首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface active group (SAG) is the most obvious social interaction of the North Atlantic right whale ( Eubalaena glacialis ). SAGs are typically composed of an adult female with two or more males engaged in social behavior near the surface. Distinct calls, believed to be produced by the female, are associated with these groups. Calls recorded from three North Atlantic right whale SAGs and three South Atlantic right whale ( Eubalaena australis ) SAGs were played back to North Atlantic right whales to determine if these sounds are sufficient to attract males to the groups. Playbacks of gunshot sounds produced by North Atlantic right whales were used as a control stimulus. Thirty-six trials were carried out from 1999 to 2001 in the Bay of Fundy, Canada. Whales approached 27 of 31 SAG playbacks and 0 of 5 gunshot playbacks. Where sex was determined ( n = 28), all approaches to North Atlantic SAG recordings were by males. Individuals ( n = 22) of all age and sex classes approached South Atlantic SAG playbacks. These trials indicate that SAG calls from both populations are sufficient to attract right whales to SAGs and that males and females respond differently to stimuli from the North Atlantic. The difference in response to North and South Atlantic SAG stimuli was unexpected. Novelty, species differences in calls, and different seasonal or behavioral context for the recorded stimuli may be responsible for the differences in response.  相似文献   

2.
Humpback whales are renowned for the complex structured songs produced by males. A second, relatively understudied area of humpback acoustic communication concerns un-patterned sounds known as "social sounds," produced by both males and females. These include vocalizations as well as sounds produced at the surface of the water as a result of surface behaviors ( e.g. , breaching, pectoral slapping). This study describes a portion of the non-song social sound repertoire of southward migrating humpbacks in Australian waters, and explores the social relevance of these sounds. On migration, humpback whales travel in social groups of varying compositions. These social groups are not stable in that humpback whales continually change group composition by splitting from, or joining with, other groups. The results of this study suggest that "breaching" and "slapping" have a communicative function. Other sounds such as "underwater blows" and "cries" were heard mainly in competitive groups while other low-frequency sounds such as "grumbles,""snorts,""thwops," and "wops" may function in intra- or inter-group communication. Particular sounds ("grunts,""groans," and "barks") were almost exclusive to joining pods suggesting a role in social integration. Social sounds in humpbacks may have specific social and behavioral functions relating to social group composition, and the mediation of interactions between these social groups.  相似文献   

3.
In 2007 and 2008, controlled exposure experiments were performed in the Bahamas to study behavioral responses to simulated mid‐frequency active sonar (MFA) by three groups of odontocetes: false killer whales, Pseudorca crassidens; short‐finned pilot whales, Globicephala macrorhynchus; and melon‐headed whales, Peponocephala electra. An individual in each group was tagged with a Dtag to record acoustic and movement data. During exposures, some individuals produced whistles that seemed similar to the experimental MFA stimulus. Statistical tests were thus applied to investigate whistle‐MFA similarity and the relationship between whistle production rate and MFA reception time. For the false killer whale group, overall whistle rate and production rate of the most MFA‐like whistles decreased with time since last MFA reception. Despite quite low whistle rates overall by the melon‐headed whales, statistical results indicated minor transient silencing after each signal reception. There were no apparent relationships between pilot whale whistle rates and MFA sounds within the exposure period. This variability of responses suggests that changes in whistle production in response to acoustic stimuli depend not only on species and sound source, but also on the social, behavioral, or environmental contexts of exposure.  相似文献   

4.
The function(s) of a particular sound can be explored in detail only if the context of its use is well understood. The behavior of the signaler, and the habitat in which that behavior is observed, are two of the most important components of understanding context specific use of a sound. Bottlenose dolphin foraging behavior is often inferred from relatively few behavioral cues that are visible from the surface. To investigate the use of three specific sound types: echolocation, whistles, and pops during foraging, I recorded sound use by animals engaged in a set of previously defined specific foraging behaviors using a system that allowed me to see animals throughout the water column. Lone foraging animals produced all three sounds at significantly higher rates than animals foraging in groups, and the rate of sound production per animal in multi-animal foraging groups did not vary even as the groups reached up to five individuals. Production of echolocation and pops by lone foraging animals accounted for much of the difference. Foraging dolphins also displayed habitat-specific use of particular sound types. They preferentially produced echolocation and pops in the sand habitat and, at least for lone animals, in the seagrass edge habitat.  相似文献   

5.
Haddock, Melanogrammus aeglefinus, have been previously shown to produce sounds during mating. Several behavioural aspects of sound production of courting haddock were further investigated in relation to sex ratio. We assessed whether (i) single males or females generate sounds when isolated, (ii) sound is produced when one male is present with a female, (iii) sound production becomes altered with the introduction of an additional male, and (iv) sounds are produced independent of egg release. Data were collected from 30 March to 11 June 1999, during the spawning period using small outdoor tanks. Sounds generated by captive males during spawning were categorized as knocks, hums and an intermediate between these two types. Solitary males and females did not produce sounds. Sounds were produced when one male was present with a single female. The knocking call duration increased when a second male was introduced. Sounds produced by males occurred independent of the day of egg release.  相似文献   

6.
North Atlantic right whales were extensively hunted during the whaling era and have not recovered. One of the primary factors inhibiting their recovery is anthropogenic mortality caused by ship strikes. To assess risk factors involved in ship strikes, we used a multi-sensor acoustic recording tag to measure the responses of whales to passing ships and experimentally tested their responses to controlled sound exposures, which included recordings of ship noise, the social sounds of conspecifics and a signal designed to alert the whales. The whales reacted strongly to the alert signal, they reacted mildly to the social sounds of conspecifics, but they showed no such responses to the sounds of approaching vessels as well as actual vessels. Whales responded to the alert by swimming strongly to the surface, a response likely to increase rather than decrease the risk of collision.  相似文献   

7.
ABSTRACT

Mysticete (baleen) whales produce a variety of vocalizations and sounds, but relatively few of these have been well described with accompanying behavior. This review concentrates on the vocalizations consistently associated with behavioral interactions or acoustic exchanges between or among conspecifics. These communication “signals” have been categorized for this review as contact calls of single animals outside of the breeding season (including cow-calf pairs), vocalizations reported during the breeding season (often designated as “songs”), and calls produced by active groups of whales that may or may not have a reproductive function. While much remains unknown, the data obtained thus far indicate that the social vocalizations of baleen whales have structural/functional similarities with those of other mammals and birds.  相似文献   

8.
本文研究了受水温和光周期等自然变化影响的饲养状态真鲂鮄发声的昼夜与季节变化,并研究了实验鱼活动(鱼类游泳次数)的日变化。声音信号的昼夜节律记录发声活动的日常水平(摄食之外的时期),但是每月变化的记录(季节性式型)则在摄食期间进行,因为摄食时声音信号增加,而日常发声活动较不频繁。实验鱼包括雌雄两性,且未达性成熟。真鲂鮄在白天发声多一些,也更活跃。声音为阵发式的,较不频繁(平均值=0.04发声/min每鱼每天)。最少的发声活动出现在晚上,凌晨和黄昏居中(声音的阵发更频繁,但是声音更少),最多的发声活动出现在白天(声音的阵发更频繁,并且含更多数目的声音)。竞争摄食时声音信号的比率不呈现季节性变化(平均值=3.98发声/min每鱼),与温度也不相关,显示出竞争摄食时声音的发出以最大比率进行。敲击声和呼噜声的某些声学特征与温度相关,特别是在较高的温度下呼噜声的节拍间隔急剧下降。敲击声和呼噜声的声音参数中的季节性变化,多数可以解释为发声肌肉和中央声音控制回路的温度效应。  相似文献   

9.
We investigated auditory signals and morphology of the stridulatory apparatus of the European beech leaf‐mining weevil, Orchestes fagi L. (Coleoptera: Curculionidae), an invasive herbivore now established in Nova Scotia, Canada, to determine their potential for enhancing survey tools to monitor the spread of the species in Canada. We recorded and described sounds produced by adult O. fagi, analyzed the morphology of the stridulatory mechanism for intersexual differences and asymmetry, and examined behavioral responses elicited in conspecifics by playback of stridulation recordings. Adult O. fagi produced sounds under three conditions: male in distress, female in distress, and male in the presence of female. Female distress chirps lasted significantly longer than male distress chirps and male chirps in the presence of females, but peak frequencies and mean number of chirps per s did not differ significantly among the three groups. Morphology of the stridulation structures in male and female O. fagi was compared using scanning electron microscopy. Orchestes fagi have an elytro‐tergal file‐ and scraper‐type sound production apparatus, through which sound is produced upon anterior motion of the abdomen. Female O. fagi have a ‘pars stridens’ that is longer and has more ridges than males. Width and number of ridges per length of pars stridens did not differ between the sexes. Evidence of asymmetry was found in male pars stridens, with the right side being longer than the left. Playback of recorded sounds to adult weevils suggests female O. fagi were repelled by sounds produced by distressed males.  相似文献   

10.
Acoustic behaviour of Abudefduf luridus   总被引:2,自引:0,他引:2  
Adult males Abudefduf luridus produced sounds during aggressive interactions, although not all aggressive interactions were associated with sounds. Such sounds were always related to characteristic swimming movements during an aggressive display or territorial defence. The sound was a combination of several sonic pulses, with most energy concentrated towards the low end of the spectrum (from <50 to 800 Hz), and was most frequently groups of two pulses. Analysis of the pulse structure suggested that these sounds are produced by muscles acting on the swimbladder. However, the mechanism of sound production has yet to be demonstrated. Sounds were emitted throughout the 24-h period with increased activity at sunrise and sunset.  相似文献   

11.
Humpback whales, unlike most mammalian species, learn new songs as adults. Populations of singers progressively and collectively change the sounds and patterns within their songs throughout their lives and across generations. In this study, humpback whale songs recorded in Hawaii from 1985 to 1995 were analyzed using self-organizing maps (SOMs) to classify the sounds within songs, and to identify sound patterns that were present across multiple years. These analyses supported the hypothesis that recurring, persistent patterns exist within whale songs, and that these patterns are defined at least in part by acoustic relationships between adjacent sounds within songs. Sound classification based on acoustic differences between adjacent sounds yielded patterns within songs that were more consistent from year to year than classifications based on the properties of single sounds. Maintenance of fixed ratios of acoustic modulation across sounds, despite large variations in individual sounds, suggests intrinsic constraints on how sounds change within songs. Such acoustically invariant cues may enable whales to recognize and assess variations in songs despite propagation-related distortion of individual sounds and yearly changes in songs.  相似文献   

12.
Sound production in the cichlid Tilapia mossambica Peters   总被引:1,自引:0,他引:1  
Aquarium-bred adult and juvenile Tilapia mossambica Peters can produce sounds ofvarying frequency, duration and intensity. However, minor environmental disturbancesmay cause the fish to fall silent for long periods. The sounds produced by excited feedingfishes are different from those produced by territorial males and from those emitted by fryswimming in school formation. The frequency of the sounds recorded varied from about1–16 kHz; no data are available on frequencies lower than 1 kHz. The sound producingmechanism consists of a single ventral and two dorsal pharyngeals located in the buccalcavity and provided with numerous small teeth. These teeth have a specially modifieddistal surface area which is already evident in younger fish. Young Tilapia , including3-week old fry, are able to emit sounds as soon as a sufficient number of teeth havedeveloped in the pharyngeal region.  相似文献   

13.
Signal source intensity and detection range, which integrates source intensity with propagation loss, background noise and receiver hearing abilities, are important characteristics of communication signals. Apparent source levels were calculated for 819 pulsed calls and 24 whistles produced by free-ranging resident killer whales by triangulating the angles-of-arrival of sounds on two beamforming arrays towed in series. Levels in the 1–20 kHz band ranged from 131 to 168 dB re 1 μPa at 1 m, with differences in the means of different sound classes (whistles: 140.2±4.1 dB; variable calls: 146.6±6.6 dB; stereotyped calls: 152.6±5.9 dB), and among stereotyped call types. Repertoire diversity carried through to estimates of active space, with “long-range” stereotyped calls all containing overlapping, independently-modulated high-frequency components (mean estimated active space of 10–16 km in sea state zero) and “short-range” sounds (5–9 km) included all stereotyped calls without a high-frequency component, whistles, and variable calls. Short-range sounds are reported to be more common during social and resting behaviors, while long-range stereotyped calls predominate in dispersed travel and foraging behaviors. These results suggest that variability in sound pressure levels may reflect diverse social and ecological functions of the acoustic repertoire of killer whales.  相似文献   

14.
Acoustic behavior plays a crucial role in many aspects of cicada biology, such as reproduction and intrasexual competition. Although female sound production has been reported in some cicada species, acoustic behavior of female cicadas has received little attention. In cicada Subpsaltria yangi, the females possess a pair of unusually well-developed stridulatory organs. Here, sound production and its function in females of this remarkable cicada species were investigated. We revealed that the females could produce sounds by stridulatory mechanism during pair formation, and the sounds were able to elicit both acoustic and phonotactic responses from males. In addition, the forewings would strike the body during performing stridulatory sound-producing movements, which generated impact sounds. Acoustic playback experiments indicated that the impact sounds played no role in the behavioral context of pair formation. This study provides the first experimental evidence that females of a cicada species can generate sounds by stridulatory mechanism. We anticipate that our results will promote acoustic studies on females of other cicada species which also possess stridulatory system.  相似文献   

15.
Male signals are frequently studied in a single behavioral context, but in some cases they may assist multiple functions, namely for both male–male competition and female mate choice. Boatwhistles are known as the mate attraction calls of toadfishes typically produced during the breeding season. However, recent observations with the Lusitanian toadfish Halobatrachus didactylus (Batrachoididae) indicate that the emission of boatwhistles is not restricted to this period, which suggests a function in other behavioral contexts such as agonistic territorial interactions. We experimentally manipulated the social context of toadfish males to investigate whether boatwhistles are produced during territorial defense, by introducing ‘intruders’ in an experimental tank containing nesting ‘resident’ males. Furthermore, we examined whether parental care (eggs in the nest) affected the behavioral responses of resident males during territorial defense. Resident males defended their shelters producing sounds, mostly boatwhistles, towards intruders. Parental males revealed higher aggression levels, exhibiting additional threatening and attack behaviors. Boatwhistles registered during agonistic events were compared with the mate advertising boatwhistles recorded from small aggregations of nesting males in a natural breeding intertidal area. Agonistic boatwhistles were produced in lower and variable calling rates comparing with the advertising ones that were typically emitted in long series of calls. Agonistic boatwhistles were similar in duration and frequency harmonic structure (with a middle tonal phase) to the advertising calls, but presented less amplitude modulation, and lower dominant and fundamental frequencies. These acoustic differences were probably related to differences in calling rates and broadcast demands associated to the distance to the intended receiver. We provide first evidence that, apart from attracting mates, the toadfish boatwhistles also function as active ‘keep‐out’ signals during territorial defense.  相似文献   

16.
Beaked whales respond to simulated and actual navy sonar   总被引:1,自引:0,他引:1  
Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2-3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2-3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 μPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define disturbance.  相似文献   

17.
The sperm whale (Physeter macrocephalus) emits a typical short acoustic signal, defined as a “click”, almost continuously while diving. It is produced in different time patterns to acoustically explore the environment and communicate with conspecifics. Each emitted click has a multi-pulse structure, resulting from the production of the sound within the sperm whale’s head. A Stable Inter Pulse Interval (Stable IPI) can be identified among the pulses that compose a single click. Applying specific algorithms, the measurement of this interval provides useful information to assess the total length of the animal recorded. In January 2005, a cabled hydrophone array was deployed at a depth of 2,100 m in the Central Mediterranean Sea, 25 km offshore Catania (Ionian Sea). The acoustic antenna, named OνDE (Ocean noise Detection Experiment), was in operation until November 2006. OνDE provided real time acoustic data used to perform Passive Acoustic Monitoring (PAM) of cetacean sound emissions. In this work, an innovative approach was applied to automatically measure the Stable IPI of the clicks, performing a cepstrum analysis to the energy (square amplitude) of the signals. About 2,100 five-minute recordings were processed to study the size distribution of the sperm whales detected during the OνDE long term deep-sea acoustic monitoring. Stable IPIs were measured in the range between 2.1 ms and 6.4 ms. The equations of Gordon (1991) and of Growcott (2011) were used to convert the IPIs into measures of size. The results revealed that the sperm whales recorded were distributed in length from about 7.5 m to 14 m. The size category most represented was from 9 m to 12 m (adult females or juvenile males) and specimens longer than 14 m (old males) seemed to be absent.  相似文献   

18.
For decades, the bio-duck sound has been recorded in the Southern Ocean, but the animal producing it has remained a mystery. Heard mainly during austral winter in the Southern Ocean, this ubiquitous sound has been recorded in Antarctic waters and contemporaneously off the Australian west coast. Here, we present conclusive evidence that the bio-duck sound is produced by Antarctic minke whales (Balaenoptera bonaerensis). We analysed data from multi-sensor acoustic recording tags that included intense bio-duck sounds as well as singular downsweeps that have previously been attributed to this species. This finding allows the interpretation of a wealth of long-term acoustic recordings for this previously acoustically concealed species, which will improve our understanding of the distribution, abundance and behaviour of Antarctic minke whales. This is critical information for a species that inhabits a difficult to access sea-ice environment that is changing rapidly in some regions and has been the subject of contentious lethal sampling efforts and ongoing international legal action.  相似文献   

19.
The role of sound production of the Mozambique tilapia Oreochromis mossambicus in agonistic and mating interactions observed during hierarchy formation and in established groups was examined. Only territorial males produced sounds, during male–female and male–male courtship interactions and during pit-related activities ( e.g. dig, hover and still in the nest). Sound production rate was positively correlated with courting rate. Although sounds in other cichlids are typically emitted in early stages of courtship, O. mossambicus produced sounds in all phases, but especially during late stages of courtship, including spawning. It is suggested that the acoustic emissions in this species may play a role in advertising the presence and spawning readiness of males and in synchronizing gamete release.  相似文献   

20.
As part of their social sound repertoire, migrating humpback whales (Megaptera novaeangliae) perform a large variety of surface‐active behaviors, such as breaching and repetitive slapping of the pectoral fins and tail flukes; however, little is known about what factors influence these behaviors and what their functions might be. We investigated the potential functions of surface‐active behaviors in humpback whale groups by examining the social and environmental contexts in which they occurred. Focal observations on 94 different groups of whales were collected in conjunction with continuous acoustic monitoring, and data on the social and environmental context of each group. We propose that breaching may play a role in communication between distant groups as the probability of observing this behavior decreased significantly when the nearest whale group was within 4,000 m compared to beyond 4,000 m. Involvement in group interactions, such as the splitting of a group or a group joining with other whales, was an important factor in predicting the occurrence of pectoral, fluke, and peduncle slapping, and we suggest that they play a role in close‐range or within‐group communication. This study highlights the potentially important and diverse roles of surface‐active behaviors in the communication of migrating humpback whales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号