首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Predicting population colonisations requires understanding how spatio‐temporal changes in density affect dispersal. Density can inform on fitness prospects, acting as a cue for either habitat quality, or competition over resources. However, when escaping competition, high local density should only increase emigration if lower‐density patches are available elsewhere. Few empirical studies on dispersal have considered the effects of density at the local and landscape scale simultaneously. To explore this, we analyze 5 years of individual‐based data from an experimental introduction of wild guppies Poecilia reticulata. Natal dispersal showed a decrease in local density dependence as density at the landscape level increased. Landscape density did not affect dispersal among adults, but local density‐dependent dispersal switched from negative (conspecific attraction) to positive (conspecific avoidance), as the colonisation progressed. This study demonstrates that densities at various scales interact to determine dispersal, and suggests that dispersal trade‐offs differ across life stages.  相似文献   

2.
Some studies have found that dispersal rates and distances increase with density, indicating that density‐dependent dispersal likely affects spatial genetic structure. In an 11‐year mark–recapture study on a passerine, the dark‐eyed junco, we tested whether density affected dispersal distance and/or fine‐scale spatial genetic structure. Contrary to expectations, we found no effect of predispersal density on dispersal distance or the proportion of locally produced juveniles returning to the population from which they hatched. However, even though density did not affect dispersal distance or natal return rates, we found that density still did affect spatial genetic structure. We found significant positive spatial genetic structure at low densities of (postdispersal) adults but not at high densities. In years with high postdispersal (adult) densities that also had high predispersal (juvenile) densities in the previous year, we found negative spatial genetic structure, indicating high levels of dispersal. We found that density also affected fitness of recruits, and fitness of immigrants, potentially linking these population parameters with the spatial genetic structure detected. Immigrants and recruits rarely nested in low postdispersal density years. In contrast, in years with high postdispersal density, recruits were common and immigrants had equal success to local birds, so novel genotypes diluted the gene pool and effectively eliminated positive spatial genetic structure. In relation to fine‐scale spatial genetic structure, fitness of immigrants and new recruits is poorly understood compared to dispersal movements, but we conclude that it can have implications for the spatial distribution of genotypes in populations.  相似文献   

3.
Nowicki P  Vrabec V 《Oecologia》2011,167(3):657-665
A positive effect of (meta)population density on emigration has been predicted by many theoretical models and confirmed empirically in various organisms. However, in butterflies, the most popular species for dispersal studies, the evidence for its existence has so far been equivocal, with negative relationships between density and emigration being reported more frequently. We analysed dispersal in sympatric metapopulations of two Maculinea butterflies, intensively surveyed with mark–release–recapture methods for 7 years. Dispersal parameters, derived using the virtual migration model, were assessed against butterfly densities, which fluctuated strongly over the study period. Emigration was positively correlated with density, and this effect was particularly strong at densities above carrying capacity, when emigration increased up to threefold in females and twofold in males compared with the normal levels. In turn, density had little impact on other dispersal parameters analysed. Our findings provide good evidence for positive density-dependence of emigration in butterflies. Emigrating at high densities is particularly beneficial for females, because it gives them a chance to lay part of their egg-load in less crowded patches, where offspring survival is higher due to lower intraspecific competition. Even though the rise in emigration becomes considerable at densities exceeding carrying capacity, i.e. relatively infrequently, it still has serious implications for many ecological phenomena, such as species range expansions, gene flow, and metapopulation persistence. Consequently, instead of treating emigration as a fixed trait, it is worth allowing for its density-dependence in applications such as population viability analyses, genetic models or metapopulation models.  相似文献   

4.
To identify the factors that influence the availability of data on the negative impacts of alien bird species, in order to understand why more than 70% are currently classified as Data Deficient (DD) by the Environmental Impact Classification of Alien Taxa (EICAT) protocol. Information on factors hypothesised to influence the availability of impact data were collated for 344 alien bird species (107 with impact data and 237 DD). These data were analysed using mixed effects models accounting for phylogenetic non‐independence of species (MCMCglmm). Data deficiency in the negative impacts of alien birds is not randomly distributed. Residence time, relative brain size and alien range size were found to be strongly related to the availability of data on impacts. The availability of data on the negative impacts of alien birds is mainly influenced by the spatial and temporal extents of their alien ranges. The results of this study suggest that the impacts of some DD alien birds are likely to be minor (e.g. species with comparatively long residence times as aliens, such as the common waxbill Estrilda astrild and the Java sparrow Padda oryzivora). However, the results also suggest that some DD alien birds may have damaging impacts (e.g. species from orders of alien birds known for their impacts to biodiversity but with comparatively small alien ranges, such as the New Caledonian crow Corvus moneduloides). This implies that at least some DD alien birds may have impacts that are being overlooked. Studies examining the traits that influence the severity of alien bird impacts are needed to help to predict which DD species are more likely to impact upon biodiversity.  相似文献   

5.
Studies on the ranging behaviour of birds often suggest that ranges vary seasonally with larger ranges in the non‐breeding compared to the breeding season. However, due to limitations in tracking methods very little is known about the underlying processes driving seasonal differences in ranging behaviour, especially in fragmented, heterogeneous landscapes. Such knowledge is particularly important if movements deliver essential ecosystem functions such as seed dispersal. We contrasted the daily ranging behaviour between the breeding and non‐breeding season of a frugivorous bird and demonstrate how larger seasonal ranges in the non‐breeding season emerge through switching from a stationary home range behaviour to nomadism. We tracked movements of 29 male trumpeter hornbills Bycanistes bucinator across a fragmented landscape of eastern South Africa during different breeding and non‐breeding seasons using high temporal resolution GPS data‐loggers. Birds in the breeding seasons showed a typical, stationary home range pattern. In the non‐breeding seasons birds, rather than expanding their stationary daily ranges, switched to nomadic movements that were characterized by shifts of the general location of daily ranges to a different area every couple of days. We also found that during the breeding seasons hornbills were mostly located in large continuous forests; birds in the non‐breeding seasons frequently used forest patches within the agricultural landscape and residential areas. These seasonal differences in the movement behaviour of trumpeter hornbills may have important consequences for seed dispersal of plant species. Our findings show how seasonal range expansion of frugivorous birds may be driven by fundamental behavioural changes that have important consequences for ecosystem processes.  相似文献   

6.
In theory, conservation genetics predicts that forest fragmentation will reduce gene dispersal, but in practice, genetic and ecological processes are also dependent on other population characteristics. We used Bayesian genetic analyses to characterize parentage and propagule dispersal in Heliconia acuminata L. C. Richard (Heliconiaceae), a common Amazonian understory plant that is pollinated and dispersed by birds. We studied these processes in two continuous forest sites and three 1‐ha fragments in Brazil's Biological Dynamics of Forest Fragments Project. These sites showed variation in the density of H. acuminata. Ten microsatellite markers were used to genotype flowering adults and seedling recruits and to quantify realized pollen and seed dispersal distances, immigration of propagules from outside populations, and reproductive dominance among parents. We tested whether gene dispersal is more dependent on fragmentation or density of reproductive plants. Low plant densities were associated with elevated immigration rates and greater propagule dispersal distances. Reproductive dominance among inside‐plot parents was higher for low‐density than for high‐density populations. Elevated local flower and fruit availability is probably leading to spatially more proximal bird foraging and propagule dispersal in areas with high density of reproductive plants. Nevertheless, genetic diversity, inbreeding coefficients and fine‐scale spatial genetic structure were similar across populations, despite differences in gene dispersal. This result may indicate that the opposing processes of longer dispersal events in low‐density populations vs. higher diversity of contributing parents in high‐density populations balance the resulting genetic outcomes and prevent genetic erosion in small populations and fragments.  相似文献   

7.
Knowledge about the mechanisms of range formation is crucial for scientifically based species conservation strategies in the face of ongoing global climate change. In recent years an increasing amount of studies have focused on the influences of density‐dependent dispersal on demographic and biogeographical patterns. However, it still remains unclear, to what extent and in what ways this strategy would affect the range formation of species. In order to fill this gap, we present a study using individual‐based simulations of a species with discrete generations living along a dispersal mortality gradient. We compare the evolution of range sizes for species following density‐dependent and density‐independent emigration. Furthermore we assess the influence of environmental stochasticity and Allee effects on range formation, as both processes are known to play an important role for dispersal evolution. We find that density‐dependent dispersal always results in much wider ranges than unconditional dispersal. Increasing environmental stochasticity, a predicted consequence of climate change, can remarkably expand the ranges of species living in such connectivity gradients if dispersal decisions are based on local population density. A strong Allee effect causes range contraction for both strategies, but the effect is considerably less dramatic under density‐dependent compared to density‐independent emigration. We strongly recommend accounting for these findings in future attempts to model species’ range shifts due to climate change.  相似文献   

8.
The Europe‐wide decline in the populations and diversity of farmland birds has not been stopped despite dedicated conservation efforts such as agri‐environment schemes (AES). The main reason for the lack of success of AES is considered to be their low ecological quality and insufficient area. Understanding the effects of different management strategies on the ecological quality of AES is therefore important. Here, we investigate the relationship between breeding bird density and species richness and the age of sown field margins, a widely used type of AES, in southwestern Switzerland. Territories of breeding birds were mapped on 67 field margins between 2004 and 2011. Territory densities (for eight species) and species richness were analysed in relation to age of the field margin. A general negative correlation between size of the field margin and territory density indicated that territory density was higher when the birds could forage in adjacent cultivated land. Territory densities and species richness increased up to an age of 4–6 years after sowing, depending on the species, and declined thereafter. The results suggest that the co‐occurrence of newly sown margins and margins over 3 years old will have a positive effect on breeding bird densities and species diversity.  相似文献   

9.
The hypothesis that patterns of sex-biased dispersal are related to social mating system in mammals and birds has gained widespread acceptance over the past 30 years. However, two major complications have obscured the relationship between these two behaviors: 1) dispersal frequency and dispersal distance, which measure different aspects of the dispersal process, have often been confounded, and 2) the relationship between mating system and sex-biased dispersal in these vertebrate groups has not been examined using modern phylogenetic comparative methods. Here, we present a phylogenetic analysis of the relationship between mating system and sex-biased dispersal in mammals and birds. Results indicate that the evolution of female-biased dispersal in mammals may be more likely on monogamous branches of the phylogeny, and that females may disperse farther than males in socially monogamous mammalian species. However, we found no support for a relationship between social mating system and sex-biased dispersal in birds when the effects of phylogeny are taken into consideration. We caution that although there are larger-scale behavioral differences in mating system and sex-biased dispersal between mammals and birds, mating system and sex-biased dispersal are far from perfectly associated within these taxa.  相似文献   

10.
Broad-scale reciprocity in an avian seed dispersal mutualism   总被引:1,自引:0,他引:1  
Aim Coevolved relationships between individual species of birds and plants rarely occur in seed dispersal mutualisms. This study evaluates whether reciprocal relationships may occur between assemblages of bird and plant species. Location Vancouver Island, British Columbia, Canada (48°50′‐N, 125°22′‐W). Methods The distribution and fruiting phenologies of seven shrub species were compared to seasonal changes in habitat selection and seed dispersal by six fruit‐eating bird species. Results Shrub species inhabiting forest understorey habitat had earlier fruiting phenologies than shrub species inhabiting forest edge habitat along lake and bog margins. Birds showed a parallel pattern in habitat selection, being more abundant in the forest understorey early in the fruiting season, and more abundant in the forest edge later in the season. Rates of seed deposition covaried with avian habitat selection, in such a way that birds directed seed dispersal into habitats preferred by shrubs. Conclusions These results depict a broad‐scale pattern in the abundance of birds and fruits indicative of reciprocal interactions. Seasonal changes in seed dispersal to each habitat appear to reinforce the relationship between shrub habitat affinities and fruiting phenologies. Phenological differences between habitats may also reinforce seasonal changes in avian habitat selection. Therefore, although reciprocal interactions between pairs of bird and plant species are rare, broad‐scale reciprocal relationships may occur between assemblages of bird and plant species.  相似文献   

11.
12.
The dispersal behavior of a species is critical for the stability and persistence of its populations across a landscape. How population density affects dispersal decisions is important for predicting these dynamics, as the form of density‐dependent dispersal influences the stability and persistence of populations. Natal habitat experience often has strong impacts on individual dispersal behavior as well, but its influence on density‐dependent dispersal behaviors remains unexplored. Here we address this conceptual gap in two experiments separately examining habitat selection and emigration from recently colonized patches for two species of flour beetle Tribolium sp. We found that interactions between the quality of habitat experienced during natal development and current habitat for dispersal capable adults can strongly affect the form of density dependence, including reversing the direction of nonlinearities (accelerating to decelerating), or even negating the influence of population density for individual dispersal decisions. Across heterogeneous landscapes, where individuals from different populations may experience different natal habitats, this altering of density‐dependent relationships is predicted by theory to fundamentally influence regional population dynamics. Our results indicate that species which occur across heterogeneous environments, such as during conservation reintroductions, or as invasive species spread, have much potential for natal experience to interact with density dependence and influence local and regional population dynamics.  相似文献   

13.
Gilles Houle 《Oikos》2005,111(3):465-472
Several factors might influence an organism's tendency or willingness to leave a given patch. One such factor is conspecific density, which may affect the per capita emigration rate. Some previous field studies on butterflies have reported positively density-dependent dispersal (emigration increases with population density) whereas the opposite, negatively density-dependent dispersal, has been found in other species. We investigated the effect of conspecific density on both the tendency to cross a patch boundary and within-patch mobility in Melitaea cinxia , by experimentally manipulating density in large outdoor cages divided into two habitat patches, separated by a barrier of unsuitable habitat. In contrast to previous results for M. cinxia , we found that the butterflies moved away from a patch at higher rates in high conspecific density (positively density-dependent emigration). The within-patch mobility, measured as the distance travelled per time unit, was however unaffected by butterfly density. A possible explanation for the seeming discrepancy with previous results could be that we used higher butterfly densities. For species with fluctuating population dynamics, such as M. cinxia , dispersal activity both at low and at high local density will be important for population phenomena such as fluctuations in distributional range over good and bad years.  相似文献   

14.
Although radar has been used in studies of bird migration for 60 years, there is still no network in Europe for comprehensive monitoring of bird migration. Europe has a dense network of military air surveillance radars but most systems are not directly suitable for reliable bird monitoring. Since the early 1990s, Doppler radars and wind profilers have been introduced in meteorology to measure wind. These wind measurements are known to be contaminated with insect and bird echoes. The aim of the present research is to assess how bird migration information can be deduced from meteorological Doppler radar output. We compare the observations on migrating birds using a dedicated X‐band bird radar with those using a C‐band Doppler weather radar. The observations were collected in the Netherlands, from 1 March to 22 May 2003. In this period, the bird radar showed that densities of more than one bird per km3 are present in 20% of all measurements. Among these measurements, the weather radar correctly recognized 86% of the cases when birds were present; in 38% of the cases with no birds detected by the bird radar, the weather radar claimed bird presence (false positive). The comparison showed that in this study reliable altitudinal density profiles of birds cannot be obtained from the weather radar. However, when integrated over altitude, weather radar reflectivity is correlated with bird radar density. Moreover, bird flight speeds from both radars show good agreement in 78% of cases, and flight direction in 73% of cases. The usefulness of the existing network of weather radars for deducing information on bird migration offers a great opportunity for a European‐wide monitoring network of bird migration.  相似文献   

15.
Aim Estimates of abundances and densities of birds and mammals have often been shown to be scale dependent, in that population sizes over large areas are overestimated if extrapolated from surveys of small plots. Previous tests of the mechanisms suggested to cause this decelerating scaling pattern found evidence of a biased choice of small plots in patches of homogeneous habitat. Here we show that negative density–area relationships can also arise as result of not considering plots where individuals of the species or assemblage of interest are absent in surveys of differing spatial resolution. Location We took a complete census of violets (Viola spp.) in 800 m2 of chalk grassland in Wye, Kent, UK, and used human population censuses for Finnish, Swiss and Italian municipalities, English districts, states of the USA and European countries. Methods We used mixed models of logarithmically transformed number of individuals or densities as a function of area. Results The census of violets shows that by increasing the survey resolution and by not considering plots without individuals, the effectively occupied area diminishes and a negative density–area relationship arises. The finding that negative density–area relationships are also common for people is evidence that the non‐random choice of plots in population surveys of varying areas can be responsible for many observed negative density–area relationships. The shallower slope of the people–administrative area relationship for Switzerland and Finland compared with Italy, as well as for England and the USA compared with Europe, confirms that less than proportionate individuals–area relationships can be the consequence of larger plot areas containing a higher proportion of areas without individuals. Main conclusions Densities should be reported together with the effective areas for which they were estimated. It should be clearly conveyed whether or not plots where the surveyed species was absent were included in the density estimation.  相似文献   

16.
Assessing the drivers of survival across the annual cycle is important for understanding when and how population limitation occurs in migratory animals. Density‐dependent population regulation can occur during breeding and nonbreeding periods, and large‐scale climate cycles can also affect survival throughout the annual cycle via their effects on local weather and vegetation productivity. Most studies of survival use mark–recapture techniques to estimate apparent survival, but true survival rates remain obscured due to unknown rates of permanent emigration. This is especially problematic when assessing annual survival of migratory birds, whose movement between breeding attempts, or breeding dispersal, can be substantial. We used a multistate approach to examine drivers of annual survival and one component of breeding dispersal (habitat‐specific movements) in a population of American redstarts (Setophaga ruticilla) over 11 years in two adjacent habitat types. Annual survival displayed a curvilinear relation to the Southern Oscillation Index, with lower survival during La Niña and El Niño conditions. Although redstart density had no impact on survival, habitat‐specific density influenced local movements between habitat types, with redstarts being less likely to disperse from their previous year's breeding habitat as density within that habitat increased. This finding was strongest in males and may be explained by conspecific attraction influencing settlement decisions. Survival was lowest in young males, but movement was highest in this group, indicating that apparent survival rates were likely biased low due to permanent emigration. Our findings demonstrate the utility of examining breeding dispersal in mark–recapture studies and complement recent work using spatially explicit models of dispersal probability to obtain greater accuracy in survival estimates.  相似文献   

17.
Tropical rain forest understory insectivorous birds are declining, even in large forest reserves, yet the mechanisms remain unclear. Abundant large mammals can reshape forest structure, which degrades foraging microhabitat. We used six sites in Nicaragua, Costa Rica, and Panama with varying collared peccary (Pecari tajacu) density to test three linked hypotheses: (1) locally declining understory insectivores forage preferentially in liana tangles; (2) vine and liana density, cover, and frequency of dense tangles are lower in the presence of abundant collared peccaries; and consequently (3) abundant collared peccaries are associated with reduced understory insectivorous bird abundance. Three insectivores that declined at La Selva preferentially foraged in liana tangles: Checker‐throated Antwren (Epinecrophylla fulviventris), Dot‐winged Antwren (Microrhopias quixensis), and Ruddy‐tailed Flycatcher (Terenotriccus erythrurus). Vine density, liana cover, liana tangle frequency, and forest cover were lower in the presence of collared peccaries relative to experimental mammal exclosures, with the greatest differences at La Selva Biological Station, Costa Rica. Across sites, five of seven vine and liana measures showed negative, curvilinear relationships with peccary densities. Vine and liana measures peaked at sites with intermediate peccary density, and were low at La Selva. Structural equation models suggest negative indirect effects of the collared peccaries on focal bird densities, mediated by vine and liana density, cover, or tangle frequency. Forest area and rainfall affected both lianas and birds, but collared peccaries also contributed to the reduced abundance of understory insectivores. Indirect effects such as that suggested here may occur even in large, protected forest reserves where large mammal communities are changing.  相似文献   

18.
It is well known that adult dispersal is common in soft bottom intertidal and shallow subtidal communities. We here report on the first study that attempts to quantify the effects of both immigration and emigration on patches of soft sediment communities. Some species show adaptive emigration from the seabed, although dispersal direction, distance, and colonization success are probably strongly dependent on hydrodynamics, morphological adaptations to dispersal, and the ability to select appropriate target microsites. The naid oligochaete Paranais litoralis is a numerically dominant benthic species in southern New England and New York mud flats and tends to reproduce mainly or exclusively by means of budding of new individuals. When population density is high and resources in short supply, budding frequency is reduced, worms grow longer, and may emigrate from the sediment. We quantified emigration by means of a conical trap and quantified immigration with sediment dishes. We followed emigration/immigration during the typical late spring population explosion and crash cycle of worms within the sediment, which is driven by a seasonal cycle of provision and exhaustion of organic detrital food supply. Emigration was proportionally maximal either at or after the population peak, consistent with a response to food shortage. Over a span of ca. 50 m, we found no net movement in either direction along a transect, nor was emigration or immigration correlated with local density in the sediment. Nevertheless, both emigration and immigration were important in our 2004 sampling, and immigration especially had an important impact on population densities. We do not know the relative capture efficiencies of the emigration and immigration apparatus, so more needs to be done to understand the impacts of dispersal in this and other systems.  相似文献   

19.
Widespread expansion of shrubs is occurring across the Arctic. Shrub expansion will substantially alter arctic wildlife habitats. Identifying which wildlife species are most affected by shrubification is central to predicting future arctic community composition. Through meta‐analysis, we synthesized the published evidence for effects of canopy‐forming shrubs on birds and mammals in the Arctic and Subarctic. We examined variation in species behaviour, distribution and population dynamics in birds and mammals in response to shrub cover (including shrub cover indicators such as shrub occurrence, extent, density and height). We also assessed the degree of heterogeneity in wildlife responses to shrub cover and synthesized the remaining literature that did not fit the criteria for our quantitative meta‐analyses. Species from higher green vegetation biomass habitats (high Normalized Difference Vegetation Index, NDVI, across their distribution) were more likely to respond positively to shrub cover, demonstrating the potential for species to expand from boreal to arctic habitats under shrubification. Wildlife populations located in the lowest vegetation biomass (low NDVI) areas of their species’ range had the greatest proportion of positive responses to shrub cover, highlighting how increases in performance at leading edges of invaders distributions may be particularly rapid. This demonstrates the need to study species at these leading edges to accurately predict expansion potential. Arctic specialists were poorly represented across studies (limited to 5 bird and 0 mammal species), this knowledge gap potentially explains the few reported negative effects of shrub cover (3 of 29 species). Species responses to shrub cover showed substantial heterogeneity and varied among sites and years in all studies with sufficient replication to detect such variation. Our study highlights the importance of responses at species range edges in determining outcomes of shrubification for arctic birds and mammals and the need for greater examination of potential wildlife losers under shrubification.  相似文献   

20.
Evolutionary processes play an important role in shaping the dynamics of range expansions, and selection on dispersal propensity has been demonstrated to accelerate rates of advance. Previous theory has considered only the evolution of unconditional dispersal rates, but dispersal is often more complex. For example, many species emigrate in response to crowding. Here, we use an individual-based model to investigate the evolution of density dependent dispersal into empty habitat, such as during an invasion. The landscape is represented as a lattice and dispersal between populations follows a stepping-stone pattern. Individuals carry three ‘genes’ that determine their dispersal strategy when experiencing different population densities. For a stationary range we obtain results consistent with previous theoretical studies: few individuals emigrate from patches that are below equilibrium density. However, during the range expansion of a previously stationary population, we observe evolution towards dispersal strategies where considerable emigration occurs well below equilibrium density. This is true even for moderate costs to dispersal, and always results in accelerating rates of range expansion. Importantly, the evolution we observe at an expanding front depends upon fitness integrated over several generations and cannot be predicted by a consideration of lifetime reproductive success alone. We argue that a better understanding of the role of density dependent dispersal, and its evolution, in driving population dynamics is required especially within the context of range expansions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号