首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intensive reindeer grazing has been hypothesized to drive vegetation shifts in the arctic tundra from a low-productive lichen dominated state to a more productive moss dominated state. Although the more productive state can potentially host more herbivores, it may still be less suitable as winter grazing grounds for reindeer, if lichens, the most preferred winter forage, are less abundant. Therefore, such a shift towards mosses may have severe consequences for reindeer husbandry if ground-growing lichens have difficulties to recover. We tested if reindeer cause this type of vegetation state shifts in boreal forest floor vegetation, by comparing plant species composition and major soil processes inside and outside of more than 40-year-old exclosures. Lichen biomass was more than twice as high inside exclosures than in grazed controls and almost 5 times higher than in heavily grazed patches. Contrary to our predictions, net N mineralization and plant production were higher in the exclosures than in the grazed controls. The lack of response of phytometer plants in a common garden bioassay indicated that changed soil moisture may drive effects of reindeer on plant productivity in these dry Pine forest ecosystems.  相似文献   

2.
Ammonia oxidation is a major process in nitrogen cycling, and it plays a key role in nitrogen limited soil ecosystems such as those in the arctic. Although mm-scale spatial dependency of ammonia oxidizers has been investigated, little is known about the field-scale spatial dependency of aerobic ammonia oxidation processes and ammonia-oxidizing archaeal and bacterial communities, particularly in arctic soils. The purpose of this study was to explore the drivers of ammonia oxidation at the field scale in cryosols (soils with permafrost within 1 m of the surface). We measured aerobic ammonia oxidation potential (both autotrophic and heterotrophic) and functional gene abundance (bacterial amoA and archaeal amoA) in 279 soil samples collected from three arctic ecosystems. The variability associated with quantifying genes was substantially less than the spatial variability observed in these soils, suggesting that molecular methods can be used reliably evaluate spatial dependency in arctic ecosystems. Ammonia-oxidizing archaeal and bacterial communities and aerobic ammonia oxidation were spatially autocorrelated. Gene abundances were spatially structured within 4 m, whereas biochemical processes were structured within 40 m. Ammonia oxidation was driven at small scales (<1m) by moisture and total organic carbon, whereas gene abundance and other edaphic factors drove ammonia oxidation at medium (1 to 10 m) and large (10 to 100 m) scales. In these arctic soils heterotrophs contributed between 29 and 47% of total ammonia oxidation potential. The spatial scale for aerobic ammonia oxidation genes differed from potential ammonia oxidation, suggesting that in arctic ecosystems edaphic, rather than genetic, factors are an important control on ammonia oxidation.  相似文献   

3.
4.
We focused on land units as landscape characteristics and selected seven typical land units on a land catena comprising two areas of southern Mongolia. Hierarchical analysis was used to test the hypothesis that a land unit’s edaphic factors could explain the differences in vegetation responses to grazing. We established the survey sites at increasing distances from a livestock camp or water point within each land unit, then analysed patterns of change in floristic and functional compositions, vegetation volume and soil properties within each land unit to reveal differences in vegetation responses to grazing. We also examined the variations in floristic and functional compositions across land units to identify the edaphic factors that may underlie these differences. Changes in vegetation and soil properties at increasing distances from a camp or water point within each land unit were into three different patterns. Ordination techniques consistently indicated that land unit groups categorised using edaphic factors corresponded to those categorised using response patterns. Our study revealed that edaphic factors were responsible for the observed landscape-scale differences in vegetation responses to grazing in the study areas. In addition, the mechanisms underlying vegetation responses to grazing may have been primarily determined by edaphic factors.  相似文献   

5.
We measured resting and peak metabolic rates (RMR and PMR, respectively) during development of chicks of seven species of shorebirds: least sandpiper (Calidris minutilla; adult mass 20-22 g), dunlin (Calidris alpina; 56-62 g), lesser yellowlegs (Tringa flavipes; 88-92 g), short-billed dowitcher (Limnodromus griseus; 85-112 g), lesser golden plover (Pluvialis dominicana; 150-156 g), Hudsonian godwit (Limosa haemastica; 205-274 g), and whimbrel (Numenius phaeopus; 380 g). We tested two opposing hypotheses: the growth rate-maturity hypothesis, which posits that growth rate in chicks is inversely related to functional maturity of tissues, and the fast growth rate-high metabolism hypothesis, which suggests that rapid growth is possible only with a concomitant increase in either RMR or PMR. We have found no evidence that chicks of shorebirds with fast growth rates have lower RMRs or lower PMRs, as would be predicted by the growth rate-maturity hypothesis, but our data suggested that faster-growing chest muscles resulted in increased thermogenic capacity, consistent with the fast growth-high metabolism hypothesis. The development of homeothermy in smaller species is a consequence primarily of greater metabolic intensities of heat-generating tissues. The maximum temperature gradient between a chick's body and environment that can be maintained in the absence of a net radiative load increased rapidly with body mass during development and was highest in least sandpipers and lowest among godwits. Chicks of smaller species could maintain a greater temperature gradient at a particular body mass because of their higher mass-specific maximum metabolic rates.  相似文献   

6.
The generally higher biodiversity on organic farms may be influenced by management features such as no synthetic pesticide and fertilizer inputs and/or by differences in uncropped habitat at the site and landscape scale. We analysed bird and habitat data collected on 48 paired organic and conventional farms over two winters to determine the extent to which broad-scale habitat differences between systems could explain overall differences in farmland bird abundance. Density was significantly higher on organic farms for six out of 16 species, and none on conventional. Total abundance of all species combined was higher on organic farms in both years. Analyses using an information-theoretic approach suggested that both habitat extent and farm type were important predictors only for starling and greenfinch. Organic farming as currently practised may not provide significant benefits to those bird species that are limited by winter food resources, in particular, several declining granivores.  相似文献   

7.
In France, the Arctic charr (Salvelinus alpinus) is native in only two lakes (Lakes Bourget and Geneva), in the most southerly part of its distribution area. It is a profundal morph living at depths of between 30 and 100 m in Lake Geneva. Following considerable stocking of Lake Geneva with juvenile Arctic charr and some good results during the 1980s, catches are currently declining. Several hypotheses have been proposed to explain this decrease, but the potential influence of warming of the lake in the 1990s has not been considered. This article studies the relationship between the strength of the cohorts and the temperature in Lake Geneva from 1992 to 2002, and discusses the various potential causes of the population collapse observed. The findings reveal close correlation between water temperature and the strength of the cohorts. It is concluded that the recent warming of Lake Geneva may have a significant direct or indirect impact on the Arctic charr population.  相似文献   

8.
Arctic charr Salvelinus alpinus did not appear to invest in acoustic communication during courtship and agonistic interactions in captivity. Salvelinus alpinus did, however, produce four different types of sounds which were found to be associated with three different types of air exchange behaviours which probably have a swimbladder regulation function. Since air passage sounds appear to be common among Salmonidae, it is suggested that the potential of passive acoustics techniques for behavioural and ecological monitoring should be further investigated in future field and laboratory investigations.  相似文献   

9.
The conservation of migratory birds requires internationally coordinated efforts that, in turn, demand an understanding of population dynamics and connectivity throughout a species' range. Whimbrels (Numenius phaeopus) are a widespread long‐distance migratory shorebird with two disparate North American breeding populations. Monitoring efforts suggest that at least one of these populations is declining, but the level of migratory connectivity linking the two populations to specific non‐breeding sites or identifiable conservation threats remains unclear. We deployed light‐level geolocators in 2012 to track the migration of Whimbrels breeding near Churchill, Manitoba, Canada. In 2013, we recovered 11 of these geolocators, yielding complete migration tracks for nine individuals. During southbound migration, six of the nine Whimbrels stopped at two staging sites on the mid‐Atlantic seaboard of the United States for an average of 22 days, whereas three individuals made nonstop flights of ~8000 km from Churchill to South America. All individuals subsequently spent the entire non‐breeding season along the northern coasts of Brazil and Suriname. On their way north, all birds stopped at the same two staging sites used during southbound migration. Individuals staged at these sites for an average of 34 days, significantly longer than during southbound migration, and all departed within a 5‐day period to undertake nonstop flights ranging from 2600 to 3100 km to the breeding grounds. These extended spring stopovers suggest that female Whimbrels likely employ a mixed breeding strategy, drawing on both endogenous and exogenous reserves to produce their eggs. Our results also demonstrate that this breeding population exhibits a high degree of connectivity among breeding, staging, and wintering sites. As with other long‐distance migratory shorebirds, conservation efforts for this population of Whimbrels must therefore focus on a small, but widely spaced, suite of sites that support a large proportion of the population.  相似文献   

10.
We have examined the relationship between the history of fluvial disturbance and understory vegetation in a riparian forest. The study site was divided into three sites, by use of aerial photographs and topographical maps, with different histories of fluvial disturbance: (1) Fagus-type on land that has not been flooded for the last 39 years, at least; (2) Populus-type on land that has not been flooded since debris flow occurred 34 years ago; and (3) Salix-type on land that has been flooded periodically from an abandoned channel since debris flow occurred 34 years ago. Species richness in the Salix-type was significantly higher than in the other types. Detrended correspondence analysis revealed obvious floristic differences among the three canopy types. Canonical correspondence analysis showed that herbaceous species were mainly found on lower plots with high moss cover, implying that moss layers may capture seeds transported by the stream. Tall herbs occurred in less shaded plots and on higher plots, suggesting that their rapid growth prevented the occurrence of other species. Fagus-type was dominated by species with ingested fruits which depended on animals for their dispersal. Populus and Salix-types were dominated by species with wind dispersal or no dispersal mechanism, which depended on physical phenomena for dispersal. Attributes of current understory vegetation were connected with historical events, suggesting that riparian vegetation reflects the history of fluvial disturbance.  相似文献   

11.
12.
Increasing goose population sizes gives rise to conflicts with human socioeconomic interests and in some circumstances conservation interests. Grazing by high abundances of geese in grasslands is postulated to lead to a very short and homogeneous sward height negatively affecting cover for breeding meadow birds and impacting survival of nests and chicks. We studied the effects of spring grazing barnacle geese Branta leucopsis and brent geese Branta bernicla on occupancy of extensively farmed freshwater grasslands by nesting and brood‐rearing waders on the island Mandø in the Danish Wadden Sea. We hypothesized that goose grazing would lead to a shorter grass sward, negatively affecting the field occupancy by territorial/nesting and chick‐rearing waders, particularly species preferring taller vegetation. Goose grazing led to a short grass sward (<5 cm height) over most of the island. To achieve a variation in sward height, we kept geese off certain fields using laser light. We analyzed effects of field size, sward height, mosaic structure of the vegetation, proximity to shrub as cover for potential predators, and elevation above ground water level as a measure of wetness on field occupancy by nesting and chick‐rearing waders. The analysis indicated that the most important factor explaining field occupancy by nesting redshank Tringa totanus, black‐tailed godwit Limosa limosa, oystercatcher Haematopus ostralegus and lapwing Vanellus vanellus as well as by chick‐rearing black‐tailed godwit and lapwing was short vegetation height. Distance to shrub cover and elevation were less important. Hence, despite very intensive goose grazing, we could not detect any negative effect on the field occupancy by nesting nor chick‐rearing waders, including redshank and black‐tailed godwit, which are known to favor longer vegetation to conceal their nests and hide their chicks. Possible negative effects may be buffered by mosaic structures in fields and proximity to taller vegetation along fences and ditches.  相似文献   

13.
In this paper we report on changes in DNA methylation pattern in rape apices and leaves during transition from vegetative to reproductive stage due to grafting and/or vernalization. Grafted plants of winter rape (Brassica napus L., var. "Górczański") (stock from vernalized, scion from non-vernalized plants) were used together with vernalized non-grafted plants. In addition, methylation status was determined also in spring rape (var. "M?ochowski") grown under normal and low temperature. The methylation-sensitive amplification polymorphism (MSAP) method with EcoRI/MspI and EcoRII/HpaII restriction enzymes was employed. The majority (ca. 68%) of analyzed loci (566 in winter and 551 in spring rape) were monomorphic, i.e. did not undergo methylation. Both cultivars showed a similar degree of methylation. 188 loci in winter and 176 in spring cultivars expressed changes in the methylation pattern. All differentially amplified fragments resulted from either full methylation of an internal cytosine or from hemi-methylation of an external cytosine. A pair-wise comparison showed that a similar number of loci underwent development-related methylation changes in apices of the winter and spring rape. The majority (80%) of changes were demethylation events in generative (vernalized) apices of the winter cultivar. However, an increased number of demethylated loci was detected in vernalized apices in comparison with generative, non-vernalized ones. In apices of vegetative and generative grafted plants the same number of demethylation events was observed. Overall, 10 MSAP loci were detected that expressed methylation changes in vernalized apices only; among them 7 loci underwent demethylation after vernalization and remained methylated in both vegetative and generative non-vernalized stage. Only 1 locus was demethylated in generative non-vernalized apices. Thus, most of demethylation events can be ascribed to vernalization and not to the generative stage. In leaves of winter rape methylation and demethylation events occurred with similar frequency, while in the spring cultivar more demethylation events were detected. The results show that during vernalization and transition to the generative stage different sets of genes are activated.  相似文献   

14.
The primary objective of this study was to test the relevance of hydrological classification and class differences to the characteristics of woody riparian vegetation in a subtropical landscape in Queensland, Australia. We followed classification procedures of the environmental flow framework ELOHA – Ecological Limits of Hydrologic Alteration. Riparian surveys at 44 sites distributed across five flow classes recorded 191 woody riparian species and 15, 500 individuals. There were differences among flow classes for riparian species richness, total abundance, and abundance of regenerating native trees and shrubs. There were also significant class differences in the occurrence of three common tree species, and 21 indicator species (mostly native taxa) further distinguished the vegetation characteristics of each flow class. We investigated the influence of key drivers of riparian vegetation structure (climate, depth to water table, stream‐specific power, substrate type, degree of hydrologic alteration, and land use) on riparian vegetation. Patterns were explained largely by climate, particularly annual rainfall and temperature. Strong covarying drivers (hydrology and climate) prevented us from isolating the independent influences of these drivers on riparian assemblage structure. The prevalence of species considered typically rheophytic in some flow classes implies a more substantial role for flow in these classes but needs further testing. No relationships were found between land use and riparian vegetation composition and structure. This study demonstrates the relevance of flow classification to the structure of riparian vegetation in a subtropical landscape, and the influence of covarying drivers on riparian patterns. Management of environmental flows to influence riparian vegetation assemblages would likely have most potential in sites dominated by rheophytic species where hydrological influences override other controls. In contrast, where vegetation assemblages are dominated by a diverse array of typical rainforest species, and other factors including broad‐scale climatic gradients and topographic variables have greater influence than hydrology, riparian vegetation is likely to be less responsive to environmental flow management.  相似文献   

15.
Marine primary productivity studies pursued in the Canadian Arctic in 1961–1963, using standard techniques (oxygen and carbon-14) of the time, showed that maximum production developed rapidly in July at 5-m depth under very low light intensities and under intact but melting sea ice. The time of maximum production was correlated with depths of snow in spring. Low production levels were found in August in those years and estimated in 1956. Nitrate exhaustion occurred before maximum production and was followed by rapid sinking of chlorophyll and productivity and reduction of assimilation numbers. Gross production values greatly exceeded net production values in 1961–1963, and gross production in 2 years was about double that of a third year, which may be due to different initial conditions of nutrient concentrations in the euphotic zone. Interannual variability in primary production may be the result of changes in water masses in the surface layer, as driven by atmospheric pressure patterns.  相似文献   

16.
Time series of satellite‐derived surface chlorophyll‐a concentration (Chl) in 1997–2009 were used to examine for trends in the timing of the annual phytoplankton bloom maximum. Significant trends towards earlier phytoplankton blooms were detected in about 11% of the area of the Arctic Ocean with valid Chl data, e.g. in the Hudson Bay, Foxe Basin, Baffin Sea, off the coasts of Greenland, in the Kara Sea and around Novaya Zemlya. These areas roughly coincide with areas where ice concentration has decreased in early summer (June), thus making the earlier blooms possible. In the selected areas, the annual phytoplankton bloom maximum has advanced by up to 50 days which may have consequences for the Arctic food chain and carbon cycling. Outside the Arctic, the annual Chl maximum has become earlier in boreal North Pacific but later in the North Atlantic.  相似文献   

17.
Interactions between traditional livestock management practices and wildlife activities are important in the conservation of many mountain ecosystems including the summer rangelands in the Spanish Central Pyrenees, where rooting by wild boar (Sus scrofa) is a large disturbance that can reduce the amount of area available to grazing livestock. This study explored the likely impact of wild boar rooting on Pyrenean grasslands. It quantified the extent of wild boar rooting in livestock grazing areas and determined whether wild boars selected or avoided areas depending on the type of livestock and stocking rates. Wild boar rooting affected 16% of livestock grazing area and occurred in sites that were grazed by cattle, rather than by sheep. In addition, a preference for areas that had intermediate stocking rates was found. The relationship between the increase in the number of wild boars and trends in livestock management suggests that the extent of wild boar rooting will increase especially in cattle grazing areas, and therefore, the area available for cattle grazing in Pyrenean mountain rangelands would decrease significantly.  相似文献   

18.
Interactions between bacteria and protozoa in soil were studied over 2-week periods in the field and in a pot experiment. Under natural conditions the total biological activity was temporarily synchronized by a large rainfall, and in the laboratory by the addition of water to dried-out soil, with or without plants. In the field, peaks in numbers and biomass of bacteria appeared after the rain, and a peak of naked amoebae quickly followed. Of the three investigated groups—flagellates, ciliates, and amoebae—only populations of the latter were large enough and fluctuated in a way that indicated a role as bacterial regulators. The bacterial increase was transient, and the amoebae alone were calculated to be able to cause 60% of the bacterial decrease. The same development of bacteria and protozoa was observed in the pot experiment: in the presence of roots, amoebic numbers increased 20 times and became 5 times higher than in the unplanted soil. In the planted pots, the amoebic increase was large enough to cause the whole bacterial decrease observed; but in the unplanted soil, consumption by the amoebae caused only one-third of the bacterial decrease.  相似文献   

19.
The growing interest in biofuel as a green energy source has intensified the linkages between corn and ethanol markets, especially in the United States that represents the largest producing and exporting country for ethanol in the world. In this study, we examine the effect of corn market uncertainty on the price changes of US ethanol applying a set of GARCH‐jump models. We find that the US ethanol price changes react positively to the corn market volatility shocks after controlling for the effect of oil price uncertainty. In addition, we document that the impact of corn price volatility on the US ethanol prices appears to be asymmetric. Specifically, only the positive corn market volatility shocks are found to influence the ethanol market returns. Our findings also suggest that time‐varying jumps do exist in the ethanol market.  相似文献   

20.
This paper evaluates the aboveground vegetation in relation to the soil seed bank throughout a 60-year succession process following agricultural abandonment in a semi-arid Mediterranean gypsum habitat. There is little information regarding the relationship between these two community components in the context of succession on semi-arid gypsum soils. Aboveground vegetation and the corresponding seed bank of gypsum plant communities were sampled through a chronosequence of 24 abandoned fields. Generalized linear models were used to model seed species richness and density, redundancy analyses to model the effect of time since abandonment and the effect of soil physicochemical parameters on seed bank species composition, and Mantel tests to analyze resemblance between above- and belowground species composition. In this last case, the effect of time since abandonment was controlled using a partial Mantel test. Mantel correlograms using time intervals instead of distances were used to describe the resemblance of above- to belowground species occurrence in different aged fields. No significant variability in seed species richness, seed density, or species composition due to time since abandonment was found. Differences in seed species composition were mainly due to small spatial scale predictors such as slope and soil calcium content. High correlations between species composition in the soil seed bank and the aboveground vegetation were detected during succession. The lack of a significant trend in aboveground species replacement over time was also reflected in seed bank composition. We concluded that the rapid establishment of strict gypsophyte species relied mainly on the long-term persistence of these species in the seed bank.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号