首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polyamine content in cells is regulated by biosynthesis, degradation and transport. In Escherichia coli, there are two polyamine uptake systems, namely spermidine-preferential (PotABCD) and putrescine-specific (PotFGHI), which belong to the family of ATP binding cassette transporters. Putrescine-ornithine and cadaverine-lysine antiporters, PotE and CadB, each consisting of 12 transmembrane segments, are important for cell growth at acidic pH. Spermidine excretion protein (MdtJI) was also recently identified. When putrescine was used as energy source, PuuP functioned as a putrescine transporter. In Saccharomyces cerevisiae, there are four kinds of polyamine uptake proteins (DUR3, SAM3, GAP1 and AGP2), consisting of either 12 or 16 transmembrane segments. Among them, DUR3 and SAM3 mostly contribute to polyamine uptake. There are also five kinds of polyamine excretion proteins (TPO1–5), consisting of 12 transmembrane segments. Among them, TPO1 and TPO5 are the most active proteins. Since a polyamine metabolizing enzyme, spermidine/spermine N1-acetyltransferase, is not present in yeast, five kinds of excretion proteins may exist. The current status of polyamine transport in mammalian and plant cells are reviewed.  相似文献   

2.
Polyamines such as spermidine and spermine are primordial polycations that are ubiquitously present in the three domains of life. We have found that Gram‐positive bacteria Staphylococcus aureus and Enterococcus faecalis have lost either all or most polyamine biosynthetic genes, respectively, and are devoid of any polyamine when grown in polyamine‐free media. In contrast to bacteria such as Pseudomonas aeruginosa, Campylobacter jejuni and Agrobacterium tumefaciens, which absolutely require polyamines for growth, S. aureus and E. faecalis grow normally over multiple subcultures in the absence of polyamines. Furthermore, S. aureus and E. faecalis form biofilms normally without polyamines, and exogenous polyamines do not stimulate growth or biofilm formation. High levels of external polyamines, including norspermidine, eventually inhibit biofilm formation through inhibition of planktonic growth. We show that spermidine/spermine N‐acetyltransferase (SSAT) homologues encoded by S. aureus USA300 and E. faecalis acetylate spermidine, spermine and norspermidine, that spermine is the more preferred substrate, and that E. faecalis SSAT is almost as efficient as human SSAT with spermine as substrate. The polyamine auxotrophy, polyamine‐independent growth and biofilm formation, and presence of functional polyamine N‐acetyltransferases in S. aureus and E. faecalis represent a new paradigm for bacterial polyamine biology.  相似文献   

3.
Polyamines are ubiquitous biologically active aliphatic cations that are at least transiently available in the soil from decaying organic matter. Our objectives in this study were to characterize polyamine uptake kinetics in Phytophthora sojae zoospores and to quantify endogenous polyamines in hyphae, zoospores, and soybean roots. Zoospores contained 10 times more free putrescine than spermidine, while hyphae contained only 4 times as much free putrescine as spermidine. Zoospores contained no conjugated putrescine, but conjugated spermidine was present. Hyphae contained both conjugated putrescine and spermidine at levels comparable to the hyphal free putrescine and spermidine levels. In soybean roots, cadaverine was the most abundant polyamine, but only putrescine efflux was detected. The selective efflux of putrescine suggests that the regulation of polyamine availability is part of the overall plant strategy to influence microbial growth in the rhizosphere. In zoospores, uptake experiments with [1,4-14C]putrescine and [1,4-14C]spermidine confirmed the existence of high-affinity polyamine transport for both polyamines. Putrescine uptake was reduced by high levels of exogenous spermidine, but spermidine uptake was not reduced by exogenous putrescine. These observations suggest that P. sojae zoospores express at least two high-affinity polyamine transporters, one that is spermidine specific and a second that is putrescine specific or putrescine preferential. Disruption of polyamine uptake or metabolism has major effects on a wide range of cellular activities in other organisms and has been proposed as a potential control strategy for Phytophthora. Inhibition of polyamine uptake may be a means of reducing the fitness of the zoospore along with subsequent developmental stages that precede infection.  相似文献   

4.
Many biological processes result from the coupling of metabolic pathways. Considering this, proliferation depends on adequate iron and polyamines, and although iron-depletion impairs proliferation, the metabolic link between iron and polyamine metabolism has never been thoroughly investigated. This is important to decipher, as many disease states demonstrate co-dysregulation of iron and polyamine metabolism. Herein, for the first time, we demonstrate that cellular iron levels robustly regulate 13 polyamine pathway proteins. Seven of these were regulated in a conserved manner by iron-depletion across different cell-types, with four proteins being down-regulated (i.e., acireductone dioxygenase 1 [ADI1], methionine adenosyltransferase 2α [MAT2α], Antizyme and polyamine oxidase [PAOX]) and three proteins being up-regulated (i.e., S-adenosyl methionine decarboxylase [AMD1], Antizyme inhibitor 1 [AZIN1] and spermidine/spermine-N1-acetyltransferase 1 [SAT1]). Depletion of iron also markedly decreased polyamine pools (i.e., spermidine and/or spermine, but not putrescine). Accordingly, iron-depletion also decreased S-adenosylmethionine that is essential for spermidine/spermine biosynthesis. Iron-depletion additionally reduced 3H-spermidine uptake in direct agreement with the lowered levels of the polyamine importer, SLC22A16. Regarding mechanism, the “reprogramming” of polyamine metabolism by iron-depletion is consistent with the down-regulation of ADI1 and MAT2α, and the up-regulation of SAT1. Moreover, changes in ADI1 (biosynthetic) and SAT1 (catabolic) partially depended on the iron-regulated changes in c-Myc and/or p53. The ability of iron chelators to inhibit proliferation was rescuable by putrescine and spermidine, and under some conditions by spermine. Collectively, iron and polyamine metabolism are intimately coupled, which has significant ramifications for understanding the integrated role of iron and polyamine metabolism in proliferation.  相似文献   

5.
Treatment with thioacetamide (150 mg/kg)_ was used to enhance polyamine metabolism in rat liver. The increased uptake and catabolism of [14C]spermine and the changes of putrescine, spermidine and spermine concentrations indicated enhanced polyamine turnover rates. The increase of hepatic putrescine concentration was accompanied by an increase of monoacetylputrescine and N1-monoacetylspermidine concentration. In control animals, the latter compound was below detection levels. Thioacetamide treatment also enhanced putrescine excretion, which again was concomitant with an increased excretion of N1-acetylspermidine.The close time-dependent correlation between induced putrescine formation and enhanced formation of N1-acetylsperimidine at a time when liver spermidine and spermine concentrations are not changed, favors the notion that acetylation is an essential step in polyamine degradation and elimination. The increase of polyamine oxidase and decrease of acetylpolyamine deacetylase activities in the liver of thioacetamide-treated rats is in line with an increased polyamine turnover, but these enzymes. although essential, are not rate-limiting in the catabolic reactions.  相似文献   

6.
Biogenic amines spermine (Spm) and spermidine (Spd) are essential for cell growth. Polyamine analogs are widely used to investigate the enzymes of polyamine metabolism and the functions of spermine and spermidine in vitro and in vivo. It was demonstrated recently that α-methylated derivatives of Spm and Spd are able to fulfill the key cellular functions of polyamines, moreover, in some cases, the effects of (R) and (S) isomers were actually different. Using these α-methylated analogs of Spm and Spd, it turned possible to prevent the development of acute pancreatitis in SSAT-transgenic rats with controllable expression of the Spm/Spd N1-acetyltransferase gene. The analogs made it possible to reveal dormant stereospecificity of polyamine oxidase, Spm oxidase, and deoxyhypusine synthase. An original approach was suggested to regulate the stereospecificity of polyamine oxidase. Depletion of the intracellular polyamine pool was found to have both hypusine-related consequences and consequences unrelated to posttranslational modification of the eukaryotic translation initiation factor eIF5A. Possible applications of a new family of C-methylated polyamine analogs for the investigation and regulation of polyamine metabolism in vitro and in vivo are discussed.  相似文献   

7.
The three major polyamines—putrescine, spermidine, and spermine—were studied and changes of their levels were examined in extracts of cerebral ganglia and fat body from adult Acheta domesticus. In nervous tissue, only spermidine and spermine were present and spermine was two- to three-fold more abundant than spermidine. The polyamine levels were high up to day 3, decreased on day 4, and then remained relatively unchanged up to day 10. The spermidine/spermine ratios decreased during the imaginal life. Higher spermidine titres were observed in the neural tissue of egg-laying females compared to virgin females. In the fat body, putrescine was detected together with spermidine and spermine. Spermidine and spermine levels were two-fold higher than putrescine. Fat body of virgin females contained two times more polyamines than male fat body. Low at emergence, spermidine and spermine concentrations peaked on days 2–3 only in females, and egg-laying was characterized by an increase of putrescine and spermidine titres. Starvation did not change polyamine contents, implying homeostatic regulation of the intracellular polyamine metabolism. These data showing tissue specific changes in polyamine levels during the imaginal life of Acheta domesticus point to the physiological importance of polyamines as possible intracellular regulators during adult insect development. © 1993 Wiley-Liss, Inc.  相似文献   

8.
9.
Polyamines, including spermine, spermidine, and the precursor diamine, putrescine, are naturally occurring polycationic alkylamines that are required for eukaryotic cell growth, differentiation, and survival. This absolute requirement for polyamines and the need to maintain intracellular levels within specific ranges require a highly regulated metabolic pathway primed for rapid changes in response to cellular growth signals, environmental changes, and stress. Although the polyamine metabolic pathway is strictly regulated in normal cells, dysregulation of polyamine metabolism is a frequent event in cancer. Recent studies suggest that the polyamine catabolic pathway may be involved in the etiology of some epithelial cancers. The catabolism of spermine to spermidine utilizes either the one-step enzymatic reaction of spermine oxidase (SMO) or the two-step process of spermidine/spermine N 1-acetyltransferase (SSAT) coupled with the peroxisomal enzyme N 1-acetylpolyamine oxidase. Both catabolic pathways produce hydrogen peroxide and a reactive aldehyde that are capable of damaging DNA and other critical cellular components. The catabolic pathway also depletes the intracellular concentrations of spermidine and spermine, which are free radical scavengers. Consequently, the polyamine catabolic pathway in general and specifically SMO and SSAT provide exciting new targets for chemoprevention and/or chemotherapy.  相似文献   

10.
The polyamine uptake system in bovine lymphocytes was activated by concanavalin A. The system was common to putrescine, spermidine and spermine. The Kt values for uptake activities of putrescine, spermidine and spermine were 3.7 microM, 0.38 microM and 0.23 microM in that order. The uptake activity was inhibited by carbonyl cyanide m-chlorophenylhydrazone, gramicidin D or valinomycin in the presence of 20 mM K+ suggesting that polyamine uptake depends on the membrane potential. The uptake activity appeared 10 h after addition of concanavalin A, and the maximum was reached at 28 h indicating that induction of the polyamine transporter precedes the initiation of DNA synthesis. Addition of polyamine antimetabolites, such as alpha-difluoromethylornithine and ethylglyoxal bis(guanylhydrazone), to the medium enhanced at least eightfold the induction of the polyamine transporter. The induction was repressed by addition of 50 microM spermidine or spermine, but not putrescine. We propose here that the induction of the membrane-potential-dependent polyamine transporter is regulated by the intracellular level of spermidine and spermine.  相似文献   

11.
Polyamines were extracted from five different leishmanial strains (Leishmania sp., L. tropica major, L. mexicana, and two L. donovani isolates) and identified as pulrescine, spermidine, and spermine by thin-layer chromatography and mass spectrometry. These sensitive methods were also used to demonstrate the conversion of radioactive putrescine into spermidine and spermine. As in other types of cells, polyamine levels fluctuated during the growth cycle, maximal levels being attained during the logarithmic growth phase. In the five leishmanial strains, which were members of four different serotypes, the spermidine—putrescine ratios also varied, and in two strains of the same serotype, polyamine ratios were practically identical, suggesting that polyamine characteristics might serve as a further criterion for strain identification and classification.  相似文献   

12.
Ishii I  Ikeguchi Y  Mano H  Wada M  Pegg AE  Shirahata A 《Amino acids》2012,42(2-3):619-626
Polyamines spermidine and spermine are known to be required for mammalian cell proliferation and for embryonic development. Alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC) a limiting enzyme of polyamine biosynthesis, depleted the cellular polyamines and prevented triglyceride accumulation and differentiation in 3T3-L1 cells. In this study, to explore the function of polyamines in adipogenesis, we examined the effect of polyamine biosynthesis inhibitors on adipocyte differentiation and lipid accumulation of 3T3-L1 cells. The spermidine synthase inhibitor trans-4-methylcyclohexylamine (MCHA) increased spermine/spermidine ratios, whereas the spermine synthase inhibitor N-(3-aminopropyl)-cyclohexylamine (APCHA) decreased the ratios in the cells. MCHA was found to decrease lipid accumulation and GPDH activity during differentiation, while APCHA increased lipid accumulation and GPDH activity indicating the enhancement of differentiation. The polyamine-acetylating enzyme, spermidine/spermine N 1-acetyltransferase (SSAT) activity was increased within a few hours after stimulus for differentiation, and was found to be elevated by APCHA. In mature adipocytes APCHA decreased lipid accumulation while MCHA had the opposite effect. An acetylpolyamine oxidase and spermine oxidase inhibitor MDL72527 or an antioxidant N-acetylcysteine prevented the promoting effect of APCHA on adipogenesis. These results suggest that not only spermine/spermidine ratios but also polyamine catabolic enzyme activity may contribute to adipogenesis.  相似文献   

13.
Two wheat (Triticum aestivum L.) cultivars, Sids 1 and Giza 168, were grown under non-saline or saline conditions (4.7 and 9.4 dS m?1) with and without arbuscular mycorrhizal fungi (AMF) inoculation. Salt stress considerably decreased root colonization, plant productivity and N, P, K+, Fe, Zn and Cu concentrations, while it increased Na+ level, particularly in Giza 168. Mycorrhizal colonization significantly enhanced plant productivity and N, P, K+, Fe, Zn and Cu acquisition, while it diminished Na+ uptake, especially in Sids 1. Salinity increased putrescine level in Giza 168, however, values of spermidine and spermine increased in Sids 1 and decreased in Giza 168. Mycorrhization changed the polyamine balance under saline conditions, an increase in putrescine level associated with low contents of spermidine and spermine in Giza 168 was observed, while Sids 1 showed a decrease in putrescine and high increase in spermidine and spermine. Moreover, mycorrhizal inoculation significantly reduced the activities of diamine oxidase and polyamine oxidase in salt-stressed wheat plants. Modulation of nutrient acquisition and polyamine pool can be one of the mechanisms used by AMF to improve wheat adaptation to saline soils. This is the first report dealing with mycorrhization effect on diamine oxidase and polyamine oxidase activities under salt stress.  相似文献   

14.
Catabolism of polyamines   总被引:10,自引:0,他引:10  
Seiler N 《Amino acids》2004,26(3):217-233
Summary. Owing to the establishment of cells and transgenic animals which either lack or over-express acetylCoA:spermidine N1-acetyltransferase a major progress was made in our understanding of the role of polyamine acetylation. Cloning of polyamine oxidases of mammalian cell origin revealed the existence of several enzymes with different substrate and molecular properties. One appears to be identical with the polyamine oxidase that was postulated to catalyse the conversion of spermidine to putrescine within the interconversion cycle. The other oxidases are presumably spermine oxidases, because they prefer free spermine to its acetyl derivatives as substrate. Transgenic mice and cells which lack spermine synthase revealed that spermine is not of vital importance for the mammalian organism, but its transformation into spermidine is a vitally important reaction, since in the absence of active polyamine oxidase, spermine accumulates in blood and causes lethal toxic effects.Numerous metabolites of putrescine, spermidine and spermine, which are presumably the result of diamine oxidase-catalysed oxidative deaminations, are known as normal constituents of organs of vertebrates and of urine. Reasons for the apparent contradiction that spermine is in vitro a poor substrate of diamine oxidase, but is readily transformed into N8-(2-carboxyethyl)spermidine in vivo, will need clarification.Several attempts were made to establish diamine oxidase as a regulatory enzyme of polyamine metabolism. However, diamine oxidase has a slow turnover. This, together with the efficacy of the homeostatic regulation of the polyamines via the interconversion reactions and by transport pathways renders a role of diamine oxidase in the regulation of polyamine concentrations unlikely. 4-Aminobutyric acid, the product of putrescine catabolism has been reported to have antiproliferative properties. Since ornithine decarboxylase and diamine oxidase activities are frequently elevated in tumours, it may be hypothesised that diamine oxidase converts excessive putrescine into 4-aminobutyric acid and thus restricts tumour growth and prevents malignant transformation. This function of diamine oxidase is to be considered as part of a general defence function, of which the prevention of histamine and cadaverine accumulation from the gastrointestinal tract is a well-known aspect.  相似文献   

15.
Polyamines are an essential class of metabolites found throughout all kingdoms in life. Borrelia burgdorferi harbors no enzymes to synthesize or degrade polyamines yet does contain a polyamine uptake system, potABCD. In this report, we describe the initial characterization of this putative transport system. After several unsuccessful attempts to inactivate potABCD, we placed the operon under the control of an inducible LacI promoter expression system. Analyses of this construct confirmed that potABCD was required for in vitro survival. Additionally, we demonstrated that the potABCD operon were upregulated in vitro by low osmolarity. Previously, we had shown that low osmolarity triggers the activation of the Rrp2/RpoN/RpoS regulatory cascade, which regulates genes essential for the transmission of spirochetes from ticks to mammalian hosts. Interestingly, induction of the pot operon was only affected in an rpoS mutant but not in a rpoN mutant, suggesting that the genes were RpoS dependent and RpoN independent. Furthermore, potABCD was upregulated during tick feeding concomitant with the initiation of spirochete replication. Finally, uptake experiments determined the specificity of B. burgdorferi's PotABCD for spermidine.  相似文献   

16.
Although most cells are capable of transporting polyamines, the mechanism that regulates polyamine transport in eukaryotes is still largely unknown. Using a genetic screen for clones capable of restoring spermine sensitivity to spermine-tolerant mutants of Saccharomyces cerevisiae, we have demonstrated that Sky1p, a recently identified SR protein kinase, is a key regulator of polyamine transport. Yeast cells deleted for SKY1 developed tolerance to toxic levels of spermine, while overexpression of Sky1p in wild-type cells increased their sensitivity to spermine. Expression of the wild-type Sky1p but not of a catalytically inactive mutant restored sensitivity to spermine. SKY1 disruption results in dramatically reduced uptake of spermine, spermidine, and putrescine. In addition to spermine tolerance, sky1Δ cells exhibit increased tolerance to lithium and sodium ions but somewhat increased sensitivity to osmotic shock. The observed halotolerance suggests potential regulatory interaction between the transport of polyamines and inorganic ions, as suggested in the case of the Ptk2p, a recently described regulator of polyamine transport. We demonstrate that these two kinases act in two different signaling pathways. While deletion or overexpression of SKY1 did not significantly affect Pma1p activity, the ability of overexpressed Sky1p, Ptk1p, and Ptk2p to increase sensitivity to LiCl depends on the integrity of PPZ1 but not of ENA1.  相似文献   

17.
Earlier unknown 1,8-diamino-3-methyl-4-azanonane (γ-MeSpd) was synthesized. The analogue was a substrate of neither spermine/spermidine N 1-acetyltransferase nor spermine synthase, but was capable to support the growth of DU145 cells having depleted polyamine pools. Such a combination of γ-MeSpd properties discloses novel opportunities to study cellular functions of catabolically unstable and easily interconvertible spermine and spermidine.  相似文献   

18.
Ornithine decarboxylase (ODC) is subject to feedback regulation by the polyamines. Thus, addition of putrescine, spermidine or spermine to cells causes inhibition of ODC mRNA translation. Putrescine and spermine are readily converted into spermidine. Therefore, it is conceivable that the inhibition of ODC synthesis observed in putrescine- and spermine-supplemented cells is instead an effect of spermidine. To examine this possibility we have used two analogs of putrescine and spermine, namely 1,4-dimethylputrescine and 5,8-dimethylspermine, which cannot be converted into spermidine. Both analogs were found to inhibit the incorporation of [35S]methionine into ODC protein to approximately the same extent, suggesting that putrescine as well as spermine exert a negative feedback control of ODC mRNA translation in the cell. In addition to suppressing ODC synthesis, both analogs were found to increase the turnover rate of the enzyme. 5,8-Dimethylspermine caused a marked decrease in the activity of S-adenosylmethionine decarboxylase (AdoMetDC). This effect was not obtained with 1,4-dimethylputrescine, indicating that spermine, but not putrescien, exerts a negative control of AdoMetDC. Treatment with 1,4-dimethylputrescine caused extensive depletion of the cellular putrescine and spermidine content, but accumulation of spermine. 5,8-Dimethylspermine treatment, on the other hand, effectively depleted the spermine content and had less effect on the putrescine and spermidine content, at least initially. Nevertheless, the total polyamine content was more extensively reduced by treatment with 5,8-dimethylspermine than with 1,4-dimethylputrescine. Accordingly, only 5,8-dimethylspermine treatment exerted a significant inhibitory effect on Ehrlich ascites tumor cell growth.  相似文献   

19.
New procedures for determining putrescine, spermidine and spermine were first established here by the end point assay method using polyamine oxidase from Penicillium chrysogenum or Aspergillus terreus and putrescine oxidase from Micrococcus rubens. Method 1: Spermidine and spermine were first oxidized with polyamine oxidase (step A). To the reaction mixture, putrescine oxidase was added to oxidize putrescine (step B). Putrescine and spermidine in another reaction mixture were oxidized with putrescine oxidase (step C). Method 2 : Putrescine and spermidine were first oxidized with putrescine oxidase (step A). To the reaction mixture, polyamine oxidase was added to oxidize spermine (step B). Spermidine and spermine in another reaction mixture were oxidized with polyamine oxidase (step C). The amounts of putrescine, spermidine and spermine were determined from the absorbance values at each steps A, B and C.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号