首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 442 毫秒
1.
小RNA病毒科是一类大的动物病毒科,小RNA病毒蛋白的合成需要自身蛋白酶裂解形成多个结构蛋白和功能蛋白,3C蛋白酶是一些小RNA病毒的自身蛋白水解酶之一,3C蛋白酶还可以裂解一些宿主的蛋白,利于病毒的复制。3C蛋白酶结构特点、活性中心、酶切位点如何,裂解的底物功能怎样,是进一步了解3C蛋白酶作用机制的关键。就这些问题进行综述。  相似文献   

2.
胱天蛋白酶与中枢神经系统疾病   总被引:4,自引:0,他引:4  
机体的器官为了完成其功能 ,就必须有一套调节控制系统来决定细胞生存与死亡的时间[1] 。在生命进程中 ,例如发育和免疫 ,进化保守机制也发挥着重要的作用[2 ] 。由生理和病理因子介导凋亡的初级信号机制是不同的 ,每一种因子都有特定的底物。这些底物在细胞间进行信号转导 ,最终引起凋亡。然而 ,在哺乳动物细胞中 ,其引起凋亡的最终通路是共同的 ,即胱天蛋白酶 (cas pase)的激活。1 .胱天蛋白酶促凋亡信号通路与调节胱天蛋白酶是一种特异性的在天门冬氨酸残基后裂解靶蛋白 ,保守的半胱氨酸蛋白酶 ,在细胞凋亡中起关键性的作用。迄今…  相似文献   

3.
根据丙型肝炎病毒 (HCV)丝氨酸蛋白酶晶体结构特点 ,设计并构建了一种新的单链型丝氨酸蛋白酶分子 .该分子由辅因子NS4A的核心序列、柔性连接子GSGS和NS3丝氨酸蛋白酶结构域组成 .利用设计的 3条引物 ,通过 2轮PCR获得单链丝氨酸蛋白酶基因 ,插入原核表达载体pQE30中 ,转化大肠杆菌M15 ,获得重组克隆 .经低剂量诱导和低温培养 ,目的基因获得高水平可溶表达 .以金属螯合层析法纯化的重组蛋白纯度达 95 %以上 .间接ELISA法检测 98份血清证实 ,该蛋白具有良好的抗原性和特异性 ;以重组蛋白底物NS5ab和单链丝氨酸蛋白酶建立了简便、实用的丝氨酸蛋白酶体外活性检测系统 ;以该系统观察了PMSF和EDTA对蛋白酶活性的影响 .结果表明 ,PMSF能够抑制蛋白酶的酶切活性 ,而EDTA不能抑制酶的活性 .单链型HCV丝氨酸蛋白酶的成功表达以及体外活性检测系统的建立 ,为丝氨酸蛋白酶抑制剂的研制奠定了物质基础 .  相似文献   

4.
丙型肝炎病毒丝氨酸蛋白酶在病毒复制和包装中的重要作用使其成为特异性抗病毒药物研究的首选靶标。根据丝氨酸蛋白酶晶体结构特点,用柔性连接子连接NS3丝氨酸蛋白酶结构域和NS4A的核心序列,构建成单链丝氨酸蛋白酶基因并且在大肠杆菌中获得高水平的可溶性表达,纯化后的目的蛋白能够切割重组蛋白底物NS5ab。随后,以单链丝氨酸蛋白酶为靶分子对噬菌体展示的随机十二肽库进行了三轮淘筛,挑选的44个克隆中有37个克隆能够特异性地结合丝氨酸蛋白酶,并且这种结合作用为竞争性ELISA试验结果所支持。对13个克隆进行序列测定,得到6种序列,它们在氨基酸组成上存在明显偏性,富含组氨酸和色氨酸,缺乏酸性氨基酸;6种序列存在一个共有序列。  相似文献   

5.
弗林蛋白酶(Furin)是前体蛋白转化酶家族的重要成员之一,广泛存在于各种组织和细胞系中。Furin经过两次自剪切去掉前肽后具有生理活性,能够识别特定的氨基酸序列并在TGN中对多种前体蛋白进行加工。Furin的作用底物不仅包括神经肽和肽类激素,还包括许多生长因子、受体、血浆蛋白酶、基质金属蛋白酶及细菌外毒素等,具有重要的生物学功能。  相似文献   

6.
从以富含纤维蛋白的血凝块为食物的棕尾别麻蝇幼虫肠道浸提液中分离纯化出3种具有溶纤活性的蛋白酶,分别命名为BPGFP1,BPGFP2和BPGFP3。其中,BPGFP1由两个分子量分别为32000和30000的亚基组成。BPGFP2和BPGFP3均为单体,分子量分别为40000和28000。这三种蛋白酶具有相似的底物特异性和抑制剂特性。三种蛋白酶均能降解溶纤活性蛋白酶的特异底物纤维蛋白,Chromzym,P,Chromzym UK和S-2288。三种酶还能够强烈降解类胰蛋白酶专一底物Bz-Phe-Val Arg NA,cBz Gly-Pro-Arg NA,Bz-Pro-Phe-Arg NA和Bz-Val-Gly-Arg NA.PMSF,STI,LBTI和SBBI能够对三种蛋白酶活怀有极强的抑制作用。三种溶纤活性蛋白酶均在pH9.0-10.0范围内表现出较高活性。  相似文献   

7.
丝氨酸蛋白酶是丙型肝炎病毒重要的功能蛋白和药物作用靶点,其通过分子内(cis)和分子间(trans)方式催化水解前体蛋白,释放病毒功能蛋白。目的:为深入研究病毒蛋白酶活性和抑制剂鉴定需要,实验研究参照丙型肝炎病毒1a亚型菌株蛋白酶天然底物的氨基酸序列特点,设计了一段包含两个天然底物酶切位点的小分子多肽2S,并进行了原核表达。方法:利用PCR方法,合成2S小分子多肽基因,目的基因两端引入BamH I和EcoR I两个限制性酶切位点,双酶切后将基因与表达载体pGEX-4T-2重组,转化大肠杆菌DH5α,经化学诱导进行GST融合蛋白表达,通过亲和层析柱纯化目的蛋白。纯化的GST 2S融合蛋白在体外反应系统进行酶切鉴定,SDS-PAGE和ELISA鉴定酶切结果。结果:PCR合成的小分子底物多肽2S基因,经与表达载体重组后测序,证实基因序列正确。采用0.5mmol/L浓度的IPTG诱导工程菌过夜,获得表达的目的蛋白,经分离纯化得到融合蛋白GST-2S。GST-2S在体外磷酸盐缓冲系统中与丝氨酸蛋白酶反应,15%SDS-PAGE鉴定酶切产物,证实融合蛋白底物条带明显消失,ELISA结果同样说明融合蛋白的底物活性。结论:含有两个天然底物酶切位点的小分子多肽可以替代病毒天然底物,实验结果为丙型肝炎病毒丝氨酸蛋白酶活性研究和酶抑制剂研究奠定了方法学基础。  相似文献   

8.
陈晓武  施志仪 《生物信息学》2009,7(4):300-303,310
为研究牙鲆丝氨酸蛋白酶家族的功能和及其家族的分子进化规律,从本实验室已构建的牙鲆肝胰脏cDNA文库进行了部分测序,从而筛选出一个弹性蛋白酶新成员:弹性蛋白酶5。在此基础上,结合Genbank数据库中已经提交的胰凝乳蛋白酶和胰蛋白酶,对三者蛋白质进行了序列分析和三维结构的比较。牙鲆弹性蛋白酶cDNA包含一个完整的读码框(提交Genbank的登录号为EU873084)。其编码区平均GC含量为54%,推测编码的蛋白质包含296个氨基酸,分子量为29.04KD,等电点为6.14。蛋白序列比较表明它和牙鲆弹性蛋白酶3相似性最高。通过同源建模得到弹性蛋白酶5的三维结构和牛胰凝乳蛋白酶结构相似,包含了2个α螺旋、β个8折叠和13个转角结构。牙鲆弹性蛋白酶、胰凝乳蛋白酶和胰蛋白酶中底物结合区的3个关键氨基酸有明显的区别,这些氨基酸的变化改变了底物结合位点开口的大小,胰凝乳蛋白酶2的三个关键氨基酸和牛胰凝乳蛋白酶相同,该区域能接受结构较大的芳香族氨基酸;胰蛋白酶3能更好的结合阳性氨基酸Lys或Arg;而弹性蛋白酶开口很小,只能结合小的残基。上述结果证明了牙鲆丝氨酸蛋白酶家族中的弹性蛋白酶、胰凝乳蛋白酶和胰蛋白酶底物结合位点的结构差异决定了其对底物选择的特异性。  相似文献   

9.
ATP依赖的人Lon蛋白酶是一种同质寡聚、环状的蛋白酶,主要位于细胞线粒体基质中。许多研究表明,Lon蛋白酶对于维护细胞的内环境稳定起着重要作用,并参与线粒体蛋白质量控制和代谢调控。将pPROEX1 His6-Lon重组质粒在Escherichia coli Rosetta 2菌株中诱导表达用Ni2+柱亲和层析法纯化,获得纯度较高的目的蛋白。经纯化后,Lon蛋白酶的比酶活达到0.17 U/mg。通过多肽底物Rhodamine 110、bis-(CBZ-L-alanyl-L-alanine amide)[(Z-AA)2 Rh110]的降解检测显示,Lon蛋白酶具有肽酶活性,并被ATP所刺激。Casein和线粒体转录因子A降解实验表明,纯化的Lon蛋白酶具有蛋白水解活性,而且蛋白水解活性依赖于ATP。  相似文献   

10.
本文报道烙铁头蛇毒纤维蛋白原溶酶,眼镜王蛇蛇毒纤维蛋白原溶酶,竹叶青蛇毒专一纤溶酶原激活剂对5种小分子多肽底物的底物专一性,及这些蛇毒丝氨酸蛋白酶对各种凝血因子(第X因子、凝血酶原、纤溶酶原、蛋白C)的作用,并和其它蛇毒丝氨酸蛋白酶如矛头蝮蛇毒凝血酶样酶、铜头蝮蛇毒蛋白C激活剂ACC-C、蝰蛇毒第V因子激活剂RVV-V进行比较研究。通过酶标偶联免疫反应研究了抗sv-PA抗体与各种丝氨酸蛋白酶的免疫  相似文献   

11.
A novel class of aspartic peptidases known as fungal yapsins, whose first member ScYps1p was identified more than a decade ago in Saccharomyces cerevisiae, is characteristically modified by the addition of a glycophosphatidylinositol moiety and has a preference for cleaving substrates C-terminally to mono- and paired-basic residues. Over the years, several other members, first in S. cerevisiae and then in other fungi, have been identified. The implication of fungal yapsins in cell-wall assembly and/or remodelling had been suspected for many years. However, it is only very recently that studies performed on S. cerevisae and Candida albicans have confirmed their importance for cell-wall integrity. Here, we review 16 years of research, covering all fundamental aspects of these unique enzymes, in an effort to track their functional significance. We also propose a nomenclature for fungal yapsins based on their sequence identity with the founding members of this family, the S. cerevisiae yapsins.  相似文献   

12.
Intracellular and secreted proteases fulfill multiple functions in microorganisms. In pathogenic microorganisms extracellular proteases may be adapted to interactions with host cells. Here we describe two cell surface-associated aspartic proteases, Sap9 and Sap10, which have structural similarities to yapsins of Saccharomyces cerevisiae and are produced by the human pathogenic yeast Candida albicans. Sap9 and Sap10 are glycosylphosphatidylinositol-anchored and located in the cell membrane or the cell wall. Both proteases are glycosylated, cleave at dibasic or basic processing sites similar to yapsins and Kex2-like proteases, and have functions in cell surface integrity and cell separation during budding. Overexpression of SAP9 in mutants lacking KEX2 or SAP10, or of SAP10 in mutants lacking KEX2 or SAP9, only partially restored these phenotypes, suggesting distinct target proteins of fungal origin for each of the three proteases. In addition, deletion of SAP9 and SAP10 modified the adhesion properties of C. albicans to epithelial cells and caused attenuated epithelial cell damage during experimental oral infection suggesting a unique role for these proteases in both cellular processes and host-pathogen interactions.  相似文献   

13.
The yeast cell wall is a crucial extracellular organelle that protects the cell from lysis during environmental stress and morphogenesis. Here, we demonstrate that the yapsin family of five glycosylphosphatidylinositol-linked aspartyl proteases is required for cell wall integrity in Saccharomyces cerevisiae. Yapsin null mutants show hypersensitivity to cell wall perturbation, and both the yps1Delta2Delta mutant and the quintuple yapsin mutant (5ypsDelta) undergo osmoremedial cell lysis at 37 degrees C. The cell walls of both 5ypsDelta and yps1Delta2Delta mutants have decreased amounts of 1,3- and 1,6-beta-glucan. Although there is decreased incorporation of both 1,3- and 1,6-beta-glucan in the 5ypsDelta mutant in vivo, in vitro specific activity of both 1,3- and 1,6-beta-glucan synthesis is similar to wild type, indicating that the yapsins affect processes downstream of glucan synthesis and that the yapsins may be involved in the incorporation or retention of cell wall glucan. Presumably as a response to the significant alterations in cell wall composition, the cell wall integrity mitogen-activated kinase signaling cascade (PKC1-MPK pathway) is basally active in 5ypsDelta. YPS1 expression is induced during cell wall stress and remodeling in a PKC1-MPK1-dependent manner, indicating that Yps1p is a direct, and important, output of the cell wall integrity response. The Candida albicans (SAP9) and Candida glabrata (CgYPS1) homologues of YPS1 complement the phenotypes of the yps1Delta mutant. Taken together, these data indicate that the yapsins play an important role in glucan homeostasis in S. cerevisiae and that yapsin homologues may play a similar role in the pathogenic yeasts C. albicans and C. glabrata.  相似文献   

14.
Previously, we have shown that gel-forming triblock proteins, consisting of random coil middle blocks and trimer-forming (Pro-Gly-Pro)(9) end blocks, are efficiently produced and secreted by the yeast Pichia pastoris. These end blocks had a melting temperature (T(m)) of ~41°C (at 1.1 mM of protein). The present work reveals that an increase of T(m) to ~74°C, obtained by extension of the end blocks to (Pro-Gly-Pro)(16), resulted in a five times lower yield and partial endoproteolytic degradation of the protein. A possible cause could be that the higher thermostability of the longer (Pro-Gly-Pro)(16) trimers leads to a higher incidence of trimers in the cell, and that this disturbs secretion of the protein. Alternatively, the increased length of the proline-rich (Pro-Gly-Pro)(n) domain may negatively influence ribosomal translation, or may result in, for example, hydrophobic aggregation or membrane-active behavior owing to the greater number of closely placed proline residues. To discriminate between these possibilities, we studied the production of molecules with randomized end blocks that are unable to form triple helices. The codon- and amino acid composition of the genes and proteins, respectively, remained unchanged. As these nontrimerizing molecules were secreted intact and at high yield, we conclude that the impaired secretion and partial degradation of the triblock with (Pro-Gly-Pro)(16) end blocks was triggered by the occurrence of intracellular triple helices. This degradation was overcome by using a yapsin 1 protease disruptant, and the intact secreted polymer was capable of forming self-supporting gels of high thermal stability.  相似文献   

15.
Protein aggregation is involved in several human diseases, and presumed to be an important process in protein quality control. In bacteria, aggregation of proteins occurs during stress conditions, such as heat shock. We studied the protein aggregates of Escherichia coli during heat shock. Our results demonstrate that the concentration and diversity of proteins in the aggregates depend on the availability of proteases. Aggregates obtained from mutants in the Lon (La) protease contain three times more protein than wild-type aggregates and show the broadest protein diversity. The results support the assumption that protein aggregates are formed from partially unfolded proteins that were not refolded by chaperones or degraded by proteases.  相似文献   

16.
Yike I 《Mycopathologia》2011,171(5):299-323
Proteolytic enzymes play an important role in fungal physiology and development. External digestion of protein substrates by secreted proteases is required for survival and growth of both saprophytic and pathogenic species. Extracellular serine, aspartic, and metalloproteases are considered virulence factors of many pathogenic species. New findings focus on novel membrane-associated proteases such as yapsins and ADAMs and their role in pathology. Proteases from fungi induce inflammatory responses by altering the permeability of epithelial barrier and by induction of proinflammatory cytokines through protease-activated receptors. Many fungal allergens possess proteolytic activity that appears to be essential in eliciting Th2 responses. Allergenic fungal proteases can act as adjuvants, potentiating responses to other allergens. Proteolytic enzymes from fungi contribute to inflammation through interactions with the kinin system as well as the coagulation and fibrinolytic cascades. Their effect on the host protease–antiprotease balance results from activation of endogenous proteases and degradation of protease inhibitors. Recent studies of the role of fungi in human health point to the growing importance of proteases not only as pathogenic agents in fungal infections but also in asthma, allergy, and damp building related illnesses. Proteolytic enzymes from fungi are widely used in biotechnology, mainly in food, leather, and detergent industries, in ecological bioremediation processes and to produce therapeutic peptides. The involvement of fungal proteases in diverse pathological mechanisms makes them potential targets of therapeutic intervention and candidates for biomarkers of disease and exposure.  相似文献   

17.
ClpP: a distinctive family of cylindrical energy-dependent serine proteases   总被引:1,自引:0,他引:1  
Yu AY  Houry WA 《FEBS letters》2007,581(19):3749-3757
Processes maintaining protein homeostasis in the cell are governed by the activities of molecular chaperones that mainly assist in the folding of polypeptide chains and by a large class of proteases that regulate protein levels through degradation. ClpP proteases define a distinctive family of cylindrical, energy-dependent serine proteases that are highly conserved throughout bacteria and eukaryota. They typically interact with ATP-dependent AAA+ chaperones that bind and unfold target substrates and then translocate them into ClpP for degradation. Structural and functional studies have provided a detailed view of the mechanism of function of this class of proteases.  相似文献   

18.
ABSTRACT. Protein phosphorylation events may play important roles in the replication and differentiation of the malarial parasite. Investigations into the lability of a Plasmodium protein kinase revealed that a 34 kDa parasite phosphoprotein is rapidly converted into a 19 kDa fragment. Coincident with this conversion is a nearly total loss of a protein kinase activity, as determined from the phosphorylation of endogenous protein substrates. Both the conversion of the 34 kDa protein to the 19 kDa protein and the loss of protein kinase activity are inhibited by thio-protease inhibitors. The presence of low levels of the intact 34 kDa protein restores the protein kinase activity to almost maximum levels. However, it was not possible to demonstrate protein kinase activity associated with the 34 kDa protein, thus suggesting that the 34 kDa protein is probably an activator or regulator of the protein kinase activity and not a protein kinase. The conversion to the 19 kDa fragment also occurs in vivo and only during the schizont stage prior to the appearance of ring forms. During this same period the protein kinase activity decreases suggesting that the proteolytic processing of the 34 kDa protein may be a physiological regulator of the protein kinase.  相似文献   

19.
We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to “stick” to its fusion partners during affinity purification.  相似文献   

20.
Cellular protein homeostasis results from the combination of protein biogenesis processes and protein quality control mechanisms, which contribute to the functional state of cells under normal and stress conditions. Proteolysis constitutes the final step by which short-lived, misfolded and damaged intracellular proteins are eliminated. Protein turnover and oxidatively modified protein degradation are mainly achieved by the proteasome in the cytosol and nucleus of eukaryotic cells while several ATP-dependent proteases including the matrix protease Lon take part in the mitochondrial protein degradation. Moreover, Lon protease seems to play a major role in the elimination of oxidatively modified proteins in the mitochondrial matrix. Specific inhibitors are commonly used to assess cellular functions of proteolytic systems as well as to identify their protein substrates. Here, we present and discuss known proteasome and Lon protease inhibitors. To date, very few inhibitors of Lon have been described and no specific inhibitors of this protease are available. The current knowledge on both catalytic mechanisms and inhibitors of these two proteases is first described and attempts to define specific non-peptidic inhibitors of the human Lon protease are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号