首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gong WJ  Golic KG 《Genetics》2006,172(1):275-286
The heat-shock response is a programmed change in gene expression carried out by cells in response to environmental stress, such as heat. This response is universal and is characterized by the synthesis of a small group of conserved protein chaperones. In Drosophila melanogaster the Hsp70 chaperone dominates the profile of protein synthesis during the heat-shock response. We recently generated precise deletion alleles of the Hsp70 genes of D. melanogaster and have used those alleles to characterize the phenotypes of Hsp70-deficient flies. Flies with Hsp70 deletions have reduced thermotolerance. We find that Hsp70 is essential to survive a severe heat shock, but is not required to survive a milder heat shock, indicating that a significant degree of thermotolerance remains in the absence of Hsp70. However, flies without Hsp70 have a lengthened heat-shock response and an extended developmental delay after a non-lethal heat shock, indicating Hsp70 has an important role in recovery from stress, even at lower temperatures. Lack of Hsp70 also confers enhanced sensitivity to a temperature-sensitive lethal mutation and to the neurodegenerative effects produced by expression of a human polyglutamine disease protein.  相似文献   

2.
A targeted gene knockout in Drosophila   总被引:6,自引:0,他引:6  
Rong YS  Golic KG 《Genetics》2001,157(3):1307-1312
We previously described a method for targeted homologous recombination at the yellow gene of Drosophila melanogaster. Because only a single gene was targeted, further work was required to show whether the method could be extended to become generally useful for gene modification in Drosophila. We have now used this method to produce a knockout of the autosomal pugilist gene by homologous recombination between the endogenous locus and a 2.5-kb DNA fragment. This was accomplished solely by tracking the altered genetic linkage of an arbitrary marker gene as the targeting DNA moved from chromosome X or 2 to chromosome 3. The results indicate that this method of homologous recombination is likely to be generally useful for Drosophila gene targeting.  相似文献   

3.
As the Human Genome and Drosophila Genome Projects were completed, it became clear that functions of human disease-associated genes may be elucidated by studying the phenotypic expression of mutations affecting their structural or functional homologs in Drosophila. Genomic diseases were identified as a new class of human disorders. Their cause is recombination, which takes place at gene-flanking duplicons to generate chromosome aberrations such as deletions, duplications, inversions, and translocations. The resulting imbalance of the dosage of developmentally important genes arises at a frequency of 10(-3) (higher than the mutation rate of individual genes) and leads to syndromes with multiple manifestations, including cognitive defects. Genomic DNA fragments were cloned from the Drosophila melanogaster agnostic locus, whose mutations impair learning ability and memory. As a result, the locus was exactly localized in X-chromosome region 11A containing the LIM kinase 1 (LIMK1) gene (CG1848), which is conserved among many species. Hemizygosity for the LIMK1 gene, which is caused by recombination at neighboring extended repeats, underlies cognitive disorders in human Williams syndrome. LIMK1 is a component of the integrin signaling cascade, which regulates the functions of the actin cytoskeleton, synaptogenesis, and morphogenesis in the developing brain. Immunofluorescence analysis revealed LIMK1 in all subdomains of the central complex and the visual system of Drosophila melanogaster. Like in the human genome, the D. melanogaster region is flanked by numerous repeats, which were detected by molecular genetic methods and analysis of ectopic chromosome pairing. The repeats determined a higher rate of spontaneous and induced recombination. including unequal crossing over, in the agnostic gene region. Hence, the agnostic locus was considered as the first D. melanogaster model suitable for studying the genetic defect associated with Williams syndrome in human.  相似文献   

4.
Mohr SE  Gelbart WM 《Genetics》2002,162(1):165-176
Understanding the function of each gene in the genome of a model organism such as Drosophila melanogaster is an important goal. The development of improved methods for uncovering the mutant phenotypes of specific genes can accelerate achievement of this goal. The P[wHy] hybrid transposable element can be used to generate nested sets of precisely mapped deletions in a given region of the Drosophila genome. Here we use the P[wHy] method to generate overlapping, molecularly defined deletions from a set of three P[wHy] insertions in the 54E-F region of chromosome 2. Deletions that span a total of 0.5 Mb were identified and molecularly mapped precisely. Using overlapping deletions, the mutant phenotypes of nine previously uncharacterized genes in a 101-kb region were determined, including identification of new loci required for viability and female fertility. In addition, the deletions were used to molecularly map previously isolated lethal mutations. Thus, the P[wHy] method provides an efficient method for systematically determining the phenotypes of genes in a given region of the fly genome.  相似文献   

5.
Efficient gene targeting in Drosophila with zinc-finger nucleases   总被引:13,自引:0,他引:13       下载免费PDF全文
This report describes high-frequency germline gene targeting at two genomic loci in Drosophila melanogaster, y and ry. In the best case, nearly all induced parents produced mutant progeny; 25% of their offspring were new mutants and most of these were targeted gene replacements resulting from homologous recombination (HR) with a marked donor DNA. The procedure that generates these high frequencies relies on cleavage of the target by designed zinc-finger nucleases (ZFNs) and production of a linear donor in situ. Increased induction of ZFN expression led to higher frequencies of gene targeting, demonstrating the beneficial effect of activating the target. In the absence of a homologous donor DNA, ZFN cleavage led to the recovery of new mutants at three loci-y, ry and bw-through nonhomologous end joining (NHEJ) after cleavage. Because zinc fingers can be directed to a broad range of DNA sequences and targeting is very efficient, this approach promises to allow genetic manipulation of many different genes, even in cases where the mutant phenotype cannot be predicted.  相似文献   

6.
We used ends-in gene targeting to generate knockout mutations of the nucleosome assembly protein 1 (Nap1) gene in Drosophila melanogaster. Three independent targeted null-knockout mutations were produced. No wild-type NAP1 protein could be detected in protein extracts. Homozygous Nap1(KO) knockout flies were either embryonic lethal or poorly viable adult escapers. Three additional targeted recombination products were viable. To gain insight into the underlying molecular processes we examined conversion tracts in the recombination products. In nearly all cases the I-SceI endonuclease site of the donor vector was replaced by the wild-type Nap1 sequence. This indicated exonuclease processing at the site of the double-strand break (DSB), followed by replicative repair at donor-target junctions. The targeting products are best interpreted either by the classical DSB repair model or by the break-induced recombination (BIR) model. Synthesis-dependent strand annealing (SDSA), which is another important recombinational repair pathway in the germline, does not explain ends-in targeting products. We conclude that this example of gene targeting at the Nap1 locus provides added support for the efficiency of this method and its usefulness in targeting any arbitrary locus in the Drosophila genome.  相似文献   

7.
YHM. Svoboda  M. K. Robson    J. A. Sved 《Genetics》1995,139(4):1601-1610
Male recombination, not normally present in Drosophila melanogaster, can be produced at high rates when target P elements at homologous sites are combined in the presence of transposase protein. We have produced a set of elements by in situ deletion of a particular insertion and have found elements that have deletions stretching into either end. Elements were tested in pairs to see whether they complement each other in their ability to induce recombination. The combination of elements that are deficient for the same end produces very little recombination, but the combination of a right-end and a left-end element can generate recombination values higher than given by two complete P[CaSpeR] elements at homologous sites. This strongly suggests that ``hybrid' P elements, containing ends from two different elements, can be recognized by transposase protein. We have also examined genotypes containing a normal and an end-deficient element and found that they yield reasonably high levels of recombination. We interpret the resultant gametes from such genotypes as showing that the majority of events in this genotype derive from the association of complementary ends from the same element, whereas the complementary ends from elements in trans associate in only a minority of cases.  相似文献   

8.
The 70-kDa heat shock protein (Hsp) family in all Drosophila species includes 2 environmentally inducible family members, Hsp70 and Hsp68. Two-dimensional gel electrophoresis revealed an unusual pattern of heat shock-inducible proteins in the species of the virilis group. Trypsin fingerprinting and microsequencing of tryptic peptides using ProteinChip Array technology identified the major isoelectric variants of Hsp70 family, including Hsp68 isoforms that differ in both molecular mass and isoelectric point from those in Drosophila melanogaster. The peculiar electrophoretic mobility is consistent with the deduced amino acid sequence of corresponding hsp genes from the species of the virilis group.  相似文献   

9.
We report an efficient and specific gene targeting method for transforming the germ line of Drosophila melanogaster. The targeting occurs during the repair of a double-strand DNA break that is induced at the white locus by the excision of a P transposable element. The break is repaired when homologous sequence is copied from a plasmid injected into the Drosophila embryo. The procedure efficiently integrates DNA into the targeted locus of the Drosophila genome. Heterologous sequence of up to 13 kbp in length can be inserted, permitting the intergration of entire genes into a common genomic site for further study.  相似文献   

10.
Hsp70 genes may influence the expression of wing abnormalities in Drosophila melanogaster but their effects on variability in quantitative characters and developmental instability are unclear. In this study, we focused on one of the six Hsp70 genes, Hsp70Ba, and investigated its effects on within- and among-individual variability in orbital bristle number, sternopleural bristle number, wing size and wing shape under different environmental conditions. To do this, we studied a newly constructed deletion, Df(3R)ED5579, which encompasses Hsp70Ba and nine non-Hsp genes, in the heterozygous condition and another, Hsp70Ba(304), which deletes only Hsp70Ba, in the homozygous condition. We found no significant effect of both deletions on within-individual variation quantified by fluctuating asymmetry (FA) of morphological traits. On the other hand, the Hsp70Ba(304)/Hsp70Ba(304) genotype significantly increased among-individual variation quantified by coefficient of variation (CV) of bristle number and wing size in female, while the Df(3R)ED5579 heterozygote showed no significant effect. The expression level of Hsp70Ba in the deletion heterozygote was 6 to 20 times higher than in control homozygotes, suggesting that the overexpression of Hsp70Ba did not influence developmental stability or canalization significantly. These findings suggest that the absence of expression of Hsp70Ba increases CV of some morphological traits and that HSP70Ba may buffer against environmental perturbations on some quantitative traits.  相似文献   

11.
12.
We examined the role of small Hsp genes (Hsp23 and Hsp40) and heat shock gene Hsr-omega in the thermoadaptation of Drosophila melanogaster inhabiting a highly heterogeneous microsite (Nahal Oren canyon, Carmel massif, Israel). We tested whether interslope differences in Drosophila thermoadaptation, revealed in our previous studies, are associated with the differential expression of these genes. Our results demonstrate an increased expression of the Hsp40 gene in thermotolerant lines subjected to mild heat shock treatment (P < 10(-6), analysis of variance test). A high positive correlation was found between the levels of Hsp40 expression and scores of basal (R = 0.74; P < 0.001, based on the Spearman rank correlation test) and induced thermotolerance (R = 0.78; P < 0.0001), implying a significant contribution of Hsp40 gene in thermoadaptation.  相似文献   

13.
The PE and PPE (PE/PPE) multigene families of Mycobacterium tuberculosis are particularly GC-rich and share extensive homologous repetitive sequences. We hypothesized that they may undergo homologous recombination events, a mechanism rarely described in the natural evolution of mycobacteria. To test our hypothesis, we developed a specific oligonucleotide-based microarray targeting nearly all of the PE/PPE genes, aimed at detecting signals for homologous recombination. Such a microarray has never before been reported due to the multiplicity and highly repetitive and homologous nature of these sequences. Application of the microarray to a collection of M. tuberculosis clinical isolates (n = 33) representing prevalent spoligotype strain families in Tunisia allowed successful detection of six deleted genomic regions involving a total of two PE and seven PPE genes. Some of these deleted genes are known to be immunodominant or involved in virulence. The four precisely determined deletions were flanked by 400- to 500-bp stretches of nearly identical sequences lying mainly at the conserved N-terminal region of the PE/PPE genes. These highly homologous sequences thus serve as substrates to mediate both intergenic and intragenic homologous recombination events, indicating an important function in generating strain variation. Importantly, all recombination events yielded a new in-frame fusion chimeric gene. Hence, homologous recombination within and between PE/PPE genes likely increased their antigenic variability, which may have profound implications in pathogenicity and/or host adaptation. The finding of high prevalence (approximately 45% and approximately 58%) for at least two of the genomic deletions suggests that they likely confer advantageous biological attributes.  相似文献   

14.
Heat shock proteins (Hsps) and other molecular chaperones perform diverse physiological roles. One is to facilitate, in part, organismal thermotolerance, of which the functional consequences depend on Hsp70 concentration and developmental stage in Drosophila melanogaster. To test whether an Hsp70-thermotolerance relationship is a general phenomenon within Drosophila, I assayed Hsp70 concentration at a range of temperatures in intact larvae and adults of three species, D. melanogaster, D. simulans, and D. mojavensis, and compared those results to the increase in survival to heat shock that occurs after an Hsp70 inducing pretreatment. Larvae of D. melanogaster and D. simulans responded similarly to heat; they expressed Hsp70 maximally at 36-37 degrees C, and their tolerance of 1 h heat shocks increased by 1.5-2 degrees C. By contrast, D. mojavensis, which tolerates higher temperatures than do D. melanogaster and D. simulans, expressed Hsp70 only at higher temperatures, although the 36 degrees C pretreatment still increased thermotolerance. Critically, the temperature that maximally induced Hsp70 was a poor inducer of thermotolerance in D. mojavensis and may have harmed larvae. Results for Drosophila adults, which tolerated heat poorly compared to larvae, likewise suggest that a close link between peak Hsp70 expression and maximal induction of thermotolerance is a feature of D. melanogaster, and not of the other species. Neither D. simulans nor D. mojavensis adults increased tolerance after exposure to the temperatures that maximally induced Hsp70.  相似文献   

15.
棉花粉蚧热休克蛋白基因的鉴定   总被引:2,自引:0,他引:2  
热休克蛋白(heat shock proteins,Hsps)是生物体或细胞受到热胁迫后新合成的一类遗传上高度保守的蛋白,在昆虫应对外界环境因子胁迫时起着重要作用。为了系统研究棉花粉蚧Phenacoccus solenopsis Hsp基因家族,对棉花粉蚧转录组基因注释信息进行分析、获得目标序列,并应用NCBI上Blast X等软件进行比对、共鉴定出24条热激蛋白(Hsp)基因,包括3个Hsp90、8个Hsp70、2个Hsp60和11个s Hsp(small heat shock protein,s Hsp)基因。对棉花粉蚧与模式昆虫家蚕Bombyx mori、黑腹果蝇Drosophila melanogaster、赤拟谷盗Tribolium castaneum系统进化关系分析显示,昆虫的小分子量热休克蛋白s Hsp具有很强的种属特异性,Hsp70家族的保守性比s Hsp强。棉花粉蚧热激蛋白基因的鉴定为深入研究该虫Hsp与生长发育、抗逆境的相互关系奠定了基础。  相似文献   

16.
The "selfish DNA" theory postulates that transposable elements (TEs) are intragenomic parasites, and that natural selection against deleterious effects associated with their presence is the main force preventing their genomic spread in natural populations. In agreement with this model, TEs in Drosophila melanogaster populations are usually found at low frequencies in most genomic locations. Only a few cases of fixation of TE insertions have been reported, usually in regions of low recombination, where selection is expected to be less effective. Here, we report a population genetics study on the apparent fixation of an S-element in a highly recombining region in two natural populations of D. melanogaster. Three similar fragments of an S-element are inserted into the 5' regions of three members of a heat shock gene family, Hsp70 (Hsp70Aa and Hsp70Ab in polytene chromosome band 87A, and Hsp70Bb in 87C). A PCR-based analysis suggests that the insertions are fixed or at high frequencies in the entire species. A population survey of the levels of nucleotide sequence variation at the insertion site in 87C in two natural populations of D. melanogaster provided evidence for reduced levels of variation in the region, normal levels of recombination, and selection, reflected in a significant departure from neutrality of the variant frequency spectrum. This was particularly strong for the S-element inverted repeats (IRs) and suggests that these are of functional significance for the host.  相似文献   

17.
As the Human Genome and Drosophila Genome Projects were completed, it became clear that functions of human disease-associated genes may be elucidated by studying the phenotypic expression of mutations affecting their structural or functional homologs in Drosophila.Genomic diseases were identified as a new class of human disorders. Their cause is recombination, which takes place at gene-flanking duplicons to generate chromosome aberrations such as deletions, duplications, inversions, and translocations. The resulting imbalance of the dosage of developmentally important genes arises at a frequency of 10-3 (higher than the mutation rate of individual genes) and leads to syndromes with multiple manifestations, including cognitive defects. Genomic DNA fragments were cloned from the Drosophila melanogaster agnostic locus, whose mutations impair learning ability and memory. As a result, the locus was exactly localized in X-chromosome region 11AB containing the LIM kinase 1 (LIMK1) gene (CG1848), which is conserved among many species. Hemizygosity for the LIMK1 gene, which is caused by recombination at neighboring extended repeats, underlies cognitive disorders in human Williams syndrome. LIMK1 is a component of the integrin signaling cascade, which regulates the functions of the actin cytoskeleton, synaptogenesis, and morphogenesis in the developing brain. Immunofluorescence analysis revealed LIMK1 in all subdomains of the central complex and the visual system of Drosophila melanogaster.Like in the human genome, theD. melanogaster region is flanked by numerous repeats, which were detected by molecular genetic methods and analysis of ectopic chromosome pairing. The repeats determined a higher rate of spontaneous and induced recombination, including unequal crossing over, in theagnostic gene region. Hence, the agnostic locus was considered as the first D. melanogaster model suitable for studying the genetic defect associated with Williams syndrome in human.  相似文献   

18.
Acclimation to environmental change can impose costs to organisms. One potential cost is the change in cell metabolism that follows a physiological response, e.g., high expression of heat shock proteins may alter specific activity of important enzymes. We examined the significance of this cost in a pair of Drosophila melanogaster lines transformed with additional copies of a gene that encodes the heat shock protein, Hsp70. Heat shock induces Hsp70 expression in all lines, but lines with extra copies produce much more Hsp70 than do excision control strains. The consequence of this supranormal Hsp70 expression is to reduce specific activity of both enzymes analyzed, adult alcohol dehydrogenase (ADH), which is heat sensitive, and lactate dehydrogenase, which is not. Strain differences were most pronounced under those conditions where Hsp70 expression was maximized, and not where the heat stress denatured proteins. That result supported the idea that Hsp70 expression is constrained evolutionarily by its tendency to bind nascent peptides when overabundant within the cell.  相似文献   

19.
20.
To determine how the modern copy number (5) of hsp70 genes in Drosophila melanogaster evolved, we localized the duplication events that created the genes in the phylogeny of the melanogaster group, examined D. melanogaster genomic sequence to investigate the mechanisms of duplication, and analyzed the hsp70 gene sequences of Drosophila orena and Drosophila mauritiana. The initial two-to-four hsp70 duplication occurred 10--15 MYA, according to fixed in situ hybridization to polytene chromosomes, before the origin and divergence of the melanogaster and five other species subgroups of the melanogaster group. Analysis of more than 30 kb of flanking sequence surrounding the hsp70 gene clusters suggested that this duplication was likely a retrotransposition. For the melanogaster subgroup, Southern hybridization and an hsp70 restriction map confirmed the conserved number (4) and arrangement of hsp70 genes in the seven species other than D. melanogaster. Drosophila melanogaster is unique; tandem duplication and gene conversion at the derived cluster yielded a fifth hsp70 gene. The four D. orena hsp70 genes are highly similar and concertedly evolving. In contrast, the D. mauritiana hsp70 genes are divergent, and many alleles are nonfunctional. The proliferation, concerted evolution, and maintenance of functionality in the D. melanogaster hsp70 genes is consistent with the action of natural selection in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号