首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A variety of environmental stresses, as well as inflammatory cytokines, induce activation of c-Jun N-terminal kinases. We describe here that IL-2 deprivation-induced apoptosis in TS1alphabeta cells does not modify c-Jun protein levels and correlates Bcl-2 downregulation and an increase in JNK1, but not JNK2, activity directly related to the induction of apoptosis. Indeed, downregulation of JNK1 expression using antisense oligonucleotides inhibits apoptosis induced by IL-2 withdrawal. Overexpression of Bcl-2 promotes cell survival and blocks JNK1 activation as well as apoptosis caused by IL-2 deprivation. This suggests that inhibition of the JNK1 signaling pathway may be a mechanism through which Bcl-2 promotes cell survival and prevents apoptosis triggered by growth factor withdrawal.  相似文献   

4.
Hydrogen peroxide (H(2)O(2)) can interact with intracellular signaling pathways to regulate cell behavior. The c-Jun NH(2)-terminal kinase 1 (JNK1) signal, involved in diverse aspects of cellular functioning, is implicated as a cell sensor of redox stress. The growth-inhibitory effect of both high-level H(2)O(2) and H(2)O(2)-scavenging catalase treatments is accompanied by increased JNK1 activity. To investigate the role of this response in growth regulation, the JNK1 signal was increased by the introduction of ectopic HA-JNK1. HA-JNK1 expression correlated with increases in basal c-Jun phosphorylation in a dose-dependent manner. Transient expression of HA-JNK1 potentiated cell growth arrest by catalase; however, with stable expression a degree of resistance to this response was observed. Resistance was accompanied by a lowered endogenous production of H(2)O(2). Transient HA-JNK1 expression also reduced H(2)O(2) generation, and this effect was reversed by the JNK inhibitor SP600125. These results indicate that the JNK1 stress response contributes to growth inhibition by catalase treatment via inhibition of cellular H(2)O(2) production. Stable amplification of the JNK1 pathway leads to cellular adaptation to its signal, resulting in a diminished reliance upon H(2)O(2) for efficient growth.  相似文献   

5.
6.
The phenotypic properties of the endothelium are subject to modulation by oxidative stress, and the c-Jun N-terminal kinase (JNK) pathway is important in mediating cellular responses to stress, although activation of this pathway in endothelial cells has not been fully characterized. Therefore, we exposed endothelial cells to hydrogen peroxide (H(2)O(2)) and observed rapid activation of JNK within 15 min that involved phosphorylation of JNK and c-Jun and induction of AP-1 DNA binding activity. Inhibition of protein kinase C and phosphoinositide 3-kinase did not effect JNK activation. In contrast, the tyrosine kinase inhibitors, genistein, herbimycin A, and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) significantly attenuated H(2)O(2)-induced JNK activation as did endothelial cell adenoviral transfection with a dominant-negative form of Src, implicating Src as an upstream activator of JNK. Activation of JNK by H(2)O(2) was also inhibited by AG1478 and antisense oligonucleotides directed against the epidermal growth factor receptor (EGFR), implicating the EGFR in this process. Consistent with this observation, H(2)O(2) stimulated EGFR tyrosine phosphorylation and complex formation with Shc-Grb2 that was abolished by PP2, implicating Src in H(2)O(2)-induced EGFR activation. Tyrosine phosphorylation of the EGFR by H(2)O(2) did not involve receptor autophosphorylation at Tyr(1173) as assessed by an autophosphorylation-specific antibody. These data indicate that H(2)O(2)-induced JNK activation in endothelial cells involves the EGFR through an Src-dependent pathway that is distinct from EGFR ligand activation. These data represent one potential pathway for mediating oxidative stress-induced phenotypic changes in the endothelium.  相似文献   

7.
8.
9.
Tumor necrosis factor α (TNF-α) receptor-associated factor 2 (TRAF2) regulates activation of the c-Jun N-terminal kinase (JNK)/c-Jun and the inhibitor of κB kinase (IKK)/nuclear factor κB (NF-κB) signaling cascades in response to TNF-α stimulation. Gene knockout studies have revealed that TRAF2 inhibits TNF-α-induced cell death but promotes oxidative stress-induced apoptosis. Here we report that TNF-α and oxidative stress both induce TRAF2 phosphorylation at serines 11 and 55 and that this dual phosphorylation promotes the prolonged phase of IKK activation while inhibiting the prolonged phase of JNK activation. Prolonged IKK activation trigged by TNF-α plays an essential role in efficient expression of a subset of NF-κB target genes but has no substantial role in TNF-α-induced cell death. On the other hand, TRAF2 phosphorylation in response to oxidative stress significantly promotes cell survival by inducing prolonged IKK activation and by inhibiting the prolonged phase of JNK activation. Notably, stable expression of phospho-null mutant TRAF2 in cancer cells leads to an increase in the basal and inducible JNK activation and B-cell lymphoma 2 (Bcl-2) phosphorylation. In addition, exposure of cells expressing phospho-null mutant TRAF2 to sublethal oxidative stress results in a rapid degradation of Bcl-2 and cellular inhibitor of apoptosis 1 as well as significantly increased cell death. These results suggest that TRAF2 phosphorylation is essential for cell survival under conditions of oxidative stress.  相似文献   

10.
Stress kinase MKK7: savior of cell cycle arrest and cellular senescence   总被引:2,自引:0,他引:2  
The c-Jun N-terminal kinase (JNK/SAPK) signaling cascade controls a spectrum of cellular processes, including cell growth, differentiation, transformation, and apoptosis. We recently demonstrated that stress kinase MKK7, a direct activator of JNKs, couples stress signaling to G2/M cell cycle progression, CDC2 expression, and cellular senescence. We further explored other molecules involved in JNK pathway and found that both MKK4, another direct activator of JNK, and c-Jun, a direct substrate of JNK, have similar roles to MKK7. Here we discuss the importance of the MKK4/MKK7-JNK-c-Jun pathway linking stress and developmental signals to cell proliferation, cell cycle progression, cellular senescence, and apoptosis including recent unpublished data from our lab.  相似文献   

11.
12.
13.
Increased production and activation of matrix metalloproteinase-2 (MMP-2) are critical events in skeletal muscle angiogenesis and are known to occur in response to mechanical stresses. We hypothesized that reorganization of the actin cytoskeleton would increase endothelial cell production and activation of MMP-2 and that this increase would require a MAPK-dependent signaling pathway in endothelial cells. The pharmacological actin depolymerization agent cytochalasin D increased expression of MMP-2 and membrane type 1-matrix metalloproteinase (MT1-MMP) mRNA, and this was reduced significantly in the presence of the JNK inhibitor SP600125. Activation of JNK by anisomycin was sufficient to induce expression of both MMP-2 and MT1-MMP mRNA in quiescent cells. Downregulation of c-Jun, a downstream target of JNK, with small interference (si)RNA inhibited MMP-2 expression in response to anisomycin. Inhibition of phosphoinositide 3-kinase (PI3K), but not JNK, significantly decreased the amount of active MMP-2 following cytochalasin D stimulation with a concurrent decrease in MT1-MMP protein. Physiological reorganization of actin occurs during VEGF stimulation. VEGF-induced MMP-2 protein production and activation, as well as MT1-MMP protein production, depended on PI3K activity. VEGF-induced MMP-2 mRNA expression was reduced by inhibition of JNK or by treatment with c-Jun siRNA. In summary, our results provide novel insight into the signaling cascades initiated in the early stages of angiogenesis through the reorganization of the actin cytoskeleton and demonstrate a critical role for JNK in regulating MMP-2 and MT1-MMP mRNA expression, whereas PI3K regulates protein levels of both MMP-2 and MT1-MMP. angiogenesis; mechanotransduction; vascular endothelial growth factor; c-Jun; phosphoinositide 3-kinase; membrane type 1-matrix metalloproteinase  相似文献   

14.
Mitogen-activated protein kinases (MAPKs) are components of signaling cascades regulated by environmental stimuli. In addition to participating in the stress response, the MAPKs c-Jun N-terminal Kinases JNK1 and JNK2 regulate the proliferation of normal and neoplastic cells. JNKs contribute to these processes largely by phosphorylating c-Jun and thus contributing to the activation of the AP-1 complex. We here report that JNKs control entry into mitosis. We have observed that JNK activity and phosphorylation of c-Jun become elevated during the G2/M transition of the cell cycle in immortalized fibroblasts and ovarian granulosa cells. Pharmacological inhibition of JNK causes a profound cell cycle arrest at the G2/M transition in both cell types. This effect is specific as it occurs with two distinct small molecule compounds. Inactivation of JNK prior to mitosis prevents expression of Aurora B and phosphorylation of Histone-H3 at Ser 10. Silencing of JNK1 and 2 causes a similar effect, whereas overexpression of JNK1 and 2 causes the opposite effect. Inhibition of JNK delays activation of cdc-2 and prevents downregulation of Cyclin B1. We conclude that JNK signaling promotes entry into mitosis by promoting expression of Aurora B and thereby phosphorylation of Histone-H3.  相似文献   

15.
16.
17.
18.
The prevention of injury from reactive oxygen species is critical for cellular resistance to many death stimuli. Resistance to death from the superoxide generator menadione in the hepatocyte cell line RALA255-10G is dependent on down-regulation of the c-Jun N-terminal kinase (JNK)/AP-1 signaling pathway by extracellular signal-regulated kinase 1/2 (ERK1/2). Because protein kinase C (PKC) regulates both oxidant stress and JNK signaling, the ability of PKC to modulate hepatocyte death from menadione through effects on AP-1 was examined. PKC inhibition with Ro-31-8425 or bisindolylmaleimide I sensitized this cell line to death from menadione. Menadione treatment led to activation of PKCmicro, or protein kinase D (PKD), but not PKCalpha/beta, PKCzeta/lambda, or PKCdelta/. Menadione induced phosphorylation of PKD at Ser-744/748, but not Ser-916, and translocation of PKD to the nucleus. PKC inhibition blocked menadione-induced phosphorylation of PKD, and expression of a constitutively active PKD prevented death from Ro-31-8425/menadione. PKC inhibition led to a sustained overactivation of JNK and c-Jun in response to menadione as determined by in vitro kinase assay and immunoblotting for the phosphorylated forms of both proteins. Cell death from PKC inhibition and menadione treatment resulted from c-Jun activation, since death was blocked by adenoviral expression of the c-Jun dominant negative TAM67. PKC and ERK1/2 independently down-regulated JNK/c-Jun, since inhibition of either kinase failed to affect activation of the other kinase, and simultaneous inhibition of both pathways caused additive JNK/c-Jun activation and cell death. Resistance to death from superoxide therefore requires both PKC/PKD and ERK1/2 activation in order to down-regulate proapoptotic JNK/c-Jun signaling.  相似文献   

19.
Gu J  Liu X  Wang QX  Tan HW  Guo M  Jiang WF  Zhou L 《Experimental cell research》2012,318(16):2105-2115
The activation of transforming growth factor-β1(TGF-β1)/Smad signaling pathway and increased expression of connective tissue growth factor (CTGF) induced by angiotensin II (AngII) have been proposed as a mechanism for atrial fibrosis. However, whether TGFβ1/non-Smad signaling pathways involved in AngII-induced fibrogenetic factor expression remained unknown. Recently tumor necrosis factor receptor associated factor 6 (TRAF6)/TGFβ-associated kinase 1 (TAK1) has been shown to be crucial for the activation of TGF-β1/non-Smad signaling pathways. In the present study, we explored the role of TGF-β1/TRAF6 pathway in AngII-induced CTGF expression in cultured adult atrial fibroblasts. AngII (1 μM) provoked the activation of P38 mitogen activated protein kinase (P38 MAPK), extracellular signal-regulated kinase 1/2(ERK1/2) and c-Jun NH(2)-terminal kinase (JNK). AngII (1 μM) also promoted TGFβ1, TRAF6, CTGF expression and TAK1 phosphorylation, which were suppressed by angiotensin type I receptor antagonist (Losartan) as well as p38 MAPK inhibitor (SB202190), ERK1/2 inhibitor (PD98059) and JNK inhibitor (SP600125). Meanwhile, both TGFβ1 antibody and TRAF6 siRNA decreased the stimulatory effect of AngII on TRAF6, CTGF expression and TAK1 phosphorylation, which also attenuated AngII-induced atrial fibroblasts proliferation. In summary, the MAPKs/TGFβ1/TRAF6 pathway is an important signaling pathway in AngII-induced CTGF expression, and inhibition of TRAF6 may therefore represent a new target for reversing Ang II-induced atrial fibrosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号