首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterioplankton from 10 oligotrophic lakes, representing a gradient from clearwater to polyhumic, were grown in dilution cultures of sterile filtered lake water. The bacterial biomass achieved in the stationary phase of the dilution cultures was positively correlated with the amount of both humic matter and dissolved organic carbon (DOC) in the lakes. About the same fraction of the total DOC pool was consumed in the dilution cultures of all lakes (average 9.5%, coefficient of variation (CV) 24%), with approximately the same growth efficiency (average 26%, CV 28%). Thus, humic lakes could support a higher bacterial biomass than clearwater lakes due to their larger DOC pools. The relevance of the results to planktonic food webs of humic and clearwater lakes is discussed.  相似文献   

2.
Interactions between bacterial assemblages and dissolved organic carbon (DOC) from different sources were investigated. Mixed batch cultures were set up with water from a humic and a clear-water lake by a 1:20 dilution of the bacterial assemblage (1.0 μm of prefiltered lake water) with natural medium (sterile filtered lake water) in all four possible combinations of the two waters and their bacterial assemblages. Bacterial numbers and biomass, DOC, thymidine incorporation, ATP, and uptake of glucose and phenol were followed in these cultures. Growth curves and exponential growth rates were similar in all cultures, regardless of inoculum or medium. However, bacterial biomass produced was double in cultures based on water from the humic lake. The fraction of DOC consumed by heterotrophic bacteria during growth was in the same range, 15 to 22% of the total DOC pool, in all cultures. Bacterial growth efficiency, calculated from bacterial biomass produced and DOC consumed, was in the order of 20%. Glucose uptake reached a peak during exponential growth in all cultures. Phenol uptake was insignificant in the cultures based on the clear-water medium, but occurred in humic medium cultures after exponential growth. The similarity in the carbon budgets of all cultures indicated that the source of the bacterial assemblage did not have a significant effect on the overall carbon flux. However, fluxes of specific organic compounds differed, as reflected by glucose and phenol uptake, depending on the nature of the DOC and the bacterial assemblage.  相似文献   

3.
A bacterial community may be resistant to environmental disturbances if some of its species show metabolic flexibility and physiological tolerance to the changing conditions. Alternatively, disturbances can change the composition of the community and thereby potentially affect ecosystem processes. The impact of disturbance on the composition of bacterioplankton communities was examined in continuous seawater cultures. Bacterial assemblages from geographically closely connected areas, the Baltic Sea (salinity 7 and high dissolved organic carbon [DOC]) and Skagerrak (salinity 28 and low DOC), were exposed to gradual opposing changes in salinity and DOC over a 3-week period such that the Baltic community was exposed to Skagerrak salinity and DOC and vice versa. Denaturing gradient gel electrophoresis and clone libraries of PCR-amplified 16S rRNA genes showed that the composition of the transplanted communities differed significantly from those held at constant salinity. Despite this, the growth yields (number of cells ml(-1)) were similar, which suggests similar levels of substrate utilization. Deep 454 pyrosequencing of 16S rRNA genes showed that the composition of the disturbed communities had changed due to the recruitment of phylotypes present in the rare biosphere of the original community. The study shows that members of the rare biosphere can become abundant in a bacterioplankton community after disturbance and that those bacteria can have important roles in maintaining ecosystem processes.  相似文献   

4.
This study was conducted to evaluate: (1) the bacterial growth and the dissolved organic carbon (DOC) uptake in an Amazonian lake (Lake Batata) at high-water and low-water periods of the flood pulse; (2) the influence of nitrogen and phosphorus (NP) additions on bacterial growth and DOC uptake in Lake Batata at two flood pulse periods; and (3) the bioavailability of the main DOC sources in Lake Batata. Lake Batata is a typical clear-water Amazonian lake, located in the watershed of Trombetas River, Central Amazon, Brazil. Bacterial batch cultures were set up with 90% 0.2-μm filtered water and 10% inoculum from Lake Batata. N-NH4NO3 and P-KH2PO4, with final concentrations of 50 and 5 μM, respectively, were added to the cultures, except for controls. Extra sources of DOC (e.g., algal lysate, plant leachates) were added to constitute six distinct treatments. Bacterial response was measured by maximum bacterial abundance and rates of bacterial production, respiration, DOC uptake, and bacterial growth efficiency (BGE). Bacterial growth and DOC uptake were higher in NP treatments than in controls, indicating a consistent nutrient limitation in Lake Batata. The composition of DOC also seems to be an important regulating factor of bacterial growth in Lake Batata. Seasonally, bacterial growth and DOC bioavailability were higher at low-water period, when the phytoplankton is a significant extra source of DOC, than at high-water period, when the forest is the main source of DOC. DOC bioavailability was better estimated based on the diversity and the diagenetic stage of carbon compounds than on single classes of labile compounds. Changes in BGE were better related to CNP stoichiometry in the water, and the “excess” of organic substrates was oxidized in catabolism, despite the quality of these compounds for bacterial growth. Finally, we conclude that bacterial growth and DOC uptake vary throughout the flood pulse in clear-water Amazonian ecosystems as a result of changes in nutrient concentration and in DOC composition.  相似文献   

5.
Past studies have suggested that the concentration and quality of dissolved organic matter (DOM) may influence microbial community structure. In this study, we cross-inoculated the bacterial communities from two streams and a dystrophic lake that varied in DOM concentration and chemistry, to yield nine fully crossed treatments. We measured dissolved organic carbon (DOC) concentration and heterotrophic microbial community productivity throughout a 72-h incubation period, characterized DOM quality by molecular weight, and determined microbial community structure at the initial and final time points. Our results indicate that all bacterial inoculate sources had similar effects upon DOC concentration and DOM quality, regardless of the DOM source. These effects included an overall decrease in DOM M W and an initial period of DOC concentration variability between 0-24h. In contrast, microbial communities and their metabolic rates converged to profiles that reflected the DOM source upon which they were growing, regardless of the initial bacterial inoculation. The one exception was that the bacterial community from the low-concentration and low-molecular-weight DOM source exhibited a greater denaturing gradient gel electrophoresis (DGGE) band richness when grown in its own DOM source than when grown in the highest concentration and molecular weight DOM source. This treatment also exhibited a higher rate of productivity. In general, our data suggest that microbial communities are selected by the DOM sources to which they are exposed. A microbial community will utilize the low-molecular-weight (or labile) DOM sources as well as parts of the high-molecular-weight (refractory) DOM, until a community develops that can efficiently metabolize the more abundant high-molecular-weight source. This experiment examines some of the complex interactions between microbial community selection and the combined factors of DOM quality and concentration. Our data suggest that the roles of aerobic aquatic heterotrophic bacteria in carbon cycling, as well as the importance of high-molecular-weight DOM as a carbon source, may be more complex than is conventionally recognized.  相似文献   

6.
This study reports on the interacting effect of photochemical conditioning of dissolved organic matter and inorganic phosphorus on the metabolic activity of bacteria in freshwater. Batch cultures with lake-water bacteria and dissolved organic carbon (DOC) extracted from a humic boreal river were arranged in an experimental matrix of three levels of exposure to simulated sunlight and three levels of phosphorus concentration. We measured an increase in bacterial biomass, a decrease in DOC and bacterial respiration as CO(2) production and O(2) consumption over 450 h. These measurements were used to calculate bacterial growth efficiency (BGE). Bacterial degradation of DOC increased with increasing exposure to simulated sunlight and availability of phosphorus and no detectable growth occurred on DOC that was not pre-exposed to simulated sunlight. The outcome of photochemical degradation of DOC changed with increasing availability of phosphorus, resulting in an increase in BGE from about 5% to 30%. Thus, the availability of phosphorus has major implications for the quantitative transfer of carbon in microbial food webs.  相似文献   

7.
Lakes located above the timberline are remote systems with a number of extreme environmental conditions, becoming physically harsh ecosystems, and sensors of global change. We analyze bacterial community composition and community-level physiological profiles in mountain lakes located in an altitude gradient in North Patagonian Andes below and above the timberline, together with dissolved organic carbon (DOC) characterization and consumption. Our results indicated a decrease in 71 % of DOC and 65 % in total dissolved phosphorus (TDP) concentration as well as in bacteria abundances along the altitude range (1,380 to 1,950 m a.s.l.). Dissolved organic matter (DOM) fluorescence analysis revealed a low global variability composed by two humic-like components (allochthonous substances) and a single protein-like component (autochthonous substances). Lakes below the timberline showed the presence of all the three components, while lakes above the timberline the protein-like compound constituted the main DOC component. Furthermore, bacterial community composition similarity and ordination analysis showed that altitude and resource concentration (DOC and TDP) were the main variables determining the ordination of groups. Community-level physiological profiles showed a mismatch with bacteria community composition (BCC), indicating the absence of a relationship between genetic and functional diversity in the altitude gradient. However, carbon utilization efficiencies varied according to the presence of different compounds in DOM bulk. The obtained results suggest that the different bacterial communities in these mountain lakes seem to have similar metabolic pathways in order to be able to exploit the available DOC molecules.  相似文献   

8.
Relationships between environmental factors and bacterial communities were investigated in 41 freshwater lakes located in mountainous regions of eastern Japan. Bacterioplankton community composition (BCC) was determined by polymerase chain reaction-denaturing gradient gel electrophoresis of the 16S rRNA gene and then evaluated on the basis of physicochemical and biological variables of the lakes. Canonical correspondence analysis revealed that BCC of oligotrophic lakes was significantly influenced by dissolved organic carbon (DOC) content, but its effect was not apparent in the analysis covering all lakes including mesotrophic and eutrophic ones. The generalized linear model showed the negative association of DOC on the taxon richness of bacterioplankton communities. DOC was positively correlated with the catchment area per lake volume, suggesting that a large fraction of DOC supplied to the lake was derived from terrestrial sources. These results suggest that allochthonous DOC has a significant effect on bacterioplankton communities especially in oligotrophic lakes. The genus Polynucleobacter was detected most frequently. The occurrence of Polynucleobacter species was positively associated with DOC and negatively associated with total phosphorus (TP) levels. In addition, TP had a stronger effect than DOC, suggesting that oligotrophy is the most important factor on the occurrence of this genus.  相似文献   

9.
Lakes have a central role in the carbon cycle of the boreal landscape. These systems typically stratify in summer and their hypolimnetic microbial communities influence burial of biogenic organic matter in sediments. The composition of bacterial communities in these suboxic habitats was studied by pyrosequencing of 16S rRNA amplicons from five lakes with variable dissolved organic carbon (DOC) concentrations. Bacterioplankton communities in the hypolimnetic waters were clearly different from the surface layer with candidate division OD1, Chlorobi and Bacteroidetes as dominant community members. Several operational taxonomic units (OTUs) affiliated with candidate division OD1 were abundant and consistently present in the suboxic hypolimnion in these boreal lakes. The overall representation of this group was positively correlated with DOC and methane concentrations. Network analysis of time-series data revealed contrasting temporal patterns but suggested similar ecological roles among the abundant OTUs affiliated with candidate division OD1. Together, stable isotope data and taxonomic classification point to methane oxidation and autotrophic denitrification as important processes in the suboxic zone of boreal lakes. Our data revealed that while hypolimnetic bacterial communities are less dynamic, they appear to be more diverse than communities from the oxic surface layer. An appreciable proportion of the hypolimnetic bacteria belong to poorly described phyla.  相似文献   

10.
Quantitative and qualitative changes in organic matter content of wastewater effluents attributable to chlorination and ozonation have been analysed using bioassays as well as organic carbon direct measures. Bioassays were carried out using the bacterial populations of wastewater and two Escherichia coli strains as test micro-organisms. Our results indicate that pure strains present some advantages over indigenous bacteria. Although wastewater bacterial populations are better adapted to growth in wastewater, E. coli strains are more sensitive to changes in dissolved organic carbon (DOC) content. Moreover, the use of pure cultures allows estimation of the portion of DOC which can be converted in cell biomass, the assimilable organic carbon (AOC). Finally, the results obtained using prototrophic and the auxotrophic strains of E. coli suggested that ozonation alters the amino acid composition of wastewater while chlorination does not change the quantity nor the quality of the DOC present in effluents.  相似文献   

11.
In aquatic ecosystems, carbon (C) availability strongly influences nitrogen (N) dynamics. One manifestation of this linkage is the importance in the dissolved organic matter (DOM) pool of dissolved organic nitrogen (DON), which can serve as both a C and an N source, yet our knowledge of how specific properties of DOM influence N dynamics are limited. To empirically examine the impact of labile DOM on the responses of bacteria to DON and dissolved inorganic nitrogen (DIN), bacterial abundance and community composition were examined in controlled laboratory microcosms subjected to various combinations of dissolved organic carbon (DOC), DON, and DIN treatments. Bacterial communities that had colonized glass beads incubated in a stream were treated with various glucose concentrations and combinations of inorganic and organic N (derived from algal exudate, bacterial protein, and humic matter). The results revealed a strong influence of C availability on bacterial utilization of DON and DIN, with preferential uptake of DON under low C concentrations. Bacterial DON uptake was affected by the concentration and by its chemical nature (labile versus recalcitrant). Labile organic N sources (algal exudate and bacterial protein) were utilized equally well as DIN as an N source, but this was not the case for the recalcitrant humic matter DON treatment. Clear differences in bacterial community composition among treatments were observed based on terminal restriction fragment length polymorphisms (T-RFLP) of 16S rRNA genes. C, DIN, and DON treatments likely drove changes in bacterial community composition that in turn affected the rates of DON and DIN utilization under various C concentrations.  相似文献   

12.
High Heterotrophic Bacterial Production in Acidic, Iron-Rich Mining Lakes   总被引:1,自引:0,他引:1  
The acidic mining lakes of Eastern Germany are characterized by their extremely low pH and high iron concentrations. Low concentrations of CO2 in the epilimnion due to the low pH and reduced light transmission due to dissolved ferric iron potentially limit phytoplankton primary production (PP), whereas dissolved organic carbon (DOC) may promote heterotrophic production of bacteria (HP). We, therefore, tested whether HP exceeds PP in three lakes differing in pH and iron concentration (mean pH 2.3–3.0, 23–500 mg Fe L−1). Bacterial biomass and HP achieved highest values in the most acidic, most iron-rich lake, whereas PP was highest in the least acidic lake. HP was often higher than PP (ratio HP/PP up to 11), indicating that planktonic PP was not the main carbon source for the bacteria. HP was not related to PP and DOC, but HP as well as bacterial biomass increased with decreasing pH. Light stimulated the formation of ferrous iron, changed the DOC composition, and increased the HP in laboratory experiments, suggesting that iron photoreduction caused DOC degradation. This may explain why we found the highest HP in the most acidic and most rich lake. Overall, the importance of bacteria in the cycling of matter and as a basis for the whole food web seemed to increase in more acidic lakes with higher iron concentrations.  相似文献   

13.
It has been suggested that autochthonous (internally produced) organic carbon and allochthonous (externally produced) organic carbon are utilized by phylogenetically different bacterioplankton. We examined the relationship between the source of organic matter and the structure and function of lake bacterial communities. Differences and seasonal changes in bacterial community composition in two lakes differing in their source of organic matter were followed in relation to environmental variables. We also performed batch culture experiments with amendments of various organic substrates, namely fulvic acids, leachates from algae, and birch and maple leaves. Differences in bacterial community composition between the lakes, analysed by terminal restriction fragment length polymorphism, correlated with variables related to the relative loading of autochthonous and allochthonous carbon (water colour, dissolved organic carbon, nutrients, and pH). Seasonal changes correlated with temperature, chlorophyll and dissolved organic carbon in both lakes. The substrate amendments led to differences in both structure and function, i.e. production, respiration and growth yield, of the bacterial community. In conclusion, our results suggest that the source of organic matter influences community composition both within and among lakes and that there may be a coupling between the structure and function of the bacterial community.  相似文献   

14.
Nelson CE  Carlson CA 《PloS one》2011,6(3):e18320
Nutrient enrichment of high-elevation freshwater ecosystems by atmospheric deposition is increasing worldwide, and bacteria are a key conduit for the metabolism of organic matter in these oligotrophic environments. We conducted two distinct in situ microcosm experiments in a high-elevation lake (Emerald Lake, Sierra Nevada, California, USA) to evaluate responses in bacterioplankton growth, carbon utilization, and community structure to short-term enrichment by nitrate and phosphate. The first experiment, conducted just following ice-off, employed dark dilution culture to directly assess the impact of nutrients on bacterioplankton growth and consumption of terrigenous dissolved organic matter during snowmelt. The second experiment, conducted in transparent microcosms during autumn overturn, examined how bacterioplankton in unmanipulated microbial communities responded to nutrients concomitant with increasing phytoplankton-derived organic matter. In both experiments, phosphate enrichment (but not nitrate) caused significant increases in bacterioplankton growth, changed particulate organic stoichiometry, and induced shifts in bacterial community composition, including consistent declines in the relative abundance of Actinobacteria. The dark dilution culture showed a significant increase in dissolved organic carbon removal in response to phosphate enrichment. In transparent microcosms nutrient enrichment had no effect on concentrations of chlorophyll, carbon, or the fluorescence characteristics of dissolved organic matter, suggesting that bacterioplankton responses were independent of phytoplankton responses. These results demonstrate that bacterioplankton communities in unproductive high-elevation habitats can rapidly alter their taxonomic composition and metabolism in response to short-term phosphate enrichment. Our results reinforce the key role that phosphorus plays in oligotrophic lake ecosystems, clarify the nature of bacterioplankton nutrient limitation, and emphasize that evaluation of eutrophication in these habitats should incorporate heterotrophic microbial communities and processes.  相似文献   

15.
Bacterial utilization of dissolved organic matter (DOM) was studied in water from a humic and a clearwater oligotrophic lake. Indigenous bacteria were inoculated into either 0.2 m natural filtered lake water, or lake water enriched fivefold with colloidal DOM >100 kD but below 0.2 m. Consumption of DOM was followed from changes in concentrations of total dissolved organic carbon (DOC), dissolved combined and free carbohydrates and amino acids (DCCHO and DFCHO, and DCAA and DFAA, respectively) and by uptake of monosaccharide and amino acid radioisotopes. DCCHO and DCAA made up 8% (humic lake) to 33–44% (clear-water lake) of the natural DOC pools, while DFCHO and DFAA contributed at most 1.7% to the DOC pools. Addition of >100 kD DOM increased the DOC concentrations by 50% (clearwater lake) to 92% (humic lake), but it only resulted in a higher bacterial production (by 63%) in the humic lake. During the incubations 13 to 37% of the DOC was assimilated by the bacteria, at estimated growth efficiencies of 4–8%. Despite the measured reduction of DOC, statistically significant changes of specific organic compounds, especially of DCCHO and DCAA, generally did not occur. Probably the presence of high molecular weight DOC interfered with the applied analytical procedures. Addition of radiotracers indicated, however, that DFAA sustained 17–58% and 29–100% of the bacterial carbon and nitrogen requirements, respectively, and that glucose met 1–3% of the bacterial carbon requirements. Thus, our experiments indicate that radiotracers, rather than measurements of concentration changes, should be used in studies of bacterial utilization of DOC in freshwaters with a high content of humic or high molecular weight organic matter.  相似文献   

16.
Humic lakes are systems often characterized by irregular high input of dissolved organic carbon (DOC) from the catchment. We hypothesized that specific bacterial groups which rapidly respond to changes in DOC availability might form large populations in such habitats. Seasonal changes of microbial community composition were studied in two compartments of an artificially divided bog lake with contrasting DOC inputs. These changes were compared to community shifts induced during short-term enrichment experiments. Inocula from the two compartments were diluted 1:10 into water from the more DOC-rich compartment, and inorganic nutrients were added to avoid microbial N and P limitation. The dilutions were incubated for a period of 2 weeks. The microbial assemblages were analyzed by cloning and sequencing of 16S rRNA genes and by fluorescence in situ hybridization with specific oligonucleotide probes. beta-Proteobacteria from a cosmopolitan freshwater lineage related to Polynucleobacter necessarius (beta II) were rapidly enriched in all treatments. In contrast, members of the class Actinobacteria did not respond to the enhanced availability of DOC by an immediate increase in growth rate, and their relative abundances declined during the incubations. In lake water members of the beta II clade seasonally constituted up to 50% of all microbes in the water column. Bacteria from this lineage annually formed a significantly higher fraction of the microbial community in the lake compartment with a higher allochthonous influx than in the other compartment. Actinobacteria represented a second numerically important bacterioplankton group, but without clear differences between the compartments. We suggest that the pelagic microbial community of the studied system harbors two major components with fundamentally different growth strategies.  相似文献   

17.
Carreira  Cátia  Talbot  Sam  Lønborg  Christian 《Biogeochemistry》2021,154(3):489-508

Heterotrophic bacteria typically take up directly dissolved organic matter due to the small molecular size, although both particulate and dissolved organic matter have labile (easily consumed) compounds. Tropical coastal waters are important ecosystems because of their high productivity. However, few studies have determined bacterial cycling (i.e. carbon uptake by bacteria and allocation for bacterial biomass and respiration) of dissolved organic carbon in coastal tropical waters, and none has determined bacterial cycling of total and dissolved organic carbon simultaneously. In this study we followed bacterial biomass and production, and organic carbon changes over short-term (12 days) dark incubations with (total organic carbon, TOC) and without particulate organic carbon additions (dissolved organic carbon, DOC). The study was performed at three sites along the middle stretch of the Great Barrier Reef (GBR) during the dry and wet seasons. Our results show that the bacterial growth efficiency is low (0.1–11.5%) compared to other coastal tropical systems, and there were no differences in the carbon cycling between organic matter sources, seasons or locations. Nonetheless, more carbon was consumed in the TOC compared to the DOC incubations, although the proportion allocated to biomass and respiration was similar. This suggests that having more bioavailable substrate in the particulate form did not benefit bacteria. Overall, our study indicates that when comparing the obtained respiration rates with previously measured primary production rates, the GBR is a heterotrophic system. More detailed studies are required to fully explore the mechanisms used by bacteria to cycle TOC and DOC in tropical coastal waters.

  相似文献   

18.
We carried out enclosure experiments in an unproductive lake in northern Sweden and studied the effects of enrichment with different dissolved organic carbon (glucose)/inorganic phosphorous (DOC/Pi) ratios on bacterioplankton production (BP), growth efficiency (BGE), nutrient use efficiency (BNUE), growth rate, and specific respiration. We found considerable variation in BP, BGE, and BNUE along the tested DOC/Pi gradient. BGE varied between 0.87 and 0.24, with the highest values at low DOC/Pi ratios. BNUE varied between 40 and 9 g C g P−1, with high values at high DOC/Pi ratios. More DOC was thus allocated to growth when bacteria tended to be C-limited, and to respiration when bacteria were P-limited. Specific respiration was positively correlated with bacterial growth rate throughout the gradient. It is therefore possible that respiration was used to support growth in P-limited bacteria. The results indicated that BP can be limited by Pi when BNUE is at its maximum, by organic C when BGE is at its maximum, and by dual organic C and Pi limitation when BNUE and BGE have suboptimal values.  相似文献   

19.
Dag O. Hessen 《Hydrobiologia》1992,229(1):115-123
Allochthonous matter was the main source of carbon for pelagic bacteria in a humic lake, accounting for almost 90% of the carbon required to support observed bacterial growth. The estimated contribution from zooplankton excretion was of the same magnitude as direct phytoplankton release, both accounting for 5–7% of bacterial demands for dissolved carbon. Bacteria were an important source of carbon both for heterotrophic phytoplankton and for filter feeding zooplankton species, further stressing the role of humus DOC in overall lake productivity. The high contribution of allochthonous DOC implies a stoichiometry of dissolved nutrients with a surplus of C relative to P. The high P cell quota of bacteria suggest that under such conditions they are P-limited and act like net consumers of P. Excess C will be disposed of, and bacterial respiration rate will increase following a transition from carbon-limited bacterial growth towards mineral-nutrient-limited growth. Thus the high community respiration and frequent CO2-supersaturation in humic lakes may be caused not only by the absolute supply of organic C, but also by the stoichiometry of the dissolved nutrient pool.  相似文献   

20.
Freshwater ecosystems are strongly influenced by both climate and the surrounding landscape, yet the specific pathways connecting climatic and landscape drivers to the functioning of lake ecosystems are poorly understood. Here, we hypothesize that the links that exist between spatial patterns in climate and landscape properties and the spatial variation in lake carbon (C) cycling at regional scales are at least partly mediated by the movement of terrestrial dissolved organic carbon (DOC) in the aquatic component of the landscape. We assembled a set of indicators of lake C cycling (bacterial respiration and production, chlorophyll a, production to respiration ratio, and partial pressure of CO2), DOC concentration and composition, and landscape and climate characteristics for 239 temperate and boreal lakes spanning large environmental and geographic gradients across seven regions. There were various degrees of spatial structure in climate and landscape features that were coherent with the regionally structured patterns observed in lake DOC and indicators of C cycling. These different regions aligned well, albeit nonlinearly along a mean annual temperature gradient; whereas there was a considerable statistical effect of climate and landscape properties on lake C cycling, the direct effect was small and the overall effect was almost entirely overlapping with that of DOC concentration and composition. Our results suggest that key climatic and landscape signals are conveyed to lakes in part via the movement of terrestrial DOC to lakes and that DOC acts both as a driver of lake C cycling and as a proxy for other external signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号