首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two strains of Bacteroides asaccharolyticus and two strains of Bacteroides fragilis were analyzed for total fatty acid, total lipid fatty acid, and total bound fatty acid profiles. Extracted lipids and defatted cell residues were subjected to sequential alkaline and acid methanolyses to distinguish ester- and amide-linked fatty acids in each fraction. In the lipid fractions, all the ester-linked fatty acids were nonhydroxylated, whereas all of the amide-linked fatty acids were hydroxylated. In the nonextractable fractions, both hydroxy and nonhydroxy fatty acids were found in both ester and amide linkage, although hydroxy acids predominated. The fatty acid profiles of the bound fractions differed widely from those of the lipid fractions. Bound fatty acid represented approximately 10% of the total cellular fatty acids.  相似文献   

2.
Pathways for extracellular production of chiral D-(-)-3-hydroxybutyric acid (3HB) and D-(-)-3-hydroxyalkanoic acid (mcl-3HA) were constructed by co-expression of genes of beta-ketothiolase (phbA), acetoacetyl-CoA reductase (phbB) and 3-hydroxyacyl-ACP CoA transacylase (phaG), respectively, in Escherichia coli strain DH5alpha. The effect of acrylic acid and glucose on production of both 3HB and mcl-3HA was investigated. It was found that the addition of acrylic acid significantly increased production of 3HB and mcl-3HA consisting of 3-hydroxyoctanoic acid and 3-hydroxydecanoic acid in a ratio of 1:3 from 199 mg x l(-1) to 661 mg x l(-1) and from 27 mg x l(-1) to 135 mg x l(-1), respectively, in shake flask studies when glucose was present in the medium at the very beginning of fermentation. The timing of glucose addition had no effect on 3HB production. In contrast, mcl-3HA production was affected by glucose addition, an mcl-3HA concentration of 193 mg x l(-1) was obtained when glucose was added to the culture at 12 h. A more than seven-fold increase was obtained when compared with that in medium containing glucose at the beginning of fermentation. However, a decrease in production of 3HB and mcl-3HA was found when glucose was added at 12 h to the culture containing acrylic acid. The repressive effect of acrylic acid on acetic acid production was also evaluated and discussed.  相似文献   

3.
Alkylation of 6-chloropurine and 2-amino-6-chloropurine with bromoacetaldehyde diethyl acetal afforded 6-chloro-9-(2,2-diethoxyethyl)purine (3a) and its 2-amino congener (3b). Treatment of compounds 3 with primary and secondary amines gave the N6-substituted adenines (5a-5c) and 2,6-diaminopurines (5d-5f). Hydrolysis of 3 resulted in hypoxanthine (6a) and guanine (6b) derivatives, while their reaction with thiourea led to 6-sulfanylpurine (7a) and 2-amino-6-sulfanylpurine (7b) compounds. Treatment with diluted acid followed by potassium cyanide treatment and acid hydrolysis afforded 6-substituted 3-(purin-9-yl)- and 3-(2-aminopurin-9-yl)-2-hydroxypropanoic acids (8-10). Reaction of compounds 3 with malonic acid in aqueous solution gave exclusively the product of isomerisation, 6-substituted 4-(purin-9-yl)-3-butenoic acids (15).  相似文献   

4.
5.
D-(1,5,6-13C3)Glucose (7) has been synthesized by a six-step chemical method. D-(1,2-13C2)Mannose (1) was converted to methyl D-(1,2-13C2)mannopyranosides (2), and 2 was oxidized with Pt-C and O2 to give methyl D-(1,2-13C2)mannopyranuronides (3). After purification by anion-exchange chromatography, 3 was hydrolyzed to give D-(1,2-13C2)mannuronic acid (4), and 4 was converted to D-(5,6-13C2)mannonic acid (5) with NaBH4. Ruff degradation of 5 gave D-(4,5-13C2)arabinose (6), and 6 was converted to D-(1,5,6-13C3)glucose (7) and D-(1,5,6-13C3)mannose (8) by cyanohydrin reduction. D-(2,5,6-13C3)Glucose (9) was prepared from 8 by molybdate-catalyzed epimerization.  相似文献   

6.
7.
A novel D-(-)-3-hydroxyacyl-CoA hydro-lyase, forming 2-trans-enoyl-CoA and formerly designated as epimerase (EC 5.1.2.3), was extracted from fat-degrading cotyledons of cucumber seedlings. The enzyme, called D-3-hydroxyacyl-CoA hydro-lyase or D-specific 2-trans-enoyl-CoA hydratase, is shown to be required for the degradation of unsaturated fatty acids that contain double bonds extending from even-numbered C atoms. The D-3-hydroxyacyl-CoA hydro-lyase was exclusively localized within peroxisomes. A 10,000-fold purification by chromatography on a hydrophobic matrix, a cation exchanger, on hydroxyapatite and Mono S led to two proteins of apparent homogeneity, both exhibiting Mr of 65,000. The D-3-hydroxyacyl-CoA hydro-lyases are homodimers with slightly differing isoelectric points around pH = 9.0. They catalyze the conversion of 2-trans-enoyl-CoA into D-3-hydroxyacyl-CoA. The reverse reaction was observed but no reaction with 2-cis-enoyl-CoAs or L-3-hydroxyacyl-CoAs. 2-trans-Decenoyl-CoA was converted 10-times faster than 2-trans-butenoyl-CoA. The conversion of 4-cis-decenoyl-CoA into octenoyl-CoA was demonstrated in vitro with purified proteins with an assay mixture containing acyl-CoA oxidase, multifunctional protein, thiolase and the D-3-hydroxyacyl-CoA hydro-lyase. Comparisons of enzyme activities present in the cotyledons or isolated peroxisomes clearly show that the pathway via dienoyl-CoA reductase is much less effective than the sequence involving D-3-hydroxyacyl-CoA hydro-lyase.  相似文献   

8.
Abstract Four long-chain fatty acids, 2-hydroxy-27-oxo-octacosanoic acid ( n 28:0(2-OH,27-oxo)), 2-hydroxy-29-oxo-triacontanoic acid ( n 30:0(2-OH,29-oxo)), 2-hydroxy-heptacosane-1,27-dioic acid (27:0(2-OH)-dioic) and 2-hydroxy-nonacosane-1,29-dioic acid (29:0(2-OH)-dioic) were identified by GLC-MS analysis in the phenol-chloroform-petroleum ether (PCP) extracts of Legionella jordanis, L. maceachernii and L. micdadei indicating that they are constituents of lipopolysaccharide. Moreover, five long-chain fatty acids (28:0(27-OH), 28:0(27-oxo), 30:0(29-oxo), 27:0-dioic and 29:0-dioic) previously identified in L. pneumophila (Moll, H. et al., FEMS Microbiol. Lett., 97 (1992), 1–6) were also found in these species. This is to our knowledge the first report on the existence of long chain 2-hydroxylated (ω-1)-oxo fatty acids and 2-hydroxylated 1,ω-dioic fatty acids.  相似文献   

9.
Omega-3 fatty acids, such as, DHA and EPA, have well established beneficial effects on human health, but their action mechanisms remain unknown. Recent pharmacological studies have suggested several molecular targets for the anti-inflammatory effects of omega-3 fatty acids, namely, nuclear receptor PPARγ and the G protein-coupled receptor GPR120. Furthermore, the conversions of omega-3 fatty acids to anti-inflammatory and pro-resolving resolvins and protectins and the identifications of putative target GPCRs, ChemR23, BLT?, ALX/FPR2, and GPR32, have drawn great attention. In addition, the pharmacology of omega-3 fatty acids is now under scrutiny. However, questions remain to be answered regarding the in vivo effects of omega-3 fatty acids at the molecular level. In this review, anti-inflammatory effects of omega-3 fatty acids are discussed from the viewpoint of molecular pharmacology, particularly with respect to the above-mentioned GPCRs.  相似文献   

10.
3-Methyl-branched fatty acids, as phytanic acid, undergo peroxisomal alpha-oxidation in which they are shortened by 1 carbon atom. This process includes four steps: activation, 2-hydroxylation, thiamine pyrophosphate dependent cleavage and aldehyde dehydrogenation. The thiamine pyrophosphate dependence of the third step is unique in peroxisomal mammalian enzymology. Human pathology due to a deficient alpha-oxidation is mostly linked to mutations in the gene coding for the second enzyme of the sequence, phytanoyl-CoA hydroxylase.  相似文献   

11.
The alkane and fatty acid composition of the lipid extracts from leaves of 14 populations ofCondalia: C. microphylla f.xanthocarpa, C. microphylla f.erythrocarpa, C. microphylla f.melanocarpa, C. montana, andC. buxifolia, were determined by gas chromatography. Seventeen alkanes and 14 fatty acids were investigated and a predominance of nonacosane, hentriacontane, palmitic and linoleic acids in all species was found.  相似文献   

12.
alpha-Hemolysin (HlyA) is a secreted protein virulence factor observed in certain uropathogenic strains of Escherichia coli. The active, mature form of HlyA is produced by posttranslational modification of the protoxin that is mediated by acyl carrier protein and an acyltransferase, HlyC. We have now shown using mass spectrometry that these modifications, when observed in protein isolated in vivo, consist of acylation at the epsilon-amino groups of two internal lysine residues, at positions 564 and 690, with saturated 14- (68%), 15- (26%), and 17- (6%) carbon amide-linked side chains. Thus, HlyA activated in vivo consists of a heterogeneous family of up to nine different covalent structures, and the substrate specificity of the HlyC acyltransferase appears to differ from that of the closely related CyaC acyltransferase expressed by Bordetella pertussis.  相似文献   

13.
Long-chain alkylthioacetic acids (3-thia fatty acids) inhibit fatty acid synthesis from [1-14C]acetate in isolated hepatocytes, while fatty acid oxidation is nearly unaffected or even stimulated. Desaturation of [1-14C]stearate (delta 9-desaturase) is also unaffected. [1-14C]Dodecylthioacetic acid (a 3-thia fatty acid) is incorporated in triacylglycerol and in phospholipids more efficiently than [1-14C]palmitate in isolated hepatocytes. The metabolism of [1-14C]dodecylthioacetic acid to acid-soluble products (by omega-oxidation) is slow compared to the oxidation of [1-14C]palmitate. In hepatocytes from adapted rats (rats fed tetradecylthioacetic acid for 4 days) the rate of [1-14C]palmitate oxidation is increased and its rate of esterification is decreased. Stearate desaturation is also decreased. The rate of cyanide-insensitive peroxisomal fatty acid beta-oxidation is several-fold increased. The metabolic effects of long-chain 3-thia fatty acids are discussed and it is concluded that they behave essentially like normal fatty acids except for their slow breakdown due to the sulfur atom in the 3 position, which blocks normal beta-oxidation.  相似文献   

14.

Background

Use of the chemotherapeutic drug doxorubicin (DOX) is associated with serious cardiotoxicity, as it increases levels of reactive oxygen species (ROS). N-3 polyunsaturated fatty acid dietary supplements can be of benefit to patients undergoing cancer therapy. The aims of this study were to determine whether DOX-induced cardiotoxicity is related to mitochondrial uncoupling proteins and whether eicosapentaenoic acid (EPA, C20:5 n-3) or docosahexaenoic acid (DHA, C22:6 n-3) affects DOX-induced cardiomyocyte toxicity.

Results

Treatment of H9C2 cells with DOX resulted in decreased cell viability and UCP2 expression. Treatment with 100 μM EPA or 50 μM DHA for 24 h resulted in a maximal mitochondria concentration of these fatty acids and increased UCP2 expression. Pretreatment with 100 μM EPA or 50 μM DHA prevented the DOX-induced decrease in UCP2 mRNA and protein levels, but these effects were not seen with EPA or DHA and DOX cotreatment. In addition, the DOX-induced increase in ROS production and subsequent mitochondrial membrane potential change (∆ψ) were significantly attenuated by pretreatment with EPA or DHA.

Conclusion

EPA or DHA pre-treatment inhibits the DOX-induced decrease in UCP2 expression, increase in ROS production, and subsequent mitochondrial membrane potential change that contribute to the cardiotoxicity of DOX.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0101-3) contains supplementary material, which is available to authorized users.  相似文献   

15.
Three dimensional clinostat has been developed for simulation of microgravity on ground. It has applied in many disciplines in gravitational biology. Outline of operational principle is described together with its mechanical design. Rotation around two independent axes makes direction of gravity vector to scan whole steric angle. Magnitude and direction of rotational angular velocity is selected randomly at a certain interval of time to avoid singularity in sweep trajectory of gravity vector. Methods for validation of the operation are presented to test randomness of motion and cancellation of gravity by clino-rotation. Concerns discussed are vibration originated in motor and pseudo-weak magnetic field generated on clinostat. Fluid flow induced by clino-rotation is pointed as another problem to be taken into account.  相似文献   

16.
The metabolism of 1-14C-labeled long-chain alkylthioacetic acids (3-thia fatty acids) which are blocked for normal beta-oxidation by a sulfur atom in the beta-position has been investigated in vivo. Most of the injected radioactivity (greater than 50%) was excreted in the urine within the first 48 h. The recovered and identified metabolites were all short sulfoxydicarboxylic acids. The main metabolite from dodecylthioacetic acid was carboxypropylsulfoxy acetic acid. Some bis(carboxymethyl)sulfoxide (dithioglycolic acid sulfoxide) was also found. The main metabolite from nonylthioacetic acid was carboxyethylsulfoxyacetic acid. No sulfones were found. Less than 1% of the 1-14C from the dodecylthioacetic acid was recovered in respiratory CO2 and about 3% of the 1-14C from nonylthioacetic acid. [1-14C]Dodecyl-sulfonylacetic acid was recovered almost quantitatively as carboxypropylsulfonylacetic acid in the urine after 3 h. A significant fraction (10% of the dodecylthioacetic acid was recovered in the phospholipids and triacylglycerols from liver and epidymal fat pad 4 h after injection. These experiments show that the alkylthioacetic acids undergo an initial omega-oxidation followed by beta-oxidation to short dicarboxylic acids.  相似文献   

17.
Total fatty acids derived from 12 species of mushrooms were separated into fatty acid and 2-hydroxy fatty acid fractions (FA and HFA), and analyzed quantitatively. The HFA content varied from 0 to 22% of total fatty acids. The major fatty acids were 16:0, 18:0, 18:1, 18:2, and the major 2-hydroxy fatty acids were h16:0, h18:0, h22:0, h24:0. The predominant HFA in the mushrooms investigated had chain-lengths greater than 20 C-atoms, and were derived from sphingolipids — ceramides and cerebrosides.  相似文献   

18.
19.
The main fatty acids present in lipopolysaccharides from Bacteroides fragilis NCTC 9343 were identified as 13-methyl-tetradecanoic, D-3-hydroxypentadecanoic, D-3-hydroxyhexadecanoic, D-3-hydroxy-15-methyl-hexadecanoic, and D-3-hydroxyheptadecanoic acids. Of these, 13-methyl-tetradecanoic acid is exclusively ester bound, and 3-hydroxy-15-methyl-hexadecanoic acid is exclusively involved in amide linkage. The other 3-hydroxy fatty acids are both ester and amide bound. All 3-hydroxy fatty acids possess the D configuration, and the 3-hydroxyl group of ester-linked 3-hydroxy fatty acids is not substituted. Lipopolysaccharides of related Bacteroides species (B. thetaiotaomicron, B. ovatus, B. distasonis, and B. vulgatus) showed a fatty acid spectrum with both similar and distinct features compared to that of B. fragilis lipopolysaccharides.  相似文献   

20.
Luminal isobutyrate, a relatively poor metabolized short-chain fatty acid (SCFA), induces HCO(3) secretion via a Cl-independent, DIDS-insensitive, carrier-mediated process as well as inhibiting both Cl-dependent and cAMP-induced HCO(3) secretion. The mechanism(s) responsible for these processes have not been well characterized. HCO(3) secretion was measured in isolated colonic mucosa mounted in Lucite chambers using pH stat technique and during microperfusion of isolated colonic crypts. (14)C-labeled butyrate, (14)C-labeled isobutyrate, and (36)Cl uptake were also determined by apical membrane vesicles (AMV) isolated from surface and/or crypt cells. Butyrate stimulation of Cl-independent, DIDS-insensitive 5-nitro-3-(3-phenylpropyl-amino)benzoic acid-insensitive HCO(3) secretion is greater than that by isobutyrate, suggesting that both SCFA transport and metabolism are critical for HCO(3) secretion. Both lumen and serosal 25 mM butyrate inhibit cAMP-induced HCO(3) secretion to a comparable degree (98 vs. 90%). In contrast, Cl-dependent HCO(3) secretion is downregulated by lumen 25 mM butyrate considerably more than by serosal butyrate (98 vs. 37%). Butyrate did not induce HCO(3) secretion in isolated microperfused crypts, whereas an outward-directed HCO(3) gradient-driven induced (14)C-butyrate uptake by surface but not crypt cell AMV. Both (36)Cl/HCO(3) exchange and potential-dependent (36)Cl movement in AMV were inhibited by 96-98% by 20 mM butyrate. We conclude that 1) SCFA-dependent HCO(3) secretion is the result of SCFA transport across the apical membrane via a SCFA/HCO(3) exchange more than intracellular SCFA metabolism; 2) SCFA-dependent HCO(3) secretion is most likely a result of an apical membrane SCFA/HCO(3) exchange in surface epithelial cells; 3) SCFA downregulates Cl-dependent and cAMP-induced HCO(3) secretion secondary to SCFA inhibition of apical membrane Cl/HCO(3) exchange and anion channel activity, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号