) plays critical roles in cell growth and apoptosis and is implicated as a potential pathogenic factor of Alzheimer's, Parkinson's, and Huntington's diseases. Here we report that this proapoptotic kinase is also involved in Fanconi anemia (FA), a disease characterized by bone marrow (BM) failure and leukemia. We have used a BM extract to show that three FA proteins, FANCA, FANCC, and FANCG, functionally interact with the PKR kinase, which in turn regulates translational control. By using a combined immunoprecipitation and reconstituted kinase assay, in which an active PKR kinase complex was captured from a normal cell extract, we demonstrated functional interactions between the FA proteins and the PKR kinase. In primary human BM cells, mutations in the FANCA, FANCC, and FANCG genes markedly increase the amount of PKR bound to FANCC, and this PKR accumulation is correlated with elevated PKR activation and hypersensitivity of BM progenitor cells to growth repression mediated by the inhibitory cytokines interferon-gamma and tumor necrosis factor-alpha. Specific inhibition of PKR by 2-aminopurine in these FA BM cells attenuates PKR activation and apoptosis induction. In lymphoblasts derived from an FA-C patient, overexpression of a dominant negative mutant PKR (PKRK296R) suppressed PKR activation and apoptosis induced by interferon-gamma and tumor necrosis factor-alpha. Furthermore, by using genetically matched wild-type and PKR-null cells, we demonstrated that forced expression of a patient-derived FA-C mutant (FANCCL554P) augmented double-stranded RNA-induced PKR activation and cell death. Thus, inappropriate activation of PKR as a consequence of certain FA mutations might play a role in bone marrow failure that frequently occurred in FA.  相似文献   

9.
The oxindole/imidazole derivative C16 reduces in vivo brain PKR activation   总被引:1,自引:0,他引:1  
Inhibition of double-stranded RNA-dependent protein kinase (PKR) represents an interesting strategy for neuroprotection. However, inhibiting this kinase which triggers the apoptotic process could favour in counterpart cell proliferation and tumorigenesis. Here, we use an in vivo model of 7-day-old rat displaying a high activation of brain PKR to investigate the effects of a new PKR inhibitor identified as an oxindole/imidazole derivative (C16). We show for the first time that acute systemic injection of C16 specifically inhibits the apoptotic PKR/eIF2alpha signaling pathway without stimulating the proliferative mTOR/p70S6K signaling mechanism.  相似文献   

10.
One of the hallmarks of Alzheimer's disease is extracellular accumulation of senile plaques composed primarily of aggregated beta-amyloid (Abeta) peptide. Treatment of cultured neurons with Abeta peptide induces neuronal death in which apoptosis is suggested to be one of the mechanisms. We have demonstrated previously that Abeta peptide induces activation of double-stranded RNA-dependent serine/threonine protein kinase (PKR) and phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) in neurons in vitro. Degenerating neurons in brain tissues from Alzheimer's disease patients also displayed high immunoreactivity for phosphorylated PKR and eIF2alpha. Our previous data have also indicated that PKR plays a significant role in mediating Abeta peptide-induced neuronal death, because neurons from PKR knockout mice and neuroblastoma SH-SY5Y cells stably transfected with dominant negative mutant of PKR are less susceptible to Abeta peptide toxicity. Therefore, it is important to understand how PKR is activated by Abeta peptide. We report here that inhibition of caspase-3 activity reduces phosphorylation of PKR and to a certain extent, cleavage of PKR and eIF2alpha in neurons exposed to Abeta peptide. Calcium release from the endoplasmic reticulum and activation of caspase-8 are the upstream signals modulating the caspase-3-mediated activation of PKR by Abeta peptide. Although in other systems HSP90 serves as a repressor for PKR, it is unlikely the candidate for caspase-3 to affect PKR activation in neurons after Abeta peptide exposure. Elucidation of the upstream pathways for PKR activation can help us to understand how this kinase participates in Abeta peptide neurotoxicity and to develop effective neuroprotective strategy.  相似文献   

11.
A key step in the activation of interferon-inducible antiviral kinase PKR involves differential binding of viral double-stranded RNA (dsRNA) to its two structurally similar N-terminal dsRNA binding motifs, dsRBM1 and dsRBM2. We show here, using NMR spectroscopy, that dsRBM1 with higher RNA binding activity exhibits significant motional flexibility on a millisecond timescale as compared with dsRBM2 with lower RNA binding activity. We further show that dsRBM2, but not dsRBM1, specifically interacts with the C-terminal kinase domain. These results suggest a dynamically tuned dsRNA binding mechanism for PKR activation, where motionally more flexible dsRBM1 anchors to dsRNA, thereby inducing a cooperative RNA binding for dsRBM2 to expose the kinase domain.  相似文献   

12.
13.
Taylor SS  Haste NM  Ghosh G 《Cell》2005,122(6):823-825
The antiviral RNA-dependent protein kinase, PKR, binds to viral double-stranded RNA in the cell and halts protein synthesis by phosphorylating the alpha subunit of the translation initiation factor eIF2. In this issue of Cell, two complementary papers Dar et al. (2005) and Dey et al. (2005) address the interaction between PKR and eIF2alpha. The structures of eIF2alpha bound to PKR reveal that PKR forms a dimer, the interface of which is essential for kinase activation, and demonstrate how this protein substrate docks to its kinase. The structures, coupled with mutagenesis analysis, also demonstrate how phosphorylation of the activation loop can allosterically couple two distal regions, the dimerization and substrate recognition interfaces.  相似文献   

14.
PKR, an interferon-induced double-stranded RNA activated serine-threonine kinase, is a component of signal transduction pathways mediating cell growth control and responses to stress and viral infection. Analysis of separate PKR functional domains by NMR and X-ray crystallography has revealed details of PKR RNA binding domains and kinase domain, respectively. Here, we report the structural characteristics, calculated from biochemical and neutron scattering data, of a native PKR fraction with a high level of autophosphorylation and constitutive kinase activity. The experiments reveal association of the protein monomer into dimers and tetramers, in the absence of double-stranded RNA or other activators. Low-resolution structures of the association states were obtained from the large angle neutron scattering data and reveal the relative orientation of all protein domains in the activated kinase dimer. Low-resolution structures were also obtained for a PKR tetramer-monoclonal antibody complex. Taken together, this information leads to a new model for the structure of the functioning unit of the enzyme, highlights the flexibility of PKR and sheds light on the mechanism of PKR activation. The results of this study emphasize the usefulness of low-resolution structural studies in solution on large flexible multiple domain proteins.  相似文献   

15.
Kaempfer R 《Cell research》2006,16(2):148-153
PKR, the interferon (IFN)-inducible protein kinase activated by double-stranded RNA, inhibits translation by phosphorylating the initiation factor eIF2α chain. Uniquely, human IFN-γ mRNA uses local activation of PKR in the cell to control its own translation yield. IFN-γ mRNA activates PKR through a structure in its 5'- region harboring a pseudoknot which is critical for PKR activation. Mutations that impair pseudoknot stability reduce the ability of IFN-γ mRNA to activate PKR and strongly increase its translation efficiency. The cis-acting RNA element in IFN-γ mRNA functions as a biological sensor of intracellular PKR levels. During an immune response, as IFN-γ and other inflammatory cytokines build up in the cell's microenvironment, they act to induce higher levels of PKR in the cell, resulting in a more extensive activation of PKR by IFN-γ mRNA. With the resulting phosphorylation of eIF2α, a negative feedback loop is created and the production of IFN-γ is progressively attenuated. We propose that the therapeutic effect of IFN-β in multiple sclerosis may rest, at least in part, on its exquisite ability to induce high levels of PKR in the cell and thereby to limit IFN-γ mRNA translation through this negative feedback loop, blocking the excessive IFN-γ gene expression that precedes clinical attacks.  相似文献   

16.
Noncoding RNAs have drawn significant attention in biology recently. Whereas the current research is highly inclined to microRNAs, research on other noncoding RNAs has lagged behind. Here, we investigated a novel noncoding RNA that has been known as precursor microRNA miR-886 (pre-miR-886). Pre-miR-886 has been proposed also as a vault RNA, a component of the vault complex implicated in cancer drug resistance. We identified pre-miR-886 as a 102-nucleotide-long, abundant cytoplasmic RNA that is neither a genuine pre-microRNA nor a vault RNA. Pre-miR-886 is physically associated with PKR (Protein Kinase RNA-activated), an interferon-inducible and double-stranded RNA dependent kinase. The suppression of pre-miR-886 activates PKR and its downstream pathways, eIF2α phosphorylation and the NF-κB pathway, leading to impaired cell proliferation. We also found that pre-miR-886 is suppressed in a wide-range of cancer cell lines and in clinical specimens. This study is the first intense characterization of pre-miR-886 as well as the initial report on its function as a PKR regulator, which suggests a critical role in tumorigenesis.  相似文献   

17.
The double-stranded RNA (dsRNA)-activated protein kinase [protein kinase R (PKR)] plays a major role in the innate immune response in humans. PKR binds dsRNA non-sequence specifically and requires a minimum of 15-bp dsRNA for one protein to bind and 30-bp dsRNA to induce protein dimerization and activation by autophosphorylation. PKR phosphorylates eukaryotic initiation factor 2α, a translation initiation factor, resulting in the inhibition of protein synthesis. We investigated the mechanism of PKR activation by an RNA hairpin with a number of base pairs intermediate between these 15- to 30-bp limits: human immunodeficiency virus type 1 transactivation-responsive region (TAR) RNA, a 23-bp hairpin with three bulges that is known to dimerize. TAR monomers and dimers were isolated from native gels and assayed for RNA and protein dimerization to test whether RNA dimerization affects PKR dimerization and activation. To modulate the extent of dimerization, we included TAR mutants with different secondary features. Native gel mixing experiments and analytical ultracentrifugation indicate that TAR monomers bind one PKR monomer and that TAR dimers bind two or three PKRs, demonstrating that RNA dimerization drives the binding of multiple PKR molecules. Consistent with functional dimerization of PKR, TAR dimers activated PKR while TAR monomers did not, and RNA dimers with fewer asymmetrical secondary-structure defects, as determined by enzymatic structure mapping, were more potent activators. Thus, the secondary-structure defects in the TAR RNA stem function as antideterminants to PKR binding and activation. Our studies support that dimerization of a 15- to 30-bp hairpin RNA, which effectively doubles its length, is a key step in driving activation of PKR and provide a model for how RNA folding can be related to human disease.  相似文献   

18.
The replication of viral nucleic acids triggers cellular antiviral responses. The double-stranded RNA (dsRNA)-activated protein kinase (PKR) plays a key role in this antiviral response. We have recently reported that JFH-1 HCV replication in Huh-7 cells triggers PKR activation. Here we show that the HCV-induced PKR activation is further stimulated by the mitogen- and stress-activated protein kinase 2 (MSK2), a member of the 90 kDa ribosomal S6 kinase (RSK) family that has emerged as an important downstream effector of ERK and p38 MAPK signaling pathways. We show that MSK2 binds PKR and stimulates PKR phosphorylation, whereas the closely related MSK1 and RSK2 have no effect. Our data further indicate that MSK2 functions as an adaptor in mediating PKR activation, apparently independent of its catalytic activity. These results suggest that, in addition to viral dsRNA, stress signaling contributes to the regulation of cellular antiviral response.  相似文献   

19.
We have recently shown that nc886 (pre-miR-886 or vtRNA2-1) is not a genuine microRNA precursor nor a vault RNA, but a novel type of non-coding RNA that represses PKR, a double-stranded RNA (dsRNA) dependent kinase. Here we have characterized their direct physical association. PKR’s two RNA binding domains form a specific and stable complex with nc886’s central portion, without any preference to its 5′-end structure. By binding to PKR with a comparable affinity, nc886 competes with dsRNA and attenuates PKR activation by dsRNA. Our data suggest that nc886 sets a threshold for PKR activation so that it occurs only during genuine viral infection but not by a minute level of fortuitous cellular dsRNA.  相似文献   

20.
The double-stranded (ds) RNA activated protein kinase PKR is an interferon (IFN)-inducible serine/threonine protein that regulates protein synthesis through the phosphorylation of the alpha subunit of translation initiation factor 2 (eIF-2alpha). PKR activation in cells is induced by virus infection or treatment with dsRNA and is modulated by a number of viral and cellular factors. To better understand the mechanisms of PKR action we have analyzed and compared the mode of PKR activation in a number of cell lines of different histological origin. Here we show that PKR activation and phosphorylation of eIF-2alpha are both diminished in various virus-transformed and nontransformed human T cells. Priming of T cells with IFN does not restore PKR activation. In vitro kinase assays show that the diminished PKR activation in T cells correlates with the presence of a 60-kDa (p60) phosphoprotein coimmunoprecipitated with PKR. P60 is absent from PKR immunoprecipitates from non T cells. Incubation of active PKR with T cell extracts results in inhibition of PKR autophosphorylation, which is proportional to the amount of phosphorylated p60 in the kinase reactions. Treatment of T cells with proteasome inhibitors or incubation of PKR immunoprecipitates with phosphatase inhibitors does not restore PKR activation. However, phosphorylation of p60 is enhanced upon treatment with the phosphatase inhibitor microcystin. These data show that the impaired activation capacity of PKR in human T cells is exerted at the post-translational levels in a manner that is independent of cell transformation or virus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号