共查询到20条相似文献,搜索用时 0 毫秒
1.
Arnaud Day Godfrey Neutelings Frédérique Nolin Sébastien Grec Anouk Habrant David Crônier Bouchra Maher Christian Rolando Hélène David Brigitte Chabbert Simon Hawkins 《Plant Physiology and Biochemistry》2009,47(1):9-19
Caffeoyl coenzyme A O-methyltransferase (CCoAOMT, EC 2.1.1.104) down-regulated-flax (Linum usitatissimum) plants were generated using an antisense strategy and functionally characterized. Chemical analyses (acetyl bromide and thioacidolysis) revealed that the lignin quantity was reduced and that the Syringyl/Guaïacyl (S/G) lignin monomer ratio was modified in the non-condensed lignin fraction of two independent down-regulated lines. These modifications were associated with altered xylem organization (both lines), reduced cell-wall thickness (one line) and the appearance of an irregular xylem (irx) phenotype (both lines). In addition UV microspectroscopy also indicated that CCoAOMT down-regulation induced changes in xylem cell-wall structure and the lignin fractions. Microscopic examination also suggested that CCoAOMT down-regulation could influence individual xylem cell size and identity. As a first step towards investigating the cellular mechanisms responsible for the unusual structure of flax lignin (G-rich, condensed), recombinant flax CCoAOMT protein was produced and its affinity for different potential substrates evaluated. Results indicated that the preferred substrate was caffeoyl coenzyme A, followed by 5-hydroxyconiferaldehyde suggesting that flax CCoAOMT possesses a small, but probably significant 5′ methylating activity, in addition to a more usual 3′ methylating activity. 相似文献
2.
Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants 总被引:25,自引:0,他引:25
Caffeoyl coenzyme A O-methyltransferase (CCoAOMT) has recently been shown to participate in lignin biosynthesis in herbacious tobacco plants. Here, we demonstrate that CCoAOMT is essential in lignin biosynthesis in woody poplar (Populus tremula x Populus alba) plants. In poplar stems, CCoAOMT was found to be expressed in all lignifying cells including vessel elements and fibers as well as in xylem ray parenchyma cells. Repression of CCoAOMT expression by the antisense approach in transgenic poplar plants caused a significant decrease in total lignin content as detected by both Klason lignin assay and Fourier-transform infrared spectroscopy. The reduction in lignin content was the result of a decrease in both guaiacyl and syringyl lignins as determined by in-source pyrolysis mass spectrometry. Fourier-transform infrared spectroscopy indicated that the reduction in lignin content resulted in a less condensed and less cross-linked lignin structure in wood. Repression of CCoAOMT expression also led to coloration of wood and an elevation of wall-bound p-hydroxybenzoic acid. Taken together, these results indicate that CCoAOMT plays a dominant role in the methylation of the 3-hydroxyl group of caffeoyl CoA, and the CCoAOMT-mediated methylation reaction is essential to channel substrates for 5-methoxylation of hydroxycinnamates. They also suggest that antisense repression of CCoAOMT is an efficient means for genetic engineering of trees with low lignin content. 相似文献
3.
Down-regulation of lignin biosynthesis in transgenic Leucaena leucocephala harboring O-methyltransferase gene 总被引:1,自引:0,他引:1
In the present study, a 0.47 kb OMT gene construct from aspen, encoding for an enzyme O-methyltransferase (OMT, EC 2.1.1.6), in antisense orientation was used to down-regulate lignin biosynthesis in Leucaena leucocephala. The plants were transformed with Agrobacterium tumefaciens strain harboring the antisense gene, and the transformation was confirmed by PCR amplification of the npt II gene. The integration of a heterologous antisense OMT gene construct in transformed plants led to a maximum of 60% reduction in OMT activity relative to control. The evaluation of total lignin content by the Klason method revealed a maximum of 28% reduction. Histochemical analyses of stem sections depicted a reduction in lignin content and normal xylem development. The results also suggested a probable increase in aldehyde levels and a decrease in syringyl units. Lignin down-regulation was accompanied by an increase in methanol soluble phenolics to an extent that had no impact on wood discoloration, and the plants displayed a normal phenotype. Concomitantly, an increase of up to 9% in cellulose content was also observed. Upon alkali extraction, modified lignin was more extractable as evident from reduced Klason lignin in saponified residue and increased alkali soluble phenolics. The results together suggested that the extent of down-regulation of OMT activity achieved may lead to quality amelioration of Leucaena with respect to its applicability in pulp and paper manufacture as well as nutritive and easily digestible forage production. 相似文献
4.
Syringyl lignin, an important component of the secondary cell wall, has traditionally been considered to be a hallmark of angiosperms because ferns and gymnosperms in general lack lignin of this type. Interestingly, syringyl lignin was also detected in Selaginella, a genus that represents an extant lineage of the most basal of the vascular plants, the lycophytes. In angiosperms, syringyl lignin biosynthesis requires the activity of ferulate 5-hydroxylase (F5H), a cytochrome P450-dependent monooxygenase, and caffeic acid/5-hydroxyferulic acid O-methyltransferase (COMT). Together, these two enzymes divert metabolic flux from the biosynthesis of guaiacyl lignin, a lignin type common to all vascular plants, toward syringyl lignin. Selaginella has independently evolved an alternative lignin biosynthetic pathway in which syringyl subunits are directly derived from the precursors of p-hydroxyphenyl lignin, through the action of a dual specificity phenylpropanoid meta-hydroxylase, Sm F5H. Here, we report the characterization of an O-methyltransferase from Selaginella moellendorffii, COMT, the coding sequence of which is clustered together with F5H at the adjacent genomic locus. COMT is a bifunctional phenylpropanoid O-methyltransferase that can methylate phenylpropanoid meta-hydroxyls at both the 3- and 5-position and function in concert with F5H in syringyl lignin biosynthesis in S. moellendorffii. Phylogenetic analysis reveals that Sm COMT, like F5H, evolved independently from its angiosperm counterparts. 相似文献
5.
Coenzyme A (CoA) and acyl carrier protein are two cofactors in fatty acid metabolism, and both possess a 4'-phosphopantetheine moiety that is metabolically derived from the vitamin pantothenate. We studied the regulation of the metabolic pathway that gives rise to these two cofactors in an Escherichia coli beta-alanine auxotroph, strain SJ16. Identification and quantitation of the intracellular and extracellular beta-alanine-derived metabolites from cells grown on increasing beta-alanine concentrations were performed. The intracellular content of acyl carrier protein was relatively insensitive to beta-alanine input, whereas the CoA content increased as a function of external beta-alanine concentration, reaching a maximum at 8 microM beta-alanine. Further increase in the beta-alanine concentration led to the excretion of pantothenate into the medium. Comparing the amount of pantothenate found outside the cell to the level of intracellular metabolites demonstrates that E. coli is capable of producing 15-fold more pantoic acid than is required to maintain the intracellular CoA content. Therefore, the supply of pantoic acid is not a limiting factor in CoA biosynthesis. Wild-type cells also excreted pantothenate into the medium, showing that the beta-alanine supply is also not rate limiting in CoA biogenesis. Taken together, the results point to pantothenate kinase as the primary enzymatic step that regulates the CoA content of E. coli. 相似文献
6.
All enzymes required for the biosynthesis of CoA from pantothenic acid are present in the particle-free supernatant fraction from rat liver. We now report that also mitochondria have the capacity for biosynthesis of CoA, with 4′-phosphopantetheine as the initial precursor. Rat liver mitochondria do not contain pantothenate kinase, 4′-phosphopantothenoyl-1-synthetase or 4′-phosphopantothenoyl-1-cysteine decarboxylase. Dephospho-CoA pyrophosphorylase and dephospho-CoA kinase are present in the inner mitochondrial membrane, however, at specific activities as high as in cytosol. Km of mitochondrial dephospho-CoA kinase for dephospho-CoA is about 0.01 mmol/1, which is one order of magnitude lower than reported for the kinase from cytosol. 相似文献
7.
Coq3 O-methyltransferase carries out both O-methylation steps in coenzyme Q (ubiquinone) biosynthesis. The degree to which Coq3 O-methyltransferase activity and expression are dependent on the other seven COQ gene products has been investigated. A panel of yeast mutant strains harboring null mutations in each of the genes required for coenzyme Q biosynthesis (COQ1-COQ8) have been prepared. Mitochondria have been isolated from each member of the yeast coq mutant collection, from the wild-type parental strains and from respiratory deficient mutants harboring deletions in ATP2 or COR1 genes. These latter strains constitute Q-replete, respiratory deficient controls. Each of these mitochondrial preparations has been analyzed for COQ3-encoded O-methyltransferase activity and steady state levels of Coq3 polypeptide. The findings indicate that the presence of the other COQ gene products is required to observe normal levels of O-methyltransferase activity and the Coq3 polypeptide. However, COQ3 steady state RNA levels are not decreased in any of the coq mutants, relative to either wild-type or respiratory deficient control strains, suggesting either a decreased rate of translation or a decreased stability of the Coq3 polypeptide. These data are consistent with the involvement of the Coq polypeptides (or the Q-intermediates formed by the Coq polypeptides) in a multi-subunit complex. It is our hypothesis that a deficiency in any one of the COQ gene products results in a defective complex in which the Coq3 polypeptide is rendered unstable. 相似文献
8.
W W Poon R J Barkovich A Y Hsu A Frankel P T Lee J N Shepherd D C Myles C F Clarke 《The Journal of biological chemistry》1999,274(31):21665-21672
Ubiquinone (coenzyme Q or Q) is a lipid that functions in the electron transport chain in the inner mitochondrial membrane of eukaryotes and the plasma membrane of prokaryotes. Q-deficient mutants of Saccharomyces cerevisiae harbor defects in one of eight COQ genes (coq1-coq8) and are unable to grow on nonfermentable carbon sources. The biosynthesis of Q involves two separate O-methylation steps. In yeast, the first O-methylation utilizes 3, 4-dihydroxy-5-hexaprenylbenzoic acid as a substrate and is thought to be catalyzed by Coq3p, a 32.7-kDa protein that is 40% identical to the Escherichia coli O-methyltransferase, UbiG. In this study, farnesylated analogs corresponding to the second O-methylation step, demethyl-Q(3) and Q(3), have been chemically synthesized and used to study Q biosynthesis in yeast mitochondria in vitro. Both yeast and rat Coq3p recognize the demethyl-Q(3) precursor as a substrate. In addition, E. coli UbiGp was purified and found to catalyze both O-methylation steps. Futhermore, antibodies to yeast Coq3p were used to determine that the Coq3 polypeptide is peripherally associated with the matrix-side of the inner membrane of yeast mitochondria. The results indicate that one O-methyltransferase catalyzes both steps in Q biosynthesis in eukaryotes and prokaryotes and that Q biosynthesis is carried out within the matrix compartment of yeast mitochondria. 相似文献
9.
Meyermans H Morreel K Lapierre C Pollet B De Bruyn A Busson R Herdewijn P Devreese B Van Beeumen J Marita JM Ralph J Chen C Burggraeve B Van Montagu M Messens E Boerjan W 《The Journal of biological chemistry》2000,275(47):36899-36909
Caffeoyl-coenzyme A O-methyltransferase (CCoAOMT) methylates, in vitro, caffeoyl-CoA and 5-hydroxyferuloyl-CoA, two possible precursors in monolignol biosynthesis in vivo. To clarify the in vivo role of CCoAOMT in lignin biosynthesis, transgenic poplars with 10% residual CCoAOMT protein levels in the stem xylem were generated. Upon analysis of the xylem, the affected transgenic lines had a 12% reduced Klason lignin content, an 11% increased syringyl/guaiacyl ratio in the noncondensed lignin fraction, and an increase in lignin-attached p-hydroxybenzoate but otherwise a lignin composition similar to that of wild type. Stem xylem of the CCoAOMT-down-regulated lines had a pink-red coloration, which coincided with an enhanced fluorescence of mature vessel cell walls. The reduced production of CCoAOMT caused an accumulation of O(3)-beta-d-glucopyranosyl-caffeic acid, O(4)-beta-d-glucopyranosyl-vanillic acid, and O(4)-beta-d-glucopyranosyl-sinapic acid (GSA), as authenticated by (1)H NMR. Feeding experiments showed that O(3)-beta-d-glucopyranosyl-caffeic acid and GSA are storage or detoxification products of caffeic and sinapic acid, respectively. The observation that down-regulation of CCoAOMT decreases lignin amount whereas GSA accumulates to 10% of soluble phenolics indicates that endogenously produced sinapic acid is not a major precursor in syringyl lignin biosynthesis. Our in vivo results support the recently obtained in vitro enzymatic data that suggest that the route from caffeic acid to sinapic acid is not used for lignin biosynthesis. 相似文献
10.
Upendra N. Dwivedi Wilbur H. Campbell Jun Yu Raju S. S. Datla Robert C. Bugos Vincent L. Chiang Gopi K. Podila 《Plant molecular biology》1994,26(1):61-71
An aspen lignin-specific O-methyltransferase (bi-OMT; S-adenosyl-l-methionine: caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase, EC 2.1.1.68) antisense sequence in the form of a synthetic gene containing the cauliflower mosaic virus 35S gene sequences for enhancer elements, promoter and terminator was stably integrated into the tobacco genome and inherited in transgenic plants with a normal phenotype. Leaves and stems of the transgenes expressed the antisense RNA and the endogenous tobacco bi-OMT mRNA was suppressed in the stems. Bi-OMT activity of stems was decreased by an average of 29% in the four transgenic plants analyzed. Chemical analysis of woody tissue of stems for lignin building units indicated a reduced content of syringyl units in most of the transgenic plants, which corresponds well with the reduced activity of bi-OMT. Transgenic plants with a suppressed level of syringyl units and a level of guaiacyl units similar to control plants were presumed to have lignins of distinctly different structure than control plants. We concluded that regulation of the level of bi-OMT expression by an antisense mechanism could be a useful tool for genetically engineering plants with modified lignin without altering normal growth and development.Abbreviations OMT
O-methyltransferase
- bi-OMT
bispecific O-methyltransferase
- CAD
cinnamyl alcohol dehydrogenase
- Ptomt1
Populus tremuloides bi-OMT cDNA clone 相似文献
11.
Protoplasma - Tea plant, an economically important crop, is used in producing tea, which is a non-alcoholic beverage. Lignin, the second most abundant component of the cell wall, reduces the... 相似文献
12.
Genetic evidence for an interaction of the UbiG O-methyltransferase with UbiX in Escherichia coli coenzyme Q biosynthesis 下载免费PDF全文
IS16 is a thiol-sensitive, Q-deficient mutant strain of Escherichia coli. Here, we show that IS16 harbors a mutation in the ubiG gene encoding a methyltransferase required for two O-methylation steps of Q biosynthesis. Complementation of IS16 with either ubiG or ubiX(K-12) reverses this phenotype, suggesting that UbiX may interact with UbiG. 相似文献
13.
14.
To detect autotrophic CO2 assimilation in cell extracts of Methanococcus maripaludis, lactate dehydrogenase and NADH were added to convert pyruvate formed from autotrophically synthesized acetyl coenzyme A to lactate. The lactate produced was determined spectrophotometrically. When CO2 fixation was pulled in the direction of lactate synthesis, CO2 reduction to methane was inhibited. Bromoethanesulfonate (BES), a potent inhibitor of methanogenesis, enhanced lactate synthesis, and methyl coenzyme M inhibited it in the absence of BES. Lactate synthesis was dependent on CO2 and H2, but H2 + CO2-independent synthesis was also observed. In cell extracts, the rate of lactate synthesis was about 1.2 nmol min-1 mg of protein-1. When BES was added, the rate of lactate synthesis increased to 2.3 nmol min-1 mg of protein-1. Because acetyl coenzyme A did not stimulate lactate synthesis, pyruvate synthase may have been the limiting activity in these assays. Radiolabel from 14CO2 was incorporated into lactate. The percentages of radiolabel in the C-1, C-2, and C-3 positions of lactate were 73, 33, and 11%, respectively. Both carbon monoxide and formaldehyde stimulated lactate synthesis. 14CH2O was specifically incorporated into the C-3 of lactate, and 14CO was incorporated into the C-1 and C-2 positions. Low concentrations of cyanide also inhibited autotrophic growth, CO dehydrogenase activity, and autotrophic lactate synthesis. These observations are in agreement with the acetogenic pathway of autotrophic CO2 assimilation. 相似文献
15.
Pablo Collazo Lluís Montoliu Pere Puigdomènech Joan Rigau 《Plant molecular biology》1992,20(5):857-867
The isolation and characterization of cDNA and homologous genomic clones encoding the lignin O-methyltransferase (OMT) from maize is reported. The cDNA clone has been isolated by differential screening of maize root cDNA library. Southern analysis indicates that a single gene codes for this protein. The genomic sequence contains a single 916 bp intron. The deduced protein sequence from DNA shares significant homology with the recently reported lignin-bispecific caffeic acid/5-hydroxyferulic OMTs from alfalfa and aspen. It also shares homology with OMTs from bovine pineal glands and a purple non-sulfur photosynthetic bacterium. The mRNA of this gene is present at different levels in distinct organs of the plant with the highest accumulation detected in the elongation zone of roots. Bacterial extracts from clones containing the maize OMT cDNA show an activity in methylation of caffeic acid to ferulic acid comparable to that existing in the plant extracts. These results indicate that the described gene encodes the caffeic acid 3-O-methyltransferase (COMT) involved in the lignin biosynthesis of maize. 相似文献
16.
Kupke T Hernández-Acosta P Culiáñez-Macià FA 《The Journal of biological chemistry》2003,278(40):38229-38237
Coenzyme A is required for many synthetic and degradative reactions in intermediary metabolism and is the principal acyl carrier in prokaryotic and eukaryotic cells. Coenzyme A is synthesized in five steps from pantothenate, and recently the CoaA biosynthetic genes in bacteria and human have all been identified and characterized. Coenzyme A biosynthesis in plants is not fully understood, and to date only the AtHAL3a (AtCoaC) gene of Arabidopsis thaliana has been cloned and identified as 4'-phosphopantothenoylcysteine (PPC) decarboxylase (Kupke, T., Hernández-Acosta, P., Steinbacher, S., and Culiá?ez-Macià, F. A. (2001) J. Biol. Chem. 276, 19190-19196). Here, we demonstrate the cloning of the four missing genes, purification of the enzymes, and identification of their functions. In contrast to bacterial PPC synthetases, the plant synthetase is not CTP-but ATP-dependent. The complete biosynthetic pathway from pantothenate to coenzyme A was reconstituted in vitro by adding the enzymes pantothenate kinase (AtCoaA), 4'-phosphopantothenoylcysteine synthetase (AtCoaB), 4'-phosphopantothenoylcysteine decarboxylase (AtCoaC), 4'-phosphopantetheine adenylyltransferase (AtCoaD), and dephospho-coenzyme A kinase (AtCoaE) to a mixture containing pantothenate, cysteine, ATP, dithiothreitol, and Mg2+. 相似文献
17.
Repression of O-methyltransferase genes in transgenic tobacco affects lignin synthesis and plant growth. 总被引:8,自引:0,他引:8
G Pin?on S Maury L Hoffmann P Geoffroy C Lapierre B Pollet M Legrand 《Phytochemistry》2001,57(7):1167-1176
Among the different enzymatic steps leading to lignin biosynthesis, two methylation reactions introduce the methyl groups borne by guaiacyl (G) and syringyl (S) units. Tobacco possesses a complex system of methylation comprising three classes of CCoAOMTs (caffeoyl-CoA-O-methyltransferases) and two classes of COMTs (caffeic acid OMTs). Antisense plants transformed with the CCoAOMT sequence alone or fused to COMT I sequence have been produced and compared to ASCOMT I plants in order to study the specific role of each OMT isoform in lignin biosynthesis, plant development and resistance to pathogens. Tobacco plants strongly inhibited in OMT activities have been selected and analyzed. Whereas antisense COMT I plants exhibited no visual phenotype, CCoAOMT repression was shown to strongly affect the development of both single and double transformants: a reduction of plant growth and the alteration of flower development were observed in the most inhibited plants. Lignin analysis performed by Klason and thioacidolysis methods, showed a decrease in the lignin quantity and changes in the lignin structure of ASCCoAOMT and ASCCoAOMT/ASCOMT I transgenics but not in ASCOMT I plants. Inhibition of COMT I in single as well as in double transformed tobacco was demonstrated to decrease S unit synthesis and to provoke the accumulation of 5-hydroxyguaiacyl lignin units. ASCCoAOMT/ASCOMT I tobacco was affected in lignin amount and composition, thus demonstrating additive effects of inhibition of both enzymes. The changes of lignin profiles and the phenotypical and molecular alterations observed in the different transgenic lines were particularly prominent at the later stages of plant development. 相似文献
18.
Acetyl coenzyme A (CoA) biosynthesis in spinach chloroplasts has been investigated by following the incorporation of bicarbonate and acetate into fatty acids under a variety of conditions. Both substrates were readily incorporated into fatty acids in a light-dependent manner by intact photosynthesising chloroplasts, but when the concentrations of these substrates were adjusted to those found in vivo, i.e. 200 M acetate, 10 M bicarbonate, then acetate was found to supply carbon atoms for fatty acids biosynthesis via acetyl CoA at forty times the rate of bicarbonate. It is proposed that extra-chloroplastic free acetate is the pricipal substrate for chloroplasts acetyl CoA biosynthesis in spinach.Abbreviations ACP
acyl carrierprotein
- CoASH
coenzyme A 相似文献
19.
20.
E Jaeck B Dumas P Geoffroy N Favet D Inzé M Van Montagu B Fritig M Legrand 《Molecular plant-microbe interactions : MPMI》1992,5(4):294-300
The mRNAs encoding orthodiphenol-O-methyltransferases (OMTs; EC 2.1.1.6), which are involved in the biosynthesis of lignin precursors, are highly induced in tobacco leaves during the hypersensitive reaction to tobacco mosaic virus (TMV). OMT messengers were fractionated on a sucrose gradient and translated in vitro. Protein A-Sepharose columns adsorbed with specific antisera raised against purified OMTs were used to select translation products, and the translatable activity of OMT mRNA was measured at different stages of infection. Oligonucleotides derived from peptide sequences of purified OMT I were used to prime polymerase chain reactions; total RNA was used as template to allow the isolation of an OMT I clone. RNA blots, hybridized with the OMT I probe, revealed a unique messenger of 1.7 kb. The kinetics of accumulation of OMT I mRNAs during the hypersensitive reaction to TMV parallels the kinetics of translation and suggests that an increase in mRNA controls the increase in the rate of enzyme synthesis. In healthy plants, RNA blot hybridization showed that the steady-state level of OMT I mRNA is very high in vascular tissue compared to the level measured in leaves. 相似文献