首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of human type III 3alpha-hydroxysteroid dehydrogenase (HSD)/bile acid binding protein (AKR1C2) complexed with NADP(+) and 3alpha,7beta-dihydroxy-5beta-cholanic acid (ursodeoxycholate) at 3.0 A resolution is presented. Thus, the three-dimensional structure has now been solved for a human HSD member of the aldo-keto reductase superfamily. AKR1C2 is implicated in the prostatic production of the potent androgen 5alpha-dihydrotestosterone and the hepatic transport of bile acids. It also catalyzes the formation of the neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one in the central nervous system, and its allosteric modulation by fluoxetine has been linked to the use of this drug for premenstrual dsyphoria. Like other members of the superfamily, AKR1C2 folds into an alpha/beta-barrel and binds NADP(+) in an extended conformation. The carboxylate of ursodeoxycholate binds to AKR1C2 in the oxyanion hole at the active site. More interestingly, the orientation of ursodeoxycholate is essentially "backwards" and "upside-down" from that observed for testosterone in the related rat 3alpha-HSD.NADP(+).testosterone ternary complex, where testosterone assumes the position of a 3-ketosteroid substrate. The orientation of ursodeoxycholate is thus similar to that expected of a 17beta-HSD substrate. The ternary structure explains the ability of AKR1C2 to catalyze 3alpha-, 17beta-, and 20alpha-HSD reactions. Comparison of the steroid binding pocket of AKR1C2 with that of rat 3alpha-HSD reveals significant differences in the positions of conserved and nonconserved loop residues, providing insights into the structural basis for the functional flexibility that is observed in all the human 3alpha-HSD isoforms but not in the rat isoform.  相似文献   

2.
3alpha-Hydroxysteroid dehydrogenases (3alpha-HSDs) inactivate steroid hormones in the liver, regulate 5alpha-dihydrotestosterone (5alpha-DHT) levels in the prostate, and form the neurosteroid, allopregnanolone in the CNS. Four human 3alpha-HSD isoforms exist and correspond to AKR1C1-AKR1C4 of the aldo-keto reductase (AKR) superfamily. Unlike the related rat 3alpha-HSD (AKR1C9) which is positional and stereospecific, the human enzymes display varying ratios of 3-, 17-, and 20-ketosteroid reductase activity as well as 3alpha-, 17beta-, and 20alpha-hydroxysteroid oxidase activity. Their k(cat) values are 50-100-fold lower than that observed for AKR1C9. Based on their product profiles and discrete tissue localization, the human enzymes may regulate the levels of active androgens, estrogens, and progestins in target tissues. The X-ray crystal structures of AKR1C9 and AKR1C2 (human type 3 3alpha-HSD, bile acid binding protein and peripheral 3alpha-HSD) reveal that the AKR1C2 structure can bind steroids backwards (D-ring in the A-ring position) and upside down (beta-face inverted) relative to the position of a 3-ketosteroid in AKR1C9 and this may account for its functional plasticity. Stopped-flow studies on both enzymes indicate that the conformational changes associated with binding cofactor (the first ligand) are slow; they are similar in both enzymes but are not rate-determining. Instead the low k(cat) seen in AKR1C2 (50-fold less than AKR1C9) may be due to substrate "wobble" at the plastic active site.  相似文献   

3.
The purified cytosolic 3 alpha-hydroxysteroid oxidoreductase (3 alpha-HSOR) from female rat pituitary which catalyzes the reversible conversion of 5 alpha-dihydroprogesterone (5 alpha-DHP) to 3 alpha, 5 alpha-tetrahydroprogesterone (3 alpha, 5 alpha-THP) has been characterized in terms of its steroid substrate specificity, dihydrodiol dehydrogenase activity and inhibition by drugs such as medroxyprogesterone and indomethacin. The purified enzyme has a strong preference for the C21 progestin steroid substrates, 5 alpha-DHP and 3 alpha, 5 alpha-THP, over the corresponding C19 androgenic steroid substrates, 5 alpha-dihydrotesterone (5 alpha-DHT) and 3 alpha, 5 alpha-tetrahydrotestosterone (3 alpha, 5 alpha-THT). The apparent Km for 5 alpha-DHP (80 nM) is about 250 times lower than the Km for the androgenic steroid, 5 alpha-DHT (21 microM). In the oxidative direction, the apparent Km for 3 alpha, 5 alpha-TP (1.4 microM) is about 3-fold lower than the Km for the androgenic steroid, 3 alpha, 5 alpha-THT (4.2 microM). A number of other naturally occurring 3-keto- and 3 alpha(beta)-hydroxy-steroids were assessed for their ability to act as inhibitors (alternate substrates) of the 3 alpha-reduction of 5 alpha-DHP catalyzed by the purified 3 alpha-HSOR. None of the 3 beta- or 5 beta-isomers had any effect. Of the other 3-keto and 3 alpha- steroids tested, only deoxycorticosterone and the ovarian progestins showed any significant inhibition. These may be acting as inhibitors since there was little, if any, direct 3 alpha-reduction of progesterone to 3 alpha-hydroxy-4-pregnen-20-one. Unlike the liver cytosolic 3 alpha-HSOR, the pituitary enzyme has no associated dihydrodiol (quinone) dehydrogenase activity. This enzyme is similar to other cytosolic 3 alpha-HSORs from liver and brain in that it is potentially inhibited by indomethacin and by medroxyprogesterone.  相似文献   

4.
Complications during pregnancy and birth asphyxia lead to brain injury, with devastating consequences for the neonate. In this paper we present evidence that the steroid environment during pregnancy and at birth aids in protecting the fetus and neonate from asphyxia-induced injury. Earlier studies show that the placental progesterone production has a role in the synthesis and release of neuroactive steroids or their precursors into the fetal circulation. Placental precursor support leads to remarkably high concentrations of allopregnanolone in the fetal brain and to a dramatic decline with the loss of the placenta at birth. These elevated concentrations influence the distinct behavioral states displayed by the late gestation fetus and exert a suppressive effect that maintains sleep-like behavioral states that are present for much of fetal life. This suppression reduces CNS excitability and suppresses excitotoxicity. With the availability of adequate precursors, mechanisms within the fetal brain ultimately control neurosteroid levels. These mechanisms respond to episodes of acute hypoxia by increasing expression of 5alpha-reductase and P450scc enzymes and allopregnanolone synthesis in the brain. This allopregnanolone response, and potentially that of other neurosteroids including 5alpha-tetrahydrodeoxycorticosterone (TH-DOC), reduces hippocampal cell death following acute asphyxia and suggests that stimulation of neurosteroid production may protect the fetal brain. Importantly, inhibition of neurosteroid synthesis in the fetal brain increases the basal cell death suggesting a role in controlling developmental processes late in gestation. Synthesis of neurosteroid precursors in the fetal adrenal such as deoxycorticosterone (DOC), and their conversion to active neurosteroids in the fetal brain may also have a role in neuroprotection. This suggests that the adrenal glands provide precursor DOC for neurosteroid synthesis after birth and this may lead to a switch from allopregnanolone alone to neuroprotection mediated by allopregnanolone and TH-DOC.  相似文献   

5.
Human 20alpha-hydroxysteroid dehydrogenase (h20alpha-HSD; AKR1C1) catalyzes the transformation of progesterone (Prog) into 20alpha-hydroxy-progesterone (20alpha-OHProg). Although h20alpha-HSD shares 98% sequence identity with human type 3 3alpha-HSD (h3alpha-HSD3, AKR1C2), these two enzymes differ greatly in their activities. In order to explain these differences, we have solved the crystal structure of h20alpha-HSD in a ternary complex with NADP(+) and 20alpha-OHProg at 1.59A resolution. The steroid is stabilized by numerous hydrophobic interactions and a hydrogen bond between its O20 and the N(epsilon ) atom of His222. This new interaction prevents the formation of a hydrogen bond with the cofactor, as seen in h3alpha-HSD3 ternary complexes. By combining structural, direct mutagenesis and kinetic studies, we found that the H(222)I substitution decreases the K(m) value for the cofactor 95-fold. With these results, we hypothesize that the rotation of the lateral chain of His222 could be a mediating step between the transformation of Prog and the release of the cofactor. Moreover, crystal structure analysis and direct mutagenesis experiments lead us to identify a new residue involved in the binding of Prog. Indeed, the R(304)L substitution leads to a 65-fold decrease in the K(m) value for Prog reduction. We thus propose that Prog is maintained in a new steroid-binding site composed mainly of residues found in the carboxy-terminal region of the protein.  相似文献   

6.
Androgen-dependent prostate diseases initially require 5alpha-dihydrotestosterone (DHT) for growth. The DHT product 5alpha-androstane-3alpha,17beta-diol (3alpha-diol), is inactive at the androgen receptor (AR), but induces prostate growth, suggesting that an oxidative 3alpha-hydroxysteroid dehydrogenase (HSD) exists. Candidate enzymes that posses 3alpha-HSD activity are type 3 3alpha-HSD (AKR1C2), 11-cis retinol dehydrogenase (RODH 5), L-3-hydroxyacyl coenzyme A dehydrogenase , RODH like 3alpha-HSD (RL-HSD), novel type of human microsomal 3alpha-HSD, and retinol dehydrogenase 4 (RODH 4). In mammalian transfection studies all enzymes except AKR1C2 oxidized 3alpha-diol back to DHT where RODH 5, RODH 4, and RL-HSD were the most efficient. AKR1C2 catalyzed the reduction of DHT to 3alpha-diol, suggesting that its role is to eliminate DHT. Steady-state kinetic parameters indicated that RODH 4 and RL-HSD were high-affinity, low-capacity enzymes whereas RODH 5 was a low-affinity, high-capacity enzyme. AR-dependent reporter gene assays showed that RL-HSD, RODH 5, and RODH 4 shifted the dose-response curve for 3alpha-diol a 100-fold, yielding EC(50) values of 2.5 x 10(-9) M, 1.5 x 10(-9) M, and 1.0 x 10(-9) M, respectively, when compared with the empty vector (EC(50) = 1.9 x 10(-7) M). Real-time RT-PCR indicated that L-3-hydroxyacyl coenzyme A dehydrogenase and RL-HSD were expressed more than 15-fold higher compared with the other candidate oxidative enzymes in human prostate and that RL-HSD and AR were colocalized in primary prostate stromal cells. The data show that the major oxidative 3alpha-HSD in normal human prostate is RL-HSD and may be a new therapeutic target for treating prostate diseases.  相似文献   

7.
3alpha-Hydroxysteroid dehydrogenase (3alpha-HSD) catalyzes the oxidoreduction at carbon 3 of steroid hormones and is postulated to initiate the complete mineralization of the steroid nucleus to CO(2) and H(2)O in Comamonas testosteroni. By this activity, 3alpha-HSD provides the basis for C. testosteroni to grow on steroids as sole carbon and energy source. 3alpha-HSD was cloned and overexpressed in E. coli and purified to homogeneity by an affinity chromatography system as His-tagged protein. The recombinant enzyme was found to be functional as oxidoreductase toward a variety of steroid substrates, including androstanedione, 5alpha-dihydrotestosterone, androsterone, cholic acid, and the steroid antibiotic fusidic acid. The enzyme also catalyzes the carbonyl reduction of nonsteroidal aldehydes and ketones such as metyrapone, p-nitrobenzaldehyde and a novel insecticide (NKI 42255), and, based on this pluripotent substrate specificity, was named 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase (3alpha-HSD/CR). It is suggested that 3alpha-HSD/CR contributes to important defense strategies of C. testosteroni against natural and synthetic toxicants. Antibodies were generated in rabbits against the entire 3alpha-HSD/CR protein, and may now be used for evaluating the pattern of steroid induction in C. testosteroni on the protein level. Upon gel permeation chromatography the purified enzyme elutes as a 49.4 kDa protein revealing for the first time the dimeric nature of 3alpha-HSD/CR of C. testosteroni.  相似文献   

8.
The aldo-keto reductase (AKR) human type 3 3alpha-hydroxysteroid dehydrogenase (h3alpha-HSD3, AKR1C2) plays a crucial role in the regulation of the intracellular concentrations of testosterone and 5alpha-dihydrotestosterone (5alpha-DHT), two steroids directly linked to the etiology and the progression of many prostate diseases and cancer. This enzyme also binds many structurally different molecules such as 4-hydroxynonenal, polycyclic aromatic hydrocarbons, and indanone. To understand the mechanism underlying the plasticity of its substrate-binding site, we solved the binary complex structure of h3alpha-HSD3-NADP(H) at 1.9 A resolution. During the refinement process, we found acetate and citrate molecules deeply engulfed in the steroid-binding cavity. Superimposition of this structure with the h3alpha-HSD3-NADP(H)-testosterone/acetate ternary complex structure reveals that one of the mobile loops forming the binding cavity operates a slight contraction movement against the citrate molecule while the side chains of many residues undergo numerous conformational changes, probably to create an optimal binding site for the citrate. These structural changes, which altogether cause a reduction of the substrate-binding cavity volume (from 776 A(3) in the presence of testosterone/acetate to 704 A(3) in the acetate/citrate complex), are reminiscent of the "induced-fit" mechanism previously proposed for the aldose reductase, another member of the AKR superfamily. We also found that the replacement of residues Arg(301) and Arg(304), localized near the steroid-binding cavity, significantly affects the 3alpha-HSD activity of this enzyme toward 5alpha-DHT and completely abolishes its 17beta-HSD activity on 4-dione. All these results have thus been used to reevaluate the binding mode of this enzyme for androgens.  相似文献   

9.
Exposure of female rats to estradiol during the perinatal period has profound effects on GABAergic neurotransmission that are crucial to establish sexually dimorphic brain characteristics. We previously showed that neonatal β-estradiol 3-benzoate (EB) treatment decreases brain concentrations of the neurosteroid allopregnanolone, a potent positive modulator of extrasynaptic GABAA receptors (GABAAR). We thus evaluated whether neonatal EB treatment affects GABAAR expression and function in the hippocampus of adult female rats. Neonatal EB administration increased the expression of extrasynaptic α4/δ subunit-containing GABAARs and the modulatory action of THIP on tonic currents mediated by these receptors. The same treatment decreased the expression of synaptic α1/α4/γ2 subunit-containing receptors, as well as phasic currents. These effects of neonatal EB treatment are not related to ambient allopregnanolone concentrations per se, given that vehicle-treated rats in diestrus, which have opposite neurosteroid levels than EB-treated rats, show similar changes in GABAARs. Rather, these changes may represent a compensatory mechanism to counteract the long-term reduction in allopregnanolone concentrations, induced by neonatal EB. Given that both α4/δ receptors and allopregnanolone are involved in memory consolidation, we evaluated whether neonatal EB treatment alters performance in the Morris water maze test during adulthood. Neonatal EB treatment decreased the latency and the cumulative search error to reach the platform, as well as thigmotaxis, suggesting improved learning, and also enhanced memory performance during the probe trial. These enduring changes in GABAAR plasticity may be relevant for the regulation of neuronal excitability in the hippocampus and for the etiology of psychiatric disorders that originate in development and show sex differences.  相似文献   

10.
3alpha-Hydroxysteroid dehydrogenase/carbonyl reductase (3alpha-HSD/CR) from Comamonas testosteroni belongs to the short chain dehydrogenase/reductase (SDR) protein superfamily and catalyzes the oxidoreduction of a variety of steroid substrates, including the steroid antibiotic fusidic acid. The enzyme also mediates the carbonyl reduction of non-steroidal aldehydes and ketones such as a novel insecticide. It is suggested that 3alpha-HSD/CR contributes to the bioremediation of natural and synthetic toxicants by C. testosteroni. Crystallization and structure analysis showed that 3alpha-HSD/CR is active as a dimer. Dimerization takes place via an interface axis which has exclusively been observed in homotetrameric SDRs but never in the structure of a homodimeric SDR. The formation of a tetramer is blocked in 3alpha-HSD/CR by the presence of a predominantly alpha-helical subdomain which is missing in all other SDRs of known structure. For example, 3alpha/20beta-HSD from Streptomyces hydrogenans exhibits two main subunit interfaces arranged about two non-crystallographic two-fold axes which are perpendicular to each other and referred to as P and Q. This mode of dimerization is, however, sterically impossible in 3alpha-HSD/CR because of a 28 amino acids insertion into the classical Rossmann-fold motif between strand betaE and helix alphaF. This insertion is masking helices alphaE and alphaF, thus preventing the formation of a four helix bundle and enables the dimerization via a P-axis interface. This type of dimerization in SDRs has never been observed in a crystal structure so far. The aim of this study was to investigate whether the lack of this predominantly alpha-helical subdomain keeps 3alpha-HSD/CR to be an active enzyme and whether, by an in silico approach, the formation of a homotetramer or even a novel oligomerization mode can be expected. Redesign of this interface was performed on the basis of site directed mutagenesis and according to other SDR structures by an approach combining "in silico" and "wet chemistry". Simulations of sterical and structural effects after different mutations, by applying a combination of homology modelling and molecular dynamic simulations, provided an effective tool for extensive mutagenesis studies and indicated the possibility of tetramer formation of truncated 3alpha-HSD/CR. In addition, despite lacking the extra loop domain, mutant 3alpha-HSD/CR was shown to be active towards a variety of standard substrates.  相似文献   

11.
We have established a simple kinetic model applicable to the enzyme cycling reaction for the determination of 3alpha-hydroxysteroids. This reaction was conducted under the reversible catalytic function of a single 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) with nucleotide cofactors, thio-NAD(+) (one of the NAD(+) analogues) for the oxidation of 3alpha-hydroxysteroids and NADH for the reduction of 3-oxosteroids. This model was constructed based on the reaction mechanism of 3alpha-HSD, following an ordered bi-bi mechanism with cofactor binding first, under the assumption that the respective enzyme-cofactor complexes were distributed according to the initial ratio of thio-NAD(+) to NADH by the rapid equilibrium of both enzyme-cofactor complexes. The cycling rate in the new kinetic model could be expressed with the dissociation constants of enzyme-cofactor complexes and the initial concentrations of cofactors and enzyme. The cycling rate was verified by a comparison with the experimental data using 3alpha-HSD from Pseudomonas sp. B-0831. The results showed that the experimental data corresponded well with the results obtained from the kinetic model.  相似文献   

12.
Neurosteroids: a new function in the brain   总被引:8,自引:0,他引:8  
"Neurosteroids" accumulate in the central nervous system independently of supply by peripheral endocrine glands. Dehydroepiandrosterone (DHA) and pregnenolone (delta 5P) were first found in the rat brain. Then, a steroid biosynthetic pathway was demonstrated in oligodendrocytes, mostly by enzyme immunocytochemistry and biochemical studies in primary cultures of glial cells, where the formation, from appropriate radioactive precursors, of delta 5P, delta 5-pregn-3 beta, 20 alpha-diol (20 alpha-DH delta 5P), progesterone (P), 5 alpha-pregnane-3,20-dione (5 alpha-DHP) and 3 alpha-hydroxy-5 alpha-pregnane-20-one (3 alpha, 5 alpha-THP), as well as estrogen-induced nuclear progesterone receptor (PR) was observed. Several biological effects of neurosteroids have been observed, such as electrical stimulation of neurones, involvement in behaviorial activities, modulation of GABAA-receptor (GABAA-R) function (potentiated by 3 alpha, 5 alpha-THP and its 21-hydroxyderivative, antagonized by delta 5P- and DHA-sulfates) and growth/differentiation of glial cells in vitro. Preliminary findings suggest that the neurosteroid concept applies to all mammalian species, including man. Further investigations should assess the pathophysiological significance of the synthesis of neurosteroids and decipher their mechanisms of action via nuclear and membrane receptors.  相似文献   

13.
In earlier studies, two distinct molecules, 20 alpha-HSD-I and 20 alpha-HSD-II, responsible for 20 alpha-HSD activity of pig adrenal cytosol were purified to homogeneity and characterized [S. Nakajin et al., J. Steroid Biochem. 33 (1989) 1181-1189]. We report here that the purified 20 alpha-HSD-I, which mainly catalyzes the reduction of 17 alpha-hydroxyprogesterone to 17 alpha,20 alpha-dihydroxy-4-pregnen-3-one, catalyzes 3 alpha-hydroxysteroid oxidoreductase activity for 5 alpha (or 5 beta)-androstanes (C19), 5 alpha (or 5 beta)-pregnanes (C21) in the presence of NADPH as the preferred cofactor. The purified enzyme has a preference for the 5 alpha (or 5 beta)-androstane substrates rather than 5 alpha (or 5 beta)-pregnane substrates, and the 5 beta-isomers rather than 5 alpha-isomers, respectively. Kinetic constants in the reduction for 5 alpha-androstanedione (Km; 3.3 microM, Vmax; 69.7 nmol/min/mg) and 5 beta-androstanedione (Km; 7.7 microM, Vmax; 135.7 nmol/min/mg) were demonstrated for comparison with those for 17 alpha-hydroxyprogesterone (Km; 26.2 microM, Vmax; 1.3 nmol/min/mg) which is a substrate for 20 alpha-HSD activity. Regarding oxidation, the apparent Km and Vmax values for 3 alpha-hydroxy-5 alpha-androstan-17-one were 1.7 microM and 43.2 nmol/min/mg, and 1.2 microM and 32.1 nmol/min/mg for 3 alpha-hydroxy-5 beta-androstan-17-one, respectively. 20 alpha-HSD activity in the reduction of 17 alpha-hydroxyprogesterone catalyzed by the purified enzyme was inhibited competitively by addition of 5 alpha-DHT with a Ki value of 2.0 microM. Furthermore, 17 alpha-hydroxyprogesterone inhibited competitively 3 alpha-HSD activity with a Ki value of 150 microM.  相似文献   

14.
15.
The metabolite of progesterone, allopregnanolone, is among the most potent known ligands of the gamma-aminobutyric acid receptor complex (GABA(A)-R) in the central nervous system. This neuroactive steroid is markedly increased in an animal model of acute stress. Allopregnanolone is synthesized from progesterone by steroidogenic enzymes 5alpha-reductase (5alpha-R) and 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD), with the former being the rate-limiting enzyme in this reaction sequence. In this paper, a quantitative RT-PCR method coupled to laser-induced fluorescence capillary electrophoresis (LIF-CE) and Western blot were used to measure both mRNA and protein levels of 5alpha-R type 1 (5alpha-R1) and 5alpha-R type 2 (5alpha-R2) isozymes in prefrontal cortex of male rats after acute swim stress situations. Our results demonstrate that both 5alpha-R isozymes are significantly higher in prefrontal cortex of male rats after acute swim stress in comparison with control rats. These data may open up a new research line that could improve our understanding of the role of 5alpha-R isozymes in processes that accompany stress situations.  相似文献   

16.
It has been suggested that neurosteroids with agonist properties at the central GABA-A receptor are implicated in the pathogenesis of hepatic encephalopathy (HE) in chronic liver disease. In order to address this issue, gas chromatography/mass spectrometry was used to measure the neurosteroids pregnenolone, allopregnanolone, and tetrahydrodeoxycorticosterone (THDOC) in postmortem brain tissue from controls, cirrhotic patients who died without HE, a patient who died in uremic coma, and cirrhotic patients who died in hepatic coma. Exposure of rat cerebral cortical membranes to brain extracts from hepatic coma patients resulted in a 53% (p < 0.001) increase in binding of [3H]muscimol, a GABA-A receptor ligand. Subsequent GC/MS analysis showed that concentrations of the GABA-A receptor agonist neurosteroid allopregnanolone were significantly increased in brain tissue from hepatic coma patients compared to patients without HE or controls (p < 0.001). Brain allopregnanolone concentrations were significantly correlated with the magnitude of induction of [3H]muscimol binding (r2 = 0.82, p < 0.0001). Concentrations of allopregnanolone comparable to those observed in hepatic coma brains are pathophysiologically relevant. Concentrations of the neurosteroid precursor pregnenolone were also increased in brain tissue from hepatic coma patients, while those of a second neurosteroid THDOC were below the levels of detection in all groups. Brain concentrations of benzodiazepine receptor ligands estimated by radioreceptor assay were not significantly increased in cirrhotic patients with or without hepatic coma. These findings suggest that increased levels of allopregnanolone rather than "endogenous benzodiazepines" offer a cogent explanation for the phenomenon of "increased GABAergic tone" previously proposed in HE.  相似文献   

17.
Virgin, ovariectomized rats exposed to 2 wk of sequential estradiol (E(2)) and progesterone (P) followed by P withdrawal have increased hypothalamic oxytocin (OT) mRNA and peptide levels relative to sham-treated animals. This increase is prevented if P is sustained. In the central nervous system, P is metabolized to the neurosteroid allopregnanolone (3alpha-hydroxy-5alpha-pregnan-20-one), which exerts effects by acting as a positive allosteric modulator of GABA(A) receptor/Cl(-)-channel complexes. In the present study, ovariectomized rats that received sequential E(2) and P for 2 wk followed by P withdrawal were administered allopregnanolone at the time of P withdrawal. Hypothalamic and plasma allopregnanolone concentrations, serum E(2) and P concentrations, and hypothalamic OT mRNA levels were measured at death. Steroid-induced increases in OT mRNA were attenuated in animals treated with allopregnanolone at the time of P withdrawal. The results suggest that allopregnanolone plays an important modulatory role in steroid-mediated increases in hypothalamic OT.  相似文献   

18.
The dual nucleotide cofactor-specific enzyme, 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) from Pseudomonas sp. B-0831, is a member of the short-chain dehydrogenase/reductase (SDR) superfamily. Transient-phase kinetic studies using the fluorescence stopped-flow method were conducted with 3alpha-HSD to characterize the nucleotide binding mechanism. The binding of oxidized nucleotides, NAD(+), NADP(+) and nicotinic acid adenine dinucleotide (NAAD(+)), agreed well with a one-step mechanism, while that of reduced nucleotide, NADH, showed a two-step mechanism. This difference draws attention to previous characteristic findings on rat liver 3alpha-HSD, which is a member of the aldo-keto reductase (AKR) superfamily. Although functionally similar, AKRs are structurally different from SDRs. The dissociation rate constants associated with the enzyme-nucleotide complex formation were larger than the k(cat) values for either oxidation or reduction of substrates, indicating that the release of cofactors is not rate-limiting overall. It should also be noted that k(cat) for a substrate, cholic acid, with NADP(+) was only 6% of that with NAD(+), and no catalytic activity was detectable with NAAD(+), despite the similar binding affinities of nucleotides. These results suggest that a certain type of nucleotide can modulate nucleotide-binding mode and further the catalytic function of the enzyme.  相似文献   

19.
3alpha-Hydroxysteroid dehydrogenase catalyzes the transformation of 3-ketosteroids into 3alpha-hydroxysteroids, thus playing an important role in androgen and progesterone metabolism. So far, mouse cDNA and gene encoding 3alpha-HSD has not been reported. In this report, we describe the isolation of a mouse 3alpha-HSD cDNA and the characterization of its substrate specificity and tissue distribution. Sequence analysis indicates that m3alpha-HSD shares 87% amino acid identity with rat 3alpha-HSD. Cells stably transfected with this enzyme catalyze the transformation of dihydrotestosterone (DHT), 5alpha-androstanedione (5alpha-dione) and dihydroprogesterone (DHP) into 5alpha-androstane-3alpha,17beta-diol (3alpha-diol), androsterone (ADT) and 5alpha-pregnan-3alpha-ol-20-one (allopregnanolone), respectively. Quantification of mRNA expression levels of this enzyme was determined in male and female mouse sex-specific tissues using quantitative Realtime PCR. We show that this enzyme is mainly expressed in female-specific tissues while being almost absent from male-specific tissues. In the liver, the same expression level is seen in both male and female, while there is 6-fold higher expression level in female pituitary than in male. These results strongly suggest that m3alpha-HSD could play an important role in the female mouse physiology similar to that of type 1 5alpha-reductase with which it works in tandem. This role could be related to the inactivation of excess of androgen and progesterone that are more severely regulated than in man.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号