首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel intracellular cycloalternan-degrading enzyme (CADE) was purified to homogeneity from the cell pellet of Bacillus sp. NRRL B-21195. The enzyme has a molecular mass of 125 kDa on SDS-PAGE. The pH optimum was 7.0, and the enzyme was stable from pH 6.0 to 9.2. The temperature optimum was 35 degrees C and the enzyme exhibited stability up to 50 degrees C. The enzyme hydrolyzed cycloalternan [CA; cyclo(-->6)-alpha-d-Glcp-(1-->3)-alpha-d-Glcp-(1-->6)-alpha-d-Glcp-(-->3)-alpha-d-Glcp-(1-->)] as the best substrate, to produce only isomaltose via an intermediate, alpha-isomaltosyl-(1-->3)-isomaltose. This enzyme also hydrolyzed isomaltosyl substrates, such as panose, alpha-isomaltosyl-(1-->4)-maltooligosaccharides, alpha-isomaltosyl-(1-->3)-glucose, and alpha-isomaltosyl-(1-->3)-isomaltose to liberate isomaltose. Neither maltooligosaccharides nor isomaltooligosaccharides were hydrolyzed by the enzyme, indicating that CADE requires alpha-isomaltosyl residues connected with (1-->4)- or (1-->3)-linkages. The K(m) value of cycloalternan (1.68 mM) was 20% of that of panose (8.23 mM). The k(cat) value on panose (14.4s(-1)) was not significantly different from that of cycloalternan (10.8 s(-1)). Judging from its specificity, the systematic name of the enzyme should be cycloalternan isomaltosylhydrolase. This intracellular enzyme is apparently involved in the metabolism of starch via cycloalternan in Bacillus sp. NRRL B-21195, its role being to hydrolyze cycloalternan inside the cells.  相似文献   

2.
Glucosyltransferase and glucanotransferase involved in the production of cyclic tetrasaccharide (CTS; cyclo [-->6]-alpha-D-glucopyranosyl-(1-->3)-alpha-D-glucopyranosyl-(1-->6)-alpha-D-glucopyranosyl-(1-->3)-alpha-D-glucopyranosyl-(1-->)) from alpha-1,4-glucan were purified from Bacillus globisporus C11. The former was a 1,6-alpha-glucosyltransferase (6GT) catalyzing the a-1,6-transglucosylation of one glucosyl residue to the nonreducing end of maltooligosaccharides (MOS) to produce alpha-isomaltosyl-MOS from MOS. The latter was an isomaltosyl transferase (IMT) catalyzing alpha-1,3-, alpha-1,4-, and alpha,beta-1,1-intermolecular transglycosylation of isomaltosyl residues. When IMT catalyzed alpha-1,3-transglycosylation, alpha-isomaltosyl-(1-->3)-alpha-isomaltosyl-MOS was produced from alpha-isomaltosyl-MOS. In addition, IMT catalyzed cyclization, and produced CTS from alpha-isomaltosyl-(1-->3)-alpha-isomaltosyl-MOS by intramolecular transglycosylation. Therefore, the mechanism of CTS synthesis from MOS by the two enzymes seemed to follow three steps: 1) MOS-->alpha-isomaltosyl-->MOS (by 6GT), 2) alpha-isomaltosyl-MOS-->alpha-isomaltosyl-(1-->3)-alpha-isomaltosyl-MOS (by IMT), and 3) alpha-isomaltosyl-(1-->3)-alpha-isomaltosyl-MOS-->CTS + MOS (by IMT). The molecular mass of 6GT was estimated to be 137 kDa by SDS-PAGE. The optimum pH and temperature for 6GT were pH 6.0 and 45 degrees C, respectively. This enzyme was stable at from pH 5.5 to 10 and on being heated to 40 degrees C for 60 min. 6GT was strongly activated and stabilized by various divalent cations. The molecular mass of IMT was estimated to be 102 kDa by SDS-PAGE. The optimum pH and temperature for IMT were pH 6.0 and 50 degrees C, respectively. This enzyme was stable at from pH 4.5 to 9.0 and on being heated to 40 degrees C for 60 min. Divalent cations had no effect on the stability or activity of this enzyme.  相似文献   

3.
Two putative alpha-galactosidase genes from rice (Oryza sativa L. var. Nipponbare) belonging to glycoside hydrolase family 27 were cloned and expressed in Escherichia coli. These enzymes showed alpha-galactosidase activity and were purified by Ni Sepharose column chromatography. Two purified recombinant alpha-galactosidases (alpha-galactosidase II and III; alpha-Gal II and III) showed a single protein band on SDS-PAGE with molecular mass of 42 kDa. These two enzymes cleaved not only alpha-D-galactosyl residues from the non-reducing end of substrates such as melibiose, raffinose, and stachyose, but also liberated the galactosyl residues attached to the O-6 position of the mannosyl residue at the reducing-ends of mannobiose and mannotriose. In addition, these enzymes clipped the galactosyl residues attached to the inner-mannosyl residues of mannopentaose. Thus, alpha-Gal II catalyzes efficient degalactosylation of galactomannans, such as guar gum and locust bean gum.  相似文献   

4.
Highly branched α-glucan molecules exhibit low digestibility for α-amylase and glucoamylase, and abundant in α-(1→3)-, α-(1→6)-glucosidic linkages and α-(1→6)-linked branch points where another glucosyl chain is initiated through an α-(1→3)-linkage. From a culture supernatant of Paenibacillus sp. PP710, we purified α-glucosidase (AGL) and α-amylase (AMY), which were involved in the production of highly branched α-glucan from maltodextrin. AGL catalyzed the transglucosylation reaction of a glucosyl residue to a nonreducing-end glucosyl residue by α-1,6-, α-1,4-, and α-1,3-linkages. AMY catalyzed the hydrolysis of the α-1,4-linkage and the intermolecular or intramolecular transfer of maltooligosaccharide like cyclodextrin glucanotransferase (CGTase). It also catalyzed the transfer of an α-1,4-glucosyl chain to a C3- or C4-hydroxyl group in the α-1,4- or α-1,6-linked nonreducing-end residue or the α-1,6-linked residue located in the other chains. Hence AMY was regarded as a novel enzyme. We think that the mechanism of formation of highly branched α-glucan from maltodextrin is as follows: α-1,6- and α-1,3-linked residues are generated by the transglucosylation of AGL at the nonreducing ends of glucosyl chains. Then AMY catalyzes the transfer of α-1,4-chains to C3- or C4-hydroxyl groups in the α-1,4- or α-1,6-linked residues generated by AGL. Thus the concerted reactions of both AGL and AMY are necessary to produce the highly branched α-glucan from maltodextrin.  相似文献   

5.
A novel glucanotransferase, involved in the synthesis of a cyclomaltopentaose cyclized by an alpha-1,6-linkage [ICG5; cyclo-{-->6)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->}], from starch, was purified to homogeneity from the culture supernatant of Bacillus circulans AM7. The pI was estimated to be 7.5. The molecular mass of the enzyme was estimated to be 184 kDa by gel filtration and 106 kDa by SDS-PAGE. These results suggest that the enzyme forms a dimer structure. It was most active at pH 4.5 to 8.0 at 50 degrees C, and stable from pH 4.5 to 9.0 at up to 35 degrees C. The addition of 1 mM Ca(2+) enhanced the thermal stability of the enzyme up to 40 degrees C. It acted on maltooligosaccharides that have degrees of polymerization of 3 or more, amylose, and soluble starch, to produce ICG5 by an intramolecular alpha-1,6-glycosyl transfer reaction. It also catalyzed the transfer of part of a linear oligosaccharide to another oligosaccharide by an intermolecular alpha-1,4-glycosyl transfer reaction. Thus the ICG5-forming enzyme was found to be a novel glucanotransferase. We propose isocyclomaltooligosaccharide glucanotransferase (IGTase) as the trivial name of this enzyme.  相似文献   

6.
Highly branched α-glucan molecules exhibit low digestibility for α-amylase and glucoamylase, and abundant in α-(1→3)-, α-(1→6)-glucosidic linkages and α-(1→6)-linked branch points where another glucosyl chain is initiated through an α-(1→3)-linkage. From a culture supernatant of Paenibacillus sp. PP710, we purified α-glucosidase (AGL) and α-amylase (AMY), which were involved in the production of highly branched α-glucan from maltodextrin. AGL catalyzed the transglucosylation reaction of a glucosyl residue to a nonreducing-end glucosyl residue by α-1,6-, α-1,4-, and α-1,3-linkages. AMY catalyzed the hydrolysis of the α-1,4-linkage and the intermolecular or intramolecular transfer of maltooligosaccharide like cyclodextrin glucanotransferase (CGTase). It also catalyzed the transfer of an α-1,4-glucosyl chain to a C3- or C4-hydroxyl group in the α-1,4- or α-1,6-linked nonreducing-end residue or the α-1,6-linked residue located in the other chains. Hence AMY was regarded as a novel enzyme. We think that the mechanism of formation of highly branched α-glucan from maltodextrin is as follows: α-1,6- and α-1,3-linked residues are generated by the transglucosylation of AGL at the nonreducing ends of glucosyl chains. Then AMY catalyzes the transfer of α-1,4-chains to C3- or C4-hydroxyl groups in the α-1,4- or α-1,6-linked residues generated by AGL. Thus the concerted reactions of both AGL and AMY are necessary to produce the highly branched α-glucan from maltodextrin.  相似文献   

7.
We report the molecular characterization and the detailed study of the recombinant maltooligosyl trehalose synthase mechanism from the thermoacidophilic archaeon Sulfolobus acidocaldarius. The mts gene encoding a maltooligosyl trehalose synthase was overexpressed in Escherichia coli using the T7-expression system. The purified recombinant enzyme exhibited optimum activity at 75 degrees C and pH 5 with citrate-phosphate buffer and retained 60% of residual activity after 72 h of incubation at 80 degrees C. The recombinant enzyme was active on maltooligosaccharides such as maltotriose, maltotetraose, maltopentaose and maltoheptaose. Investigation of the enzyme action on maltooligosaccharides has brought much insight into the reaction mechanism. Results obtained from thin-layer chromatography suggested a possible mechanism of action for maltooligosyl trehalose synthase: the enzyme, after converting the alpha-1,4-glucosidic linkage to an alpha-1,1-glucosidic linkage at the reducing end of maltooligosaccharide glc(n) is able to release glucose and maltooligosaccharide glc(n-1) residues. And then, the intramolecular transglycosylation and the hydrolytic reaction continue, with the maltooligosaccharide glc(n-1) until the initial maltooligosaccharide is reduced to maltose. An hypothetical mechanism of maltooligosyl trehalose synthase acting on maltooligosaccharide is proposed.  相似文献   

8.
Two putative α-galactosidase genes from rice (Oryza sativa L. var. Nipponbare) belonging to glycoside hydrolase family 27 were cloned and expressed in Escherichia coli. These enzymes showed α-galactosidase activity and were purified by Ni Sepharose column chromatography. Two purified recombinant α-galactosidases (α-galactosidase II and III; α-Gal II and III) showed a single protein band on SDS–PAGE with molecular mass of 42 kDa. These two enzymes cleaved not only α-D-galactosyl residues from the non-reducing end of substrates such as melibiose, raffinose, and stachyose, but also liberated the galactosyl residues attached to the O-6 position of the mannosyl residue at the reducing-ends of mannobiose and mannotriose. In addition, these enzymes clipped the galactosyl residues attached to the inner-mannosyl residues of mannopentaose. Thus, α-Gal II catalyzes efficient degalactosylation of galactomannans, such as guar gum and locust bean gum.  相似文献   

9.
A new exopolygalacturonate lyase (Pel) gene of the hyperthermophilic bacterium Thermotoga maritima was cloned and overexpressed in Escherichia coli cells. A 42 kDa monomeric Pel was shown to undergo N-terminal processing by cleavage at a putative site between alanine and serine residues. The enzyme catalyzes selectively a beta-4,5 elimination at the third galacturonic unit from the reducing end of polygalacturonic acid by producing (4-deoxy-alpha-L-threo-hex-4-enopyranosyluronic acid)-(1-->4)-(alpha-D-galactopyranosyluronic acid)-(1-->4)-alpha-D-galactopyranuronic acid (3) with a 60% yield. The optimum activity of the enzyme was detected at pH 9.5 and T> or=95 degrees C. The highly thermostable enzyme constitutes a useful catalyst for a simplified synthesis of 4,5-unsaturated trigalacturonic acid 3, a trisaccharide which is extremely difficult to obtain via chemical synthesis.  相似文献   

10.
Xyloglucans are the major component of plant cell walls and bind tightly to the surface of individual cellulose microfibrils, thereby cross-linking them into a complex polysaccharide network of the cell wall. The cleavage and reconnection of xyloglucan cross-links are considered to play the leading role during chemical processes essential for wall expansion and, therefore, cell growth and differentiation. Although it is hypothesized that some transglycosylation is involved in these chemical processes, the enzyme responsible for the reaction was not identified. We have now purified a novel class of endo-type glycosyltransferase to apparent homogeneity from the extracellular space or the cell wall of the epicotyls of Vigna angularis, a bean plant. The enzyme is a glycoprotein with a molecular mass of about 33 kDa. The enzyme catalyzes both 1) endo-type splitting of a xyloglucan molecule and 2) linking of a newly generated reducing end of the xyloglucan to the nonreducing end of another xyloglucan molecule, thereby mediating the transfer of a large segment of the xyloglucan to another xyloglucan molecule. The transferase exhibits no glycosidase or glycanase activity. Substrate specificity of the enzyme was investigated using several polysaccharides with different glycosidic linkages as donor substrates and pyridylamino oligosaccharides as acceptor substrates, in which the reducing end of the carbohydrate was tagged with a fluorescent group. The enzyme required a basic xyloglucan structure, i.e. a beta-(1-->4)-glucosyl backbone with xylosyl side chains, for both acceptor and donor activity. Galactosyl or fucosyl side chains on the main chain were not required for the acceptor activity. The enzyme exhibited higher reaction rates when xyloglucans with higher M(r) were used as donor substrates. Xyloglucans smaller than 10 kDa were no longer the donor substrate. On the other hand, pyridylamino heptasaccharide acted as a good acceptor as did xyloglucan polymers. Based on these results we propose to designate this novel enzyme a xyloglucan: xyloglucano-transferase, to be abbreviated endo-xyloglucan transferase (EXT) or xyloglucan recombinase. This enzyme is the first enzyme identified that mediates the transfer of a high M(r) segment between polysaccharide molecules to generate chimeric polymers. We conclude that endo-xyloglucan transferase functions as a reconnecting enzyme for xyloglucans and is involved in the interweaving or reconstruction of cell wall matrix, which is responsible for chemical creepage that leads to morphological changes in the cell wall.  相似文献   

11.
Three distinct alkaline serine proteases (named CTSP-1, -2, and -3) were purified from the polychaete Cirriformia tentaculata and characterized in terms of their enzymatic properties and kinetics. The estimated molecular masses of CTSP-1, -2, and -3 enzymes were found to be 28.8, 30.9, and 28.4 kDa, respectively. The enzymes were active at the temperature range of 50–60 °C under pH 8.5–9.0 and completely inactivated by phenylmethanesulfonyl fluoride and diisopropyl fluorophosphates, but not by 1,10-phenanthroline and bestatin, suggesting that they are all typical serine proteases and not metalloproteases or cysteine proteases. CTSP-1 and -2 cleaved arginine, whereas CTSP-3 digested tyrosine residue at the carboxyl sides in their peptide substrates. A typical hepta-sequence (I-X-X-G-X-X-A) conserved in serine proteases from annelid species was found in N-termini of all CTSPs. CTSP-2 was the most active enzyme among the proteases purified as shown by kinetic values. The enzymes cleaved all chains of fibrinogen within 20 min and also hydrolyzed actively fibrin polymer as well as cross-linked fibrin. In addition, the enzymes could actively digest the fibrin clot in blood plasma milieu. Taken together, the results obtained demonstrate that CTSP enzymes have a potential of becoming therapeutic agents for thrombus dissolution.  相似文献   

12.
Nigerose and nigerooligosaccharides served as acceptors for a glucosyltransferase GTF-I from cariogenic Streptococcus sobrinus to give a series of homologous acceptor products. The soluble oligosaccharides (dp 5-9) strongly activated the acceptor reaction, resulting in the accumulation of water-insoluble (1-->3)-alpha-D-glucan. The enzyme transferred the labeled glucosyl residue from D-[U-13C]sucrose to the 3-hydroxyl group at the non-reducing end of the (1-->3)-alpha-D-oligosaccharides, as unequivocally shown by NMR 13C-13C coupling patterns. The values of the 13C-13C one-bond coupling constant (1J) are also presented for the C-1-C-6 of the 13C-labeled alpha-(1-->3)-linked glucosyl residue and of the non-reducing-end residue.  相似文献   

13.
Cu, Zn-superoxide dismutase (SOD) has been purified to homogeneity from Japanese flounder Paralichthys olivaceus hepato-pancreas. The purification of the enzyme was carried out by an ethanol/chloroform treatment and acetone precipitation, and then followed by column chromatographies on Q-Sepharose, S-Sepharose and Ultrogel AcA 54. On SDS-PAGE, the purified enzyme gave a single protein band with molecular mass of 17.8 kDa under reducing conditions, and showed approximately equal proportions of 17.8 and 36 kDa molecular mass under non-reducing conditions. Three bands were obtained when the purified enzyme was subjected to native-PAGE, both on protein and activity staining, but the electrophoretic mobility of the purified enzyme differed from that of bovine erythrocyte Cu, Zn-SOD. Isoelectric point values of 5.9, 6.0 and 6.2, respectively, were obtained for the three components. The N-terminal amino acid sequence of the purified enzyme was determined for 25 amino acid residues, and the sequence was compared with other Cu, Zn-SODs. The N-terminal alanine residue was unacetylated, as in the case of swordfish SOD. Above 60°C, the thermostability of the enzyme was much lower than that of bovine Cu, Zn-SOD.  相似文献   

14.
Arthrobacter simplex AKU 626 was found to synthesize 4-hydroxyisoleucine from acetaldehyde, alpha-ketobutyrate, and L-glutamate in the presence of Escherichia coli harboring the branched chain amino acid transaminase gene (ilvE) from E. coli K12 substrain MG1655. By using resting cells of A. simplex AKU 626 and E. coli BL21(DE3)/pET-15b-ilvE, 3.2 mM 4-hydroxyisoleucine was produced from 250 mM acetaldehyde, 75 mM alpha-ketobutyrate, and 100 mM L-glutamate with a molar yield to alpha-ketobutyrate of 4.3% in 50 mM Tris-HCl buffer (pH 7.5) containing 2 mM MnCl(2) x 4H(2)O at 28 degrees C for 2 h. An aldolase that catalyzes the aldol condensation of acetaldehyde and alpha-ketobutyrate was purified from A. simplex AKU 626. Mn(2+) and pyridoxal 5'-monophosphate were effective in stabilizing the enzyme. The native and subunit molecular masses of the purified aldolase were about 180 and 32 kDa respectively. The N-terminal amino acid sequence of the purified enzyme showed no significant homology to known aldolases.  相似文献   

15.
The structures of a series of large oligosaccharides derived from acharan sulfate were characterized. Acharan sulfate is an unusual glycosaminoglycan isolated from the giant African snail, Achatina fulica. Oligosaccharides from decasaccharide to hexadecasaccharide were enzymatically prepared using heparin lyase II and purified. Capillary electrophoresis and gel electrophoresis confirmed the purity of these oligosaccharides. Their structures, determined by ESI-MS and NMR, were consistent with the major repeating sequence in acharan sulfate, -->4)-alpha-d-GlcN(p)Ac-(1-->4)-alpha-l-IdoA(p)2S-(1-->, terminated by 4-linked alpha-d-GlcN(p)Ac residue at the reducing end and by 4,5-unsaturated pyranosyluronic acid 2-sulfate at the non-reducing end.  相似文献   

16.
A truncated alpha-(1-->4)-galactosyltransferase (LgtC) gene from Neisseria meningitidis was cloned. The recombinant glycosyltransferase was expressed in Escherichia coli BL21 (DE3) strain with high specific activity (5 units/mg protein). Its acceptor specificity was carefully characterized. Then the purified enzyme was utilized in highly efficient syntheses of globotriose and a variety of alpha-(1-->4)-galactosylated derivatives as potential antibacterial agents.  相似文献   

17.
We report the identification and purification of a novel enzyme from soybean root nodules that catalyzes the hydrolysis of 5-hydroxyisourate, which is the true product of the urate oxidase reaction. The product of this reaction is 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, and the new enzyme is designated 5-hydroxyisourate hydrolase. The enzyme was purified from crude extracts of soybean root nodules approximately 100-fold to apparent homogeneity with a final specific activity of 10 micromol/min/mg. The enzyme exhibited a native molecular mass of approximately 68 kDa by gel filtration chromatography and migrated as a single band on SDS-polyacrylamide gel electrophoresis with a subunit molecular mass of 68 +/- 2 kDa. The purified enzyme obeyed normal Michaelis-Menten kinetics, and the K(m) for 5-hydroxyisourate was determined to be 15 microM. The amino-terminal end of the purified protein was sequenced, and the resulting sequence was not found in any available data bases, confirming the novelty of the protein. These data suggest the existence of a hitherto unrecognized enzymatic pathway for the formation of allantoin.  相似文献   

18.
A polygalacturonase with a molecular mass of 74 kDa, an isoelectric point around pH 4.2 and pH – and temperature optima of 3.9 and 50°C, respectively, was purified from a culture fluid of Penicillium frequentans. The enzyme was characterized as an exo-α-1,4-polygalacturonase (exo-PG I). Km and Vmax for sodium polypectate hydrolysis were 0.68 g/l and 596.8 U × mg−1, respectively. The enzyme, a glycoprotein with a carbohydrate content of 81%, is probably the main pectinase of Penicillium frequentans responsible for cleaving monomer units from the non-reducing end of pectin.  相似文献   

19.
Previous studies have shown that mature arylsulfatase B purified from human sources is composed of two non-identical chains with apparent molecular masses of 43 kDa and 8 kDa. Arylsulfatase B purified from human placenta in the present study, however, included another 7 kDa component that could be detected only by carbohydrate staining on reducing SDS-PAGE employing the Tris-Tricine system. The 43 kDa and 7 kDa components contained a carbohydrate moiety, but the 8 kDa one did not, as demonstrated by periodic acid-Schiff staining, Con-A lectin blotting, endo-glycosidase treatment and in vitro phosphorylation by UDP-N-acetylglucosamine: lysosomal enzyme N-acetylglucosamine 1-phosphotransferase. The purified arylsulfatase B migrated as a single polypeptide of 58 kDa on non-reducing SDS-PAGE, indicating that the three chains are linked by disulfide bonds. In order to determine the origin of the components, N-terminal sequencing of the isolated polypeptides was performed. As a result, the 43, 7 and 8 kDa components were found to commence with Ala-41, Ala-424 and Asp-466, respectively. These results suggest that after removal of the signal peptide, human arylsulfatase B undergoes proteolytic processing on at least two sites during maturation.  相似文献   

20.
Alanine racemase [EC 5.1.1.1], which catalyzes the interconversion between D- and L-alanine, was purified to homogeneity from the muscle of black tiger prawn Penaeus monodon. The isolated enzyme had a molecular mass of 44 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and 90 kDa on gel filtration, indicating a dimeric nature of the enzyme. The enzyme was highly specific to D- and L-alanine and did not catalyze the racemization of other amino acids. K(m) values toward both D- and L-alanine were almost equal and considerably high compared with those of bacterial enzymes. The purified enzyme retained its activity in the absence of pyridoxal 5'-phosphate as a cofactor but carbonyl reagents inhibited the activity, suggesting the tightly binding of the cofactor to the enzyme protein. Several partial amino acid sequences of peptide fragments of the purified enzyme showed positive homologies from 52 to 76% with bacterial counterparts and a catalytic tyrosine residue of the bacterial enzyme was also retained in the prawn one, indicating alanine racemase gene is well conserved from bacteria to invertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号