首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DEAE-Bio-Gel chromatography of 100,000 X g supernatant from cultured HTC hepatoma cells separated cyclic nucleotide phosphodiesterase into three forms, numbered E I, E II, and E III in order of elution from the column, E I had a low Km for cyclic guanosine 3':5'-monophosphate (cGMP) and a high Km for cyclic adenosine 3':5'-monophosphate (cAMP), E II exhibited anomalous kinetics. At low substrate concentrations (0.5 muM) cGMP was hydrolyzed more rapidly than cAMP and hydrolysis of 0.5 muM cAMP was stimulated by 1 muM cGMP. E III had a low Km for cAMP. Incubation of cells with 1 muM dexamethasone for 72 h decreased the activity of E I and E II. In cells incubated with N6,O2'-dibutyryl cAMP plus 3-isobutyl-1-methylxanthine for 14 h the activity of E III was increased approximately 100%. Similar activities of calcium-dependent, heat stable phosphodiesterase activator were recovered from supernatants from all cells. These studies have established the presence, in a homogeneous population of hepatoma cells, of at least three forms of cyclic nucleotide phosphodiesterase, the activities of which can be independently regulated.  相似文献   

2.
The levels of cyclic adenosine monophosphate (cAMP) and two forms of cAMP phosphodiesterase with low (PDE1) and high (PDE2) affinity for the substrate were determined in homogenates from mouse liver and transplanted hepatoma 22. The level of cAMP in the tumour is 3 times lower than that in liver. By te kinetic parameters (Vmax, Km, pH optimum) adenylate cyclase from tumour does not show any significant differences as compared to the liver enzyme; the enzyme from hepatoma is, however, more sensitive to activation by F- ions. The activities of adenylate cyclase in liver and tumour cells are the same. Phosphodiesterases of cAMP from tumour and liver cells are similar in their Km values (3,3-10(-4) M for PDE1 and 2-10(-6) M for PDE2); however, the maximal and real rates of cAMP hydrolysis in hepatoma are much higher than in liver. The fact that both cAMP phosphodiesterase activities have similar dependence on Mg2+ and Ca2+ concentrations, suggests that PDE1 is a latent form of PDE2. In tumour cells the equilibrium between these two forms is probably shifted towards the enzyme with high affinity for the substrate. The results suggest that a decreased cAMP level in hepatoma cells (as compared to the liver) is due to the activation of PDE2.  相似文献   

3.
Four cyclic nucleotide phosphodiesterase (PDE) activities were separated from low-speed supernatants of homogenates of human cardiac ventricle by DEAE-Sepharose chromatography, and designated PDE I-PDE IV in order of elution with an increasing salt gradient. PDE I was a Ca2+/calmodulin-stimulated activity, and PDE II was an activity with a high Km for cyclic AMP which was stimulated by low concentrations of cyclic GMP. Human ventricle PDE III had Km values of 0.14 microM (cyclic AMP) and 4 microM (cyclic GMP), and showed simple Michaelis-Menten kinetics with both substrates. PDE IV is a previously unrecognized activity in cardiac muscle, the human enzyme having Km values of 2 microM (cyclic AMP) and 50 microM (cyclic GMP). PDE III and PDE IV were not activated by cyclic nucleotides or calmodulin. Four PDE activities were also isolated from guinea-pig ventricle, and had very similar kinetic properties. By gel filtration, the Mr of PDE III was 60,000, and that of PDE IV 45,000. The drug SK&F 94120 selectively and competitively inhibited PDE III with a Ki value of 0.8 microM (human), showing simple hyperbolic inhibition kinetics. Rolipram (Schering ZK 62711) and Ro 20-1724 (Roche), which have previously been reported to inhibit PDE III-like activities strongly, were shown to be weak inhibitors of human and guinea-pig PDE III enzymes (Ki values greater than 25 microM), but potent inhibitors of PDE IV [Ki values 2.4 microM (Rolipram) and 3.1 microM (Ro 20-1724) with human PDE IV]. The inhibition in all cases demonstrated simple hyperbolic competition. These observations suggest that the previously reported complex inhibition of PDE III-type activities from cardiac muscle was caused by incomplete separation of the PDE III from other enzymes, particularly PDE IV.  相似文献   

4.
An extract of rat liver or human platelet displayed three cyclic 3':5'-nucleotide phosphodiesterase activity peaks (I, II, and III) in a continuous sucrose density gradient when assayed with millimolar adenosine 3':5'-monophosphate (cAMP) or guanosine 3':5'-monophosphate (cGMP). The three fractions obtained from each nucleotide were not superimposable. The molecular weights corresponding to the three activity peaks of cAMP phosphodiesterase in rat liver were approximately: I, 22,000; II, 75,000; and III, 140,000. In both tissues, fraction I was barely detectable when assayed with micromolar concentrations of either nucleotide, presumably because fraction I has low affinity for cAMP and cGMP. Any one of the three forms upon recentrifugation on the gradient generated the others, indicating that they were interconvertible. The multiple forms appear to represent different aggregated states of the enzyme. The ratio of the three forms of cAMP phosphodiesterase in the platelet was shifted by dibutyryl cAMP (B2cAMP) and by the enzyme concentration. B2cAMP enhanced the formation of fraction I. Low enzyme concentration favored the equilibrium towards fraction I, while high enzyme concentration favored fraction III. When phosphodiesterase activities in the extract of rat liver, human platelets, or bovine brain were examined as a function of enzyme concentration, rectilinear rates were observed with micromolar, but not with millimolar cAMP or cGMP. The specific activity with millimolar cAMP was higher with low than with high protein concentrations, suggesting that the dissociated form catalyzed the hydrolysis of cAMP faster than that of the associated form. In contrast, the specific activity with millimolar cGMP was lower with low than with high protein concentrations. Supplementing the reaction mixture with bovine serum albumin to a final constant protein concentration did not affect the activity, suggesting that the concentration of the enzyme rather than that of extraneous proteins affected the enzyme activity. A change in enzyme concentration affected the kinetic properties of phosphodiesterase. A low enzyme concentration of cAMP phosphodiesterase yielded a linear Lineweaver-Burk plot, and a Km of 1.2 X 10(-4) M (bovine), 3 X 10(-5) M (platelet), or 5 X 10(-4) M (liver), while a high enzyme concentration yielded a nonlinear plot, and apparent Km values of 1.4 X 10(-4) M and 2 X 10(-5) M (brain), 4 X 10(-5) M and 3 X 10(-6) M (platelet), or 4 X 10(-5) M and 3 X 10(-6) (liver). Since a low enzyme concentration favored fraction I, the dissociated form, whereas a high enzyme concentration favored fraction III, the associated form, these kinetic constants suggest that the dissociated form exhibits a high Km and the associated form exhibits a low Km. In contrast, a high enzyme concentration gave a linear kinetic plot for cGMP phosphodiesterase, while a low enzyme concentration gave a nonlinear plot...  相似文献   

5.
We attempted to identify and establish the role of cyclic nucleotide phosphodiesterase (PDE) isozymes in human basophils by using standard biochemical techniques as well as describing the effects of isozyme-selective and nonselective inhibitors of PDE. The nonselective PDE inhibitors, theophylline and 3-isobutyl-1-methylxanthine, inhibited anti-IgE-induced release of histamine and leukotriene C4 (LTC4) from basophils. This inhibition was accompanied by elevations in cAMP levels. Rolipram, an inhibitor of the low Km cAMP-specific PDE (PDE IV), inhibited the release of both histamine and LTC4 from activated basophils and increased cAMP levels in these cells. In contrast, mediator release from basophils was not inhibited by either siguazodan or SK&F 95654, inhibitors of the cGMP-inhibited PDE (PDE III) or zaprinast, an inhibitor of the cGMP-specific PDE (PDE V). SK&F 95654 failed to elevate basophil cAMP in these experiments whereas zaprinast induced significant increases in cAMP content. The inhibitory effect of rolipram on mediator release was potentiated by siguazodan or SK&F 95654, but not by zaprinast. SK&F 95654 also enhanced the ability of rolipram to increase cAMP content. Forskolin, a direct activator of adenylate cyclase, inhibited IgE-dependent release of mediators from basophils and increased cAMP levels in these cells. These effects were enhanced by rolipram, but not by SK&F 95654 or zaprinast. The cell permeant analog of cAMP, dibutyryl cAMP, inhibited mediator release from these cells, a property not shared by either dibutyryl-cGMP or sodium nitroprusside, an activator of soluble guanylate cyclase. The presence of both PDE III and PDE IV was confirmed by partially purifying and characterizing PDE activity in broken cell preparations. Overall, these data lend support to the hypothesis that cAMP inhibits mediator release from basophils and suggest that the major PDE isozyme responsible for regulating cyclic AMP content in these cells is PDE IV, with a minor contribution from PDE III. However, the finding that zaprinast caused increases in cAMP without inhibiting mediator release indicates that cAMP accumulation is not invariably linked to an inhibition of basophil activation.  相似文献   

6.
Soluble phosphodiesterase (EC 3.1.4.1) activity is 3-5-fold lower in superficial colonic epithelial cells compared to that in cells isolated from the lower colonic crypt. Higher phosphodiesterase activity in lower crypt cells is correlated with a 5-fold higher rate of incorporation of [3H]thymidine into DNA in these cells. DEAE-cellulose chromatography of the soluble fraction of superficial and proliferative colonic epithelial cells resulted in separation of three enzyme forms: (1) fraction I, an enzyme which hydrolyzes both cAMP and cGMP with high affinity (apparent Km cAMP = 5 +/- 1 microM, Km cGMP = 2.5 +/- 0.5 microM) and is stimulated 3-6-fold by Ca2+ plus calmodulin; (2) fraction II, a form which hydrolyzes both cAMP and cGMP with low affinity (S0.5 cAMP = 52 +/- 7 microM, S0.5 cGMP = 17 +/- 4 microM), exhibits positive copperativity with respect to substrate and shows cGMP stimulation of cAMP hydrolysis and (3) fraction III, a cAMP-specific form which exhibits biphasic kinetics, a low Km for cAMP (Km cAMP = 5 +/- 1 microM) and does not hydrolyze cGMP. The pattern of distribution of phosphodiesterase activities on DEAE-cellulose was similar in superficial and proliferative colonic epithelial cells. The higher specific activity in proliferative cells was reflected in higher activities of each of the three chromatographically distinct forms of the enzyme. In contrast to epithelial cells, the soluble fraction of homogenates of the submucosa and supporting cells exhibited phosphodiesterase forms I and II and was lacking in the form corresponding to fraction III of epithelial cells.  相似文献   

7.
Human blood platelet contained at least three kinetically distinct forms of 3': 5'-cyclic nucleotide phosphodiesterase (3': 5'-cyclic-AMP 5'-nucleotidohydrolase, EC 3.1.4.17) (F I, F II, and F III) which were clearly separated by DEAE-cellulose column chromatography. Although a few properties of the platelet phosphodiesterases such as their substrate affinities and DEAE-cellulose profile resembled somewhat those of the three 3': 5'-cyclic nucleotide phosphodiesterase in rat liver reported by Russell et al. [10], there were pronounced differences in some properties between the platelet and the liver enzymes: (1) the platelet enzymes hydrolyzed both cyclic nucleotides and lacked a highly specific cyclic guanosine 3': 5'-monophosphate (cyclic GMP) phosphodiesterase and (2) kinetic data of the platelet enzymes indicated that cyclic adenosine 3': 5'-monophosphate (cyclic AMP) and cyclic GMP interact with a single catalytic site on the enzyme. F I was a cyclic nucleotide phosphodiesterase with a high Km for cyclic AMP and a negatively cooperative low Km for cyclic GMP. F II hydrolyzed cyclic AMP and cyclic GMP about equally with a high Km for both substrates. F III was low Km phosphodiesterase which hydrolyzed cyclic AMP faster than cyclic GMP. Each cyclic nucleotide acted as a competitive inhibitor of the hydrolysis of the other nucleotide by these three fractions with Ki values similar to the Km values for each nucleotide suggesting that the hydrolysis of both cyclic AMP and cyclic GMP was catalyzed by a single catalytic site on the enzyme. However, cyclic GMP at low concentration (below 10 muM) was an activator of cyclic AMP hydrolysis by F I. Papaverine and EG 626 acted as competitive inhibitors of each fraction with virtually the same Ki value in both assays using either cyclic AMP or cyclic GMP as the substrate. The ratio of cyclic AMP hydrolysis to cyclic GMP hydrolysis by each fraction did not vary significantly after freezing/thawing or heat treatment. These facts also suggest that both nucleotides were hydrolyzed by the same catalytic site on the enzyme. The differences in apparent Ki values for inhibitors such as cyclic nucleotides, papaverine and EG 626 would indicate that three enzymes were different from each other. Centrifugation in a continuous sucrose gradient revealed sedimentation coefficients F I and II had 8.9 S and F III 4.6 S. The molecular weight of these forms, determined by gel filtration on a Sepharose 6B column, were approx. 240 000 (F I and II) and 180 000 (F III). F III was purified extensively (70-fold) from homogenate, with a recovery of approximately 7%.  相似文献   

8.
Insulin control of cyclic AMP phosphodiesterase   总被引:1,自引:0,他引:1  
J A Smoake  S S Solomon 《Life sciences》1989,45(23):2255-2268
Cyclic AMP phosphodiesterase (PDE) is an enzyme involved in cellular homeostasis of cyclic AMP. It exists as multiple isozymes in cells, but only the high affinity, membrane-bound isozyme is sensitive to hormonal modulation. Several isozymes or isoforms of the low Km PDE have been detected. Data suggest that several mechanisms exist for hormonal modulation of PDE. Activity of the low Km PDE species may be modulated by phosphorylation/dephosphorylation, phospholipid substrate concentration, insulin second messenger, cyclic GMP, guanine nucleotide binding proteins, calmodulin, or aggregation/disaggregation of monomeric forms. Modulation of PDE isoforms by different hormones may be through different regulatory components or mechanisms.  相似文献   

9.
The phosphodiesterase activity in the HT4.7 neural cell line was pharmacologically characterized, and phosphodiesterase isozyme 4 (PDE4) was found to be the predominant isozyme. The Km for cAMP was 1-2 microM, indicative of a "low Km" phosphodiesterase, and the activity was inhibited by PDE4-selective inhibitors rolipram and Ro20-1724, but not PDE3- or PDE2-selective inhibitors. Calcium, calmodulin, and cGMP, regulators of PDE1, PDE2, and PDE3, had no effect on cAMP hydrolysis. The protein tyrosine kinase inhibitor, genistein, inhibited HT4.7 cAMP phosphodiesterase activity by 85-95% with an IC50 of 4 microM; whereas daidzein, an inactive structural analog of genistein, had little effect on phosphodiesterase activity. This is a common pharmacological criterion used to implicate the regulation by a tyrosine kinase. However, genistein still inhibited phosphodiesterase activity with a mixed pattern of inhibition even when ion-exchange chromatography was used to partially purify phosphodiesterase away from the tyrosine kinase activity. Moreover, tyrphostin 51, another tyrosine kinase inhibitor, was found to also inhibit partially purified phosphodiesterase activity noncompetitively. These data suggest that HT4.7 phosphodiesterase activity is dominated by PDE4 and can be regulated by genistein and tyrphostin 51 by a tyrosine kinase-independent mechanism.  相似文献   

10.
cAMP and cGMP phosphodiesterase (PDE) activity was assayed in human peripheral blood lymphocytes purified by isopycnic centrifugation as well as in lymphocyte preparations further purified to remove contaminating platelets and monocytes. The 16,000 X G supernatant from sonicates of each of these cell preparations contained two hydrolytic activities for cAMP with apparent Km of 1.1 to 2.5 microM and 33 to 66 microM, and a single hydrolytic activity for cGMP with an apparent Km of 6 to 25 microM. When lymphocytes were disrupted by Dounce homogenization, there was only a single, low Km cAMP PDE activity in the homogenate; however, the 16,000 X G supernatant demonstrated 2 Km similar to that seen in sonicated lymphocytes. Treatment of the Dounce preparations with 0.5% Triton X-100 or 1.0% NP-40 converted these preparations to activities similar to those seen in sonicated preparations. cGMP hydrolytic activity was low or absent in the Dounce preparations and was not altered by centrifugation; however, it was markedly enhanced by detergent extraction. These data indicate that human peripheral blood lymphocytes and monocytes have PDE activities similar to those seen in other tissues.  相似文献   

11.
According to their respective elution order, specificity for cAMP and cGMP, their sensitivity to calmodulin, and their modulation by cGMP and rolipram, four cyclic nucleotide phosphodiesterases (PDE) were separated from the cytosol: PDE I (calmodulin-sensitive), PDE II (stimulated by cGMP, PDE IV (cGMP specific-PDE and inhibited by rolipram) and PDE V (cGMP specific). PDE IV (Km=1.4 M) was competitively inhibited rolipram (Ki=1.2 M) whereas PDE V (Km=0.83 M) was competitively inhibited by zaprinast in the molar range (Ki=0.12 M). Moreover the microsomal fraction contained three PDE isoforms: PDE II, PDE III (inhibited by cGMP or indolidan) and PDE IV. These results show that cAMP degradation in cytosolic and membrane fractions is modulated by cGMP and selectively inhibited by rolipram and, in addition, by indolidan in membrane fractions. (Mol Cell Biochem140: 171–175, 1994)  相似文献   

12.
We have separated and characterized a Ca2+- and calmodulin-insensitive cyclic nucleotide phosphodiesterase from rat liver supernatant as well as an analogous enzyme from HTC hepatoma cells. Chromatography of rat liver supernatant on DEAE-cellulose in the presence and subsequently in the absence of 0.1 mM-CaCl2 resulted in the separation of two distinct phosphodiesterase activities, both of which preferentially hydrolysed cyclic GMP rather than cyclic AMP. One enzyme, E-Ib, was activated in the presence of Ca2+ and calmodulin, and the other, E-Ia, was not. The E-Ia enzyme, which did not bind to calmodulin-Sepharose, had Mr 325 000 and displayed anomalous kinetic behaviour [Km (cyclic GMP) 1.2 microM; Km (cyclic AMP) 15.4 microM]. The E-Ib enzyme, which bound to calmodulin-Sepharose in the presence of Ca2+, had Mr 150 000 and exhibited Michaelis-Menten kinetics for hydrolysis of cyclic GMP [Km (basal) 6.5 microM; Km (activated) 12.0 microM]. E-Ia activity was diminished by incubation with alpha-chymotrypsin and was unaffected by the action of a rat kidney lysosomal proteinase. Partial hydrolysis of E-Ib enzyme by alpha-chymotrypsin or the kidney proteinase resulted in irreversible activation of the enzyme. The E-I enzyme isolated from HTC hepatoma cells was similar to the rat liver E-Ia enzyme in many respects. Its apparent Mr was 325 000. Its activity was unaffected by calmodulin in the presence of Ca2+ or by incubation with the kidney proteinase, and was decreased by digestion with alpha-chymotrypsin. Unlike the liver E-Ia enzyme, however, the hepatoma enzyme exhibited normal kinetic behaviour, with Km (cyclic GMP) 3.2 microM. Although HTC cells contain two other phosphodiesterases analogous to those in rat liver and a calmodulin-like activator of phosphodiesterase, no calmodulin-sensitive phosphodiesterase was detected.  相似文献   

13.
Membrane-associated, Type II (cGMP-activatable) cyclic nucleotide phosphodiesterase (PDE) from rabbit brain, representing 75% of the total homogenate Type II PDE activity, was purified to apparent homogeneity. The enzyme was released from 13,000 x g particulate fractions by limited proteolysis with trypsin and fractionated using DE-52 anion-exchange, cGMP-Sepharose affinity and hydroxylapatite chromatographies. The enzyme showed 105 kDa subunits by SDS-PAGE and had a Stokes radius of 62.70 A as determined by gel filtration chromatography. Hydrolysis of cAMP or cGMP showed positive cooperativity, with cAMP kinetic behavior linearized in the presence of 2 microM cGMP. Substrate concentrations required for half maximum velocity were 28 microM for cAMP and 16 microM for cGMP. Maximum velocities were approx. 160 mumol/min per mg for both nucleotides. The apparent Kact for cGMP stimulation of cAMP hydrolysis at 5 microM substrate was 0.35 microM and maximal stimulation (3-5-fold) was achieved with 2 microM cGMP. Cyclic nucleotide hydrolysis was not enhanced by calcium/calmodulin. The purified enzyme can be labeled by cAMP-dependent protein kinase as demonstrated by the incorporation of 32P from [gamma-32P]ATP into the 105 kDa enzyme subunit. Initial experiments showed that phosphorylation of the enzyme did not significantly alter enzyme activity measured at 5 microM [3H]cAMP in the absence or presence of 2 microM cGMP or at 40 microM [3H]cGMP. Monoclonal antibodies produced against Type II PDE immunoprecipitate enzyme activity, 105 kDa protein and 32P-labeled enzyme. The 105 kDa protein was also photoaffinity labeled with [32P]cGMP. The purified Type II PDE described here is physicochemically very similar to the isozyme purified from the cytosolic fraction of several bovine tissues with the exception that it is predominantly a particulate enzyme. This difference may reflect an important regulatory mechanism governing the metabolism of cyclic nucleotides in the central nervous system.  相似文献   

14.
15.
Pig epidermal cyclic nucleotide phosphodiesterases (EC 3.1.4.16) have been partially purified by DEAE-cellulose column chromatography. At least three different forms of the epidermal phosphodiesterases were identified. They were cyclic GMP-specific, cyclic GMP- and cyclic AMP-hydrolyzing and apparently a cyclic AMP-specific enzyme: the first two forms were soluble and the last was the particulate enzyme. The cyclic GMP-specific soluble fraction had a relatively low Km, the cyclic GMP- and cyclic AMP-hydrolyzing fraction had a high Km for the respective substrates and the third particulate enzyme had both high and low Km values for cyclic AMP. The cyclic GMP-hydrolyzing enzyme was localized almost entirely in the soluble fraction, whereas cyclic AMP-hydrolyzing enzyme was distributed to both soluble and particulate fractions. Thus, our studies show that the multiple forms of pig epidermal enzyme differ distinctly in their substrate affinity, specificity and subcellular distribution.  相似文献   

16.
3':5'-Cyclic nucleotide phosphodiesterase was isolated from human brain and characterized. After the first stage of purification on phenyl-Sepharose, the enzyme activity was stimulated by Ca2+ and micromolar concentrations of cGMP. High pressure liquid chromatography on a DEAE-TSK-3SW column permitted to identify three ranges of enzymatic activity designated as PDE I, PDE II and PDE III. Neither of the three enzymes possessed a high selectivity for cAMP and cGMP substrates. The catalytic activity of PDE I and PDE II increased in the presence of Ca2+-calmodulin (up to 6-fold); the degradation of cAMP was decreased by cGMP. The Ca2+-calmodulin stimulated PDE I and PDE II activity was decreased by W-7. PDE I and PDE II can thus be classified as Ca2+-calmodulin-dependent phosphodiesterases. With cAMP as substrate, the PDE III activity increased in the presence of micromolar concentrations of cGMP (up to 10-fold), Ca2+ and endogenous calmodulin (up to 2-3-fold). No additivity in the effects of saturating concentrations of these compounds on PDE III was observed. Ca2+ did not influence the rate of cGMP hydrolysis catalyzed by PDE III. In comparison with PDE I and PDE II, the inhibition of PDE III was observed at higher concentrations of W-7 and was not limited by the basal level of the enzyme. These results do not provide any evidence in favour of the existence of several forms of the enzyme in the PDE III fraction. The double regulation of PDE III creates some difficulties for its classification.  相似文献   

17.
Cyclic nucleotide phosphodiesterase activities (3',5'-cyclic nucleotide 5'-nucleotidohydrolase, EC 3.1.4.17) were found in the 40,000 X g supernatant fraction of homogenates of Xenopus laevis oocytes. In the supernatant, the ratio of the specific activity of cyclic AMP phosphodiesterase to that of cyclic GMP phosphodiesterase was 1.1 at the 1 micro substrate level. Two phosphodiesterase forms were isolated by centrifugation on sucrose gradient: a 3-4 S form hydrolyzing specificity cyclic AMP and a 6-7 S form hydrolyzing both cyclic nucleotides (cyclic AMP and cyclic GMP). The activity of the 6-7 S phosphodiesterase was characterized by its activation by 0.1 micro M calmodulin purified from beef pancreas in the presence of 50 micro M CA2+. The calmodulin dependence of this form was completely abolished in the presence of 1 mM ethyleneglycobis(beta-aminoethyl ether)-N-N,N',N'-tetraacetic acid (EGTA). Trifluoperazine at 0.1 mM inhibited both the freshly prepared crude enzyme and the partially purified 6-7 S form. On the other hand, no effect of cyclic GMP at 3 micro M was observed on cyclic AMP hydrolysis in the case of the supernatant or that of the partially purified phosphodiesterases. These data show the presence of a calmodulin-dependent phosphodiesterase in the soluble fraction of X. laevis oocytes.  相似文献   

18.
Two cyclic nucleotide phosphodiesterase (PDE) activities were identified in pig aortic endothelial cells, a cyclic GMP-stimulated PDE and a cyclic AMP PDE. Cyclic GMP-stimulated PDE had Km values of 367 microM for cyclic AMP and 24 microM for cyclic GMP, and low concentrations (1 microM) of cyclic GMP increased the affinity of the enzyme for cyclic AMP (Km = 13 microM) without changing the Vmax. This isoenzyme was inhibited by trequinsin [IC50 (concn. giving 50% inhibition of substrate hydrolysis) = 0.6 microM for cyclic AMP hydrolysis in the presence of cyclic GMP; IC50 = 0.6 microM for cyclic GMP hydrolysis] and dipyridamole (IC50 = 5 microM for cyclic AMP hydrolysis in the presence of cyclic GMP; IC50 = 3 microM for cyclic GMP hydrolysis). Cyclic AMP PDE exhibited a Km of 2 microM for cyclic AMP and did not hydrolyse cyclic GMP. This activity was inhibited by trequinsin (IC50 = 0.2 microM), dipyridamole (IC50 = 6 microM) and, selectively, by rolipram (IC50 = 3 microM). Inhibitors of cyclic GMP PDE (M&B 22948) and of low Km (Type III) cyclic AMP PDE (SK&F 94120) only weakly inhibited the two endothelial PDEs. Incubation of intact cells with trequinsin and dipyridamole induced large increases in cyclic GMP, which were completely blocked by LY-83583. Rolipram, SK&F 94120 and M&B 22948 did not significantly influence cyclic GMP accumulation. Dipyridamole enhanced the increase in cyclic GMP induced by sodium nitroprusside. Cyclic AMP accumulation was stimulated by dipyridamole and trequinsin with and without forskolin. Rolipram, although without effect alone, increased cyclic AMP in the presence of forskolin, whereas M&B 22948 and SK&F 94120 had no effects on resting or forskolin-stimulated levels. These results suggest that cyclic GMP-stimulated PDE regulates cyclic GMP levels and that both endothelial PDE isoenzymes contribute to the control of cyclic AMP.  相似文献   

19.
20.
Cyclic nucleotide phosphodiesterase has been partially purified by calmodulin-Sepharose affinity chromatography from a soluble extract of Neurospora crassa. The phosphodiesterase activity remained bound to the affinity column even in the presence of 6 M urea and could only be eluted by calcium chelation. The enzyme exhibits cAMP and cGMP phosphodiesterase activities. Both activities can be enhanced by calmodulin in a Ca2+-dependent manner. Stimulation of cyclic nucleotide phosphodiesterase by calmodulin can be inhibited by calmodulin antagonists such as pimozide, trifluoperazine and chlorpromazine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号