首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Unfolded states of ribonuclease A were used to investigate the effects of macromolecular crowding on macromolecular compactness and protein folding. The extent of protein folding and compactness were measured by circular dichroism spectroscopy, fluorescence correlation spectroscopy, and NMR spectroscopy in the presence of polyethylene glycol (PEG) or Ficoll as the crowding agent. The unfolded state of RNase A in a 2.4 M urea solution at pH 3.0 became native in conformation and compactness by the addition of 35% PEG 20000 or Ficoll 70. In addition, the effects of macromolecular crowding on inert macromolecule compactness were investigated by fluorescence correlation spectroscopy using Fluorescence-labeled PEG as a test macromolecule. The size of Fluorescence-labeled PEG decreased remarkably with an increase in the concentration of PEG 20000 or Ficoll 70. These results show that macromolecules are favored compact conformations in the presence of a high concentration of macromolecules and indicate the importance of a crowded environment for the folding and stabilization of globular proteins. Furthermore, the magnitude of the effects on macromolecular crowding by the different sizes of background molecules was investigated. RNase A and Fluorescence-labeled PEG did not become compact, and had folded conformation by the addition of PEG 200. The effect of the chemical potential on the compaction of a test molecule in relation to the relative sizes of the test and background molecules is also discussed.  相似文献   

3.
A general formalism, which includes translation–rotation coupling, is proposed for calculating translational and rotational transport properties, as well as intrinsic viscosities, of rigid macromolecules with an arbitrary shape. This formalism is based on Brenner's theory of translational–rotational dynamics and on methods for the calculation of hydrodynamic properties that have been already presented, and can be regarded as a generalization of the one proposed by Nakajima and Wada. The calculated transport properties depend on the origin as predicted by Brenner's theory, but in a disagreement with him, the center of resistance and the center of diffusion do not coincide. As one can define several hydrodynamic centers, which in practice turn out to be located at different points, the influence of the choice of the center on the calculated transport properties is discussed. An analysis of the translation–rotation coupling effects in translational diffusion reveals that they arise exclusively from hydrodynamic interactions and are rather small in some cases of interest. Finally, we present a study of the rotational diffusion of rigid bent rods with a fixed length-to-diameter ratio. The diffusion coefficients obtained can be useful to estimate changes with respect to a straight rod.  相似文献   

4.
Eugene Loh 《Biopolymers》1979,18(10):2569-2588
We have compared four theoretical effects of rodlike macromolecules with the fast components, i.e., components other than translational diffusion, of our experimental data, which are presented as amplitude autocorrelation functions of electric field scattered from dilute solutions of monodisperse rodlike viruses with lengths from 3300 Å for tobacco mosaic virus to 20,000 Å for Pf1. The four effects are (1) the optic anisotropy treated by Aragón and Pecora, (2) coupled translational–rotational diffusion due to anisotropy in translational mobility recently reformulated by Gierke, (3) anisotropic rotational diffusion with respect to the direction of translational displacement first discussed by Berne and Pecora, and (4) the bending mode of a rod by Fujime and Maruyama. We show that both the first and second effects are required to explain the enhancement of amplitude of the translational diffusion at the expense of fast components. The experimental decay rates of the fast component exceed that of the rotational diffusions. In order to explain the excessive decay rate in the fast component, we need to include a minute amount (~1%) of bending mode of rodlike viruses, especially in longer viruses such as M13 and Pf1.  相似文献   

5.
Effects of macromolecular crowding on protein folding and aggregation   总被引:18,自引:0,他引:18       下载免费PDF全文
We have studied the effects of polysaccharide and protein crowding agents on the refolding of oxidized and reduced hen lysozyme in order to test the prediction that association constants of interacting macromolecules in living cells are greatly increased by macromolecular crowding relative to their values in dilute solutions. We demonstrate that whereas refolding of oxidized lysozyme is hardly affected by crowding, correct refolding of the reduced protein is essentially abolished due to aggregation at high concentrations of crowding agents. The results show that the protein folding catalyst protein disulfide isomerase is particularly effective in preventing lysozyme aggregation under crowded conditions, suggesting that crowding enhances its chaperone activity. Our findings suggest that the effects of macromolecular crowding could have major implications for our understanding of how protein folding occurs inside cells.  相似文献   

6.
Fluorescence correlation spectroscopy (FCS) was used to measure the translational diffusion of labeled apomyoglobin (tracer) in concentrated solutions of ribonuclease A and human serum albumin (crowders), as a quantitative model system of protein diffusive motions in crowded physiological environments. The ratio of the diffusion coefficient of the tracer protein in the protein crowded solutions and its diffusion coefficient in aqueous solution has been interpreted in terms of local apparent viscosities, a molecular parameter characteristic for each tracer-crowder system. In all protein solutions studied in this work, local translational viscosity values were larger than the solution bulk viscosity, and larger than rotational viscosities estimated for apomyoglobin in the same crowding solutions. Here we propose a method to estimate local apparent viscosities for the tracer translational and rotational diffusion directly from the bulk viscosity of the concentrated protein solutions. As a result of this study, the identification of protein species and the study of hydrodynamic changes and interactions in model crowded protein solutions by means of FCS and time-resolved fluorescence depolarization techniques may be expected to be greatly simplified.  相似文献   

7.
Protein dynamics in cells may be different from those in dilute solutions in vitro, because the environment in cells is highly concentrated with other macromolecules. This volume exclusion because of macromolecular crowding is predicted to affect both equilibrium and kinetic processes involving protein conformational changes. To quantify macromolecular crowding effects on protein folding mechanisms, we investigated the folding energy landscape of an α/β protein, apoflavodoxin, in the presence of inert macromolecular crowding agents, using in silico and in vitro approaches. By means of coarse-grained molecular simulations and topology-based potential interactions, we probed the effects of increased volume fractions of crowding agents (ϕc) as well as of crowding agent geometry (sphere or spherocylinder) at high ϕc. Parallel kinetic folding experiments with purified Desulfovibro desulfuricans apoflavodoxin in vitro were performed in the presence of Ficoll (sphere) and Dextran (spherocylinder) synthetic crowding agents. In conclusion, we identified the in silico crowding conditions that best enhance protein stability, and discovered that upon manipulation of the crowding conditions, folding routes experiencing topological frustrations can be either enhanced or relieved. Our test-tube experiments confirmed that apoflavodoxin''s time-resolved folding path is modulated by crowding agent geometry. Macromolecular crowding effects may be a tool for the manipulation of protein-folding and function in living cells.  相似文献   

8.
Proteins have evolved to fold and function within a cellular environment that is characterized by high macromolecular content. The earliest step of protein folding represents intrachain contact formation of amino acid residues within an unfolded polypeptide chain. It has been proposed that macromolecular crowding can have significant effects on rates and equilibria of biomolecular processes. However, the kinetic consequences on intrachain diffusion of polypeptides have not been tested experimentally, yet. Here, we demonstrate that selective fluorescence quenching of the oxazine fluorophore MR121 by the amino acid tryptophan (Trp) in combination with fast fluorescence correlation spectroscopy (FCS) can be used to monitor end-to-end contact formation rates of unfolded polypeptide chains. MR121 and Trp were incorporated at the terminal ends of polypeptides consisting of repetitive units of glycine (G) and serine (S) residues. End-to-end contact formation and dissociation result in "off" and "on" switching of MR121 fluorescence and underlying kinetics can be revealed in FCS experiments with nanosecond time resolution. We revisit previous experimental studies concerning the dependence of end-to-end contact formation rates on polypeptide chain length, showing that kinetics can be described by Gaussian chain theory. We further investigate effects of solvent viscosity and temperature on contact formation rates demonstrating that intrachain diffusion represents a purely diffusive, entropy-controlled process. Finally, we study the influence of macromolecular crowding on polypeptide chain dynamics. The data presented demonstrate that intrachain diffusion is fast in spite of hindered diffusion caused by repulsive interactions with macromolecules. Findings can be explained by effects of excluded volume reducing chain entropy and therefore accelerating the loop search process. Our results suggest that within a cellular environment the early formation of structural elements in unfolded proteins can still proceed quite efficiently in spite of hindered diffusion caused by high macromolecular content.  相似文献   

9.
The high total concentration of macromolecules, often referred to as macromolecular crowding, is one of the characteristic features of living cells. Macromolecular crowding influences interactions between many types of macromolecules, with consequent effects on, among others, the rates of reactions occurring in the cell. Simulations to study the influence of crowding on macromolecular association rate were performed using a modified Brownian dynamics protocol. The calculated values of the time-dependent self-diffusion coefficients in different crowding conditions are in a very good agreement with those obtained by other authors. Simulations of the complex formation between the monoclonal antibody HyHEL-5 and its antigen hen egg lysozyme, both represented at atomic level detail, show that the calculated association rates strongly depend on the volume excluded by crowding. The rate obtained for the highest concentration of crowding particles is greater than twofold higher than the rate for proteins without crowding.  相似文献   

10.
Aqueous environments in living cells are crowded, with up to >50 wt% small and macromolecule-size solutes. We investigated quantitatively one important consequence of molecular crowding--reduced diffusion of biologically important solutes. Fluorescence correlation spectroscopy (FCS) was used to measure the diffusion of a series of fluorescent small solutes and macromolecules. In water, diffusion coefficients (D(o)w) were (in cm2/s x 10(-8)): rhodamine green (270), albumin (52), dextrans (75, 10 kDa; 10, 500 kDa), double-stranded DNAs (96, 20 bp; 10, 1 kb; 3.4, 4.5 kb) and polystyrene nanospheres (5.4, 20 nm diameter; 2.3, 100 nm). Aqueous-phase diffusion (Dw) in solutions crowded with Ficoll-70 (0-60 wt%) was reduced by up to 650-fold in an exponential manner: Dw = D(o)w exp (-[C]/[C]exp), where [C]exp is the concentration (in wt%) of crowding agent reducing D(o)w by 63%. FCS data for all solutes and Ficoll-70 concentrations fitted well to a model of single-component, simple (non-anomalous) diffusion. Interestingly [C]exp were nearly identical (11+/-2 wt%, SD) for diffusion of the very different types of macromolecules in Ficoll-70 solutions. However, [C]exp was dependent on the nature of the crowding agent: for example, [C]exp for diffusion of rhodamine green was 30 wt% for glycerol and 16 wt% for 500 kDa dextran. Our results indicate that molecular crowding can greatly reduce aqueous-phase diffusion of biologically important macromolecules, and demonstrate a previously unrecognized insensitivity of crowding effects on the size and characteristics of the diffusing species.  相似文献   

11.
12.
In a typical cell, proteins function in the crowded cytoplasmic environment where 30% of the space is occupied by macromolecules of varying size and nature. This environment may be simulated in vitro using synthetic polymers. Here, we followed the association and diffusion rates of TEM1-beta-lactamase (TEM) and the beta-lactamase inhibitor protein (BLIP) in the presence of crowding agents of varying molecular mass, from monomers (ethylene glycol, glycerol, or sucrose) to polymeric agents such as different polyethylene glycols (PEGs, 0.2-8 kDa) and Ficoll. An inverse linear relation was found between translational diffusion of the proteins and viscosity in all solutions tested, in accordance with the Stokes-Einstein (SE) relation. Conversely, no simple relation was found between either rotational diffusion rates or association rates (k(on)) and viscosity. To assess the translational diffusion-independent steps along the association pathway, we introduced a new factor, alpha, which corrects the relative change in k(on) by the relative change in solution viscosity, thus measuring the deviations of the association rates from SE behavior. We found that these deviations were related to the three regimes of polymer solutions: dilute, semidilute, and concentrated. In the dilute regime PEGs interfere with TEM-BLIP association by introducing a repulsive force due to solvophobic preferential hydration, which results in slower association than predicted by the SE relation. Crossing over from the dilute to the semidilute regime results in positive deviations from SE behavior, i.e., relatively faster association rates. These can be attributed to the depletion interaction, which results in an effective attraction between the two proteins, winning over the repulsive force. In the concentrated regime, PEGs again dramatically slow down the association between TEM and BLIP, an effect that does not depend on the physical dimensions of PEGs, but rather on their mass concentration. This is probably a manifestation of the monomer-like repulsive depletion effect known to occur in concentrated polymer solutions. As a transition from moderate to high crowding agent concentration can occur in the cellular milieu, this behavior may modulate protein association in vivo, thereby modulating biological function.  相似文献   

13.
Inside cells, the concentration of macromolecules can reach up to 400 g/L. In such crowded environments, proteins are expected to behave differently than in vitro. It has been shown that the stability and the folding rate of a globular protein can be altered by the excluded volume effect produced by a high density of macromolecules. However, macromolecular crowding effects on intrinsically disordered proteins (IDPs) are less explored. These proteins can be extremely dynamic and potentially sample a wide ensemble of conformations under non-denaturing conditions. The dynamic properties of IDPs are intimately related to the timescale of conformational exchange within the ensemble, which govern target recognition and how these proteins function. In this work, we investigated the macromolecular crowding effects on the dynamics of several IDPs by measuring the NMR spin relaxation parameters of three disordered proteins (ProTα, TC1, and α-synuclein) with different extents of residual structures. To aid the interpretation of experimental results, we also performed an MD simulation of ProTα. Based on the MD analysis, a simple model to correlate the observed changes in relaxation rates to the alteration in protein motions under crowding conditions was proposed. Our results show that 1) IDPs remain at least partially disordered despite the presence of high concentration of other macromolecules, 2) the crowded environment has differential effects on the conformational propensity of distinct regions of an IDP, which may lead to selective stabilization of certain target-binding motifs, and 3) the segmental motions of IDPs on the nanosecond timescale are retained under crowded conditions. These findings strongly suggest that IDPs function as dynamic structural ensembles in cellular environments.  相似文献   

14.
Fluorescence anisotropy has been widely used to study the dynamics and interactions of biomolecules in diluted solutions. Comparable studies on single tracer macromolecules at the cellular level are now feasible because of the recent development of non-invasive fluorescence markers, like the growing family of the green fluorescence proteins (GFPs), and the advances in time-resolved fluorescence microscopy instrumentation. The interpretation of fluorescence polarization data in terms of dynamics and biological function of the macromolecular complexes in these physiological environments requires a deep understanding of the tracer rotational diffusion in such complex media. In this work we have studied the rotational diffusion of a tracer protein, apomyoglobin labeled with 1-anilino-8-naphthalene sulfonate, in crowded solutions of an unrelated protein, ribonuclease A. We have evaluated the deviation of the different tracer rotational motions from the Stokes-Einstein-Debye diffusion behavior, and its relation to the properties of the transient molecular cavities where the tracer is rotating in the fluorescence lifetime window. Finally, we have analyzed the application of fluorescence polarization methods to determine the apparent equilibrium constants of homo and hetero-associations of macromolecules in crowded conditions.  相似文献   

15.
16.
17.
In the presence of high concentrations of inert macromolecules, the self-association of proteins is strongly enhanced through an entropic, excluded-volume effect variously called macromolecular crowding or depletion attraction. Despite the predicted large magnitude of this universal effect and its far-reaching biological implications, few experimental studies of macromolecular crowding have been reported. Here, we introduce a powerful new technique, fast field-cycling magnetic relaxation dispersion, for investigating crowding effects on protein self-association equilibria. By recording the solvent proton spin relaxation rate over a wide range of magnetic field strengths, we determine the populations of coexisting monomers and decamers of bovine pancreatic trypsin inhibitor in the presence of dextran up to a macromolecular volume fraction of 27%. Already at a dextran volume fraction of 14%, we find a 30-fold increase of the decamer population and 510(5)-fold increase of the association constant. The analysis of these results, in terms of a statistical-mechanical model that incorporates polymer flexibility as well as the excluded volume of the protein, shows that the dramatic enhancement of bovine pancreatic trypsin inhibitor self-association can be quantitatively rationalized in terms of hard repulsive interactions.  相似文献   

18.
The self-association equilibrium of a tracer protein, apomyoglobin (apoMb), in highly concentrated crowded solutions of ribonuclease A (RNase A) and human serum albumin (HSA), has been studied as a model system of protein interactions that occur in crowded macromolecular environments. The rotational diffusion of the tracer protein labeled with two different fluorescent dyes, 8-anilinonaphthalene-1-sulfonate and fluorescein isothiocyanate, was successfully recorded as a function of the two crowder concentrations in the 50-200 mg/mL range, using picosecond-resolved fluorescence anisotropy methods. It was found that apoMb molecules self-associate at high RNase A concentration to yield a flexible dimer. The apparent dimerization constant, which increases with RNase A concentration, could also be estimated from the fractional contribution of monomeric and dimeric species to the total fluorescence anisotropy of the samples. In contrast, an equivalent mass concentration of HSA does not result in tracer dimerization. This different effect of RNase A and HSA is much larger than that predicted from simple models based only on the free volume available to apoMb, indicating that additional, nonspecific interactions between tracer and crowder should come into play. The time-resolved fluorescence polarization methods described here are expected to be of general applicability to the detection and quantification of crowding effects in a variety of macromolecules of biological relevance.  相似文献   

19.
Biological fluids contain a very high total concentration of macromolecules that leads to volume exclusion by one molecule to another. Theory and experiment have shown that this condition, termed macromolecular crowding, can have significant effects on molecular recognition. However, the influence of molecular crowding on recognition events involving virus particles, and their inhibition by antiviral compounds, is virtually unexplored. Among these processes, capsid self-assembly during viral morphogenesis and capsid-cell receptor recognition during virus entry into cells are receiving increasing attention as targets for the development of new antiviral drugs. In this study, we have analyzed the effect of macromolecular crowding on the inhibition of these two processes by peptides. Macromolecular crowding led to a significant reduction in the inhibitory activity of: 1), a capsid-binding peptide and a small capsid protein domain that interfere with assembly of the human immunodeficiency virus capsid, and 2), a RGD-containing peptide able to block the interaction between foot-and-mouth disease virus and receptor molecules on the host cell membrane (in this case, the effect was dependent on the conditions used). The results, discussed in the light of macromolecular crowding theory, are relevant for a quantitative understanding of molecular recognition processes during virus infection and its inhibition.  相似文献   

20.
The oxidative refolding of reduced, denatured hen egg white lysozyme in the presence of a mixed macromolecular crowding agent containing both bovine serum albumin (BSA) and polysaccharide has been studied from a physiological point of view. When the total concentration of the mixed crowding agent is 100 g/liter, in which the weight ratio of BSA to dextran 70 is 1:9, the refolding yield of lysozyme after refolding for 4 h under this condition increases 24% compared with that in the presence of BSA and 16% compared with dextran 70. A remarkable increase in the refolding yield of lysozyme by a mixed crowding agent containing BSA and Ficoll 70 is also observed. Further folding kinetics analyses show that these two mixed crowding agents accelerate the oxidative refolding of lysozyme remarkably, compared with single crowding agents. These results suggest that the stabilization effects of mixed macromolecular crowding agents are stronger than those of single polysaccharide crowding agents such as dextran 70 and Ficoll 70, whereas the excluded volume effects of mixed macromolecular crowding agents are weaker than those of single protein crowding agents such as BSA. Both the refolding yield and the rate of the oxidative refolding of lysozyme in these two mixed crowded solutions with suitable weight ratios are higher than those in single crowded solutions, indicating that mixed macromolecular crowding agents are more favorable to lysozyme folding and can be used to simulate the intracellular environments more accurately than single crowding agents do.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号