首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An aerobic, Gram-staining negative, non-motile, and rod-shaped bacterial strain, SS011A0-7#2-2T, was isolated from the sediment of South China Sea with the depth of 1,500 m. Optimum growth occurred at pH 8.0, 30 °C, and 6 % (w/v) NaCl. Strain SS011A0-7#2-2T did not synthesize bacteriochlorophyll a or carotenoid, neither possess photosynthesis genes. Its genome DNA G+C content was 67.9 mol%. It contained Q-10 as the predominant ubiquinone and C18:1 ω7c (52.3 %) as the major fatty acid. The major polar lipids were phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, unidentified phospholipid, and unidentified aminolipid. The 16S rRNA gene sequence analysis revealed that it was closely related to Seohaeicola saemankumensis SD-15T, Phaeobacter gallaeciensis BS 107T and Roseovarius pacificus 81-2T in Rhodobacteraceae, with the 16S rRNA gene sequence similarities being 96.5, 95.7, and 95.6 %, respectively. However, the phylogeny of the 16S rRNA gene sequences revealed that strain SS011A0-7#2-2T was a member of the genus Seohaeicola. Strain SS011A0-7#2-2T was moderately halophilic which was different from Seohaeicola saemankumensis SD-15T, and it showed the enzyme activities and carbon source spectrum significantly different from Seohaeicola saemankumensis SD-15T. As its physiological and chemotaxinomic properties were different from those of Seohaeicola saemankumensis SD-15T, strain SS011A0-7#2-2T represents a novel species of the genus Seohaecola. The name Seohaeicola nanhaiensis sp. nov. is proposed, with strain SS011A0-7#2-2T (=LMG 27733T = CGMCC 1.12759T) as the type strain.  相似文献   

2.
A novel actinomycete strain, designated VRC07T, was isolated from a Callistemon citrinus rhizosphere sample collected from Hyderabad, India. Its taxonomic status was determined by using polyphasic approach. It is a Gram-positive, aerobic, non-motile, weakly acid-fast strain. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain VRC07T is a member of the genus Nocardia. The highest levels of 16S rRNA gene sequence similarity was found between the strains Nocardia niwae W9241T (99.6 %), Nocardia amikacinitolerans W9988T (99.3 %) and Nocardia arthritidis IFM 10035T (98.9 %); similarity to other type strains of the genus Nocardia was below 98.7 %. The organism had chemical and morphological features consistent with its classification in the genus Nocardia such as meso-diaminopimelic acid as the diagnostic diamino acid in the cell wall peptidoglycan. Arabinose and galactose as the diagnostic sugars. Diagnostic polar lipids were phosphatidylinositol, diphosphatidylglycerol, and phosphatidylglycerol. The predominant menaquinone was MK-8(H4, ω-cycl). The major fatty acids were C16:0, C18:0, C18:1 w9c, C18:0 10-methyl TBSA and sum in feature 3 (16:1 w7c/16:1 w6c). The G+C content of the genomic DNA was 68.5 mol%. The DNA–DNA relatedness data, together with phenotypic differences clearly distinguished the isolate from its closest relatives. On the basis of these phenotypic and genotypic data, the isolate represents a novel species, for which the name Nocardia bhagyanesis sp. nov., is proposed. The type strain is VRC07T (=KCTC 29209T = MTCC 11725T = ATCC BAA-2548).  相似文献   

3.
A novel Gram-negative, orange-pigmented bacterial strain JLT2008T was isolated from the surface seawater of the Western Pacific and subjected to a polyphasic taxonomic study. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain JLT2008T belonged to the genus Erythrobacter, sharing the highest similarity (96.6 %) with Erythrobacter gangjinensis K7-2T and the lowest similarity (94.9 %) with Erythrobacter litoralis DSM 8509T. Strain JLT2008T did not contain bacteriochlorophyll a, and the predominant respiratory lipoquinone was ubiquinone-10. The major fatty acids were C18:1 ω7c, C16:0, C16:1 ω7c/C16:1 ω6c. The prominent polar lipids were sphingoglycolipid, phosphatidylethanolamine, and phosphatidylglycerol. The genomic G + C content was 60.1 mol %. Based on the polyphasic taxonomic data, a novel species within the genus Erythrobacter, and with the name Erythrobacter westpacificensis sp. nov., is proposed. The type strain is JLT2008T (=CGMCC 1.10993T = JCM 18014T).  相似文献   

4.
A gram-negative, motile, fermentative, thermophilic bacterium, designated AR80T, was isolated from a high-temperature oil reservoir in Yabase Oilfield in Akita, Japan. Cells were rod-shaped, motile by means of polar flagella, and formed circular, convex, white colonies. The strain grew at 40–65 °C (optimum 60 °C), 0.5–9 % (w/v) NaCl (optimum 0.5–1 %), pH 6–9 (optimum pH 7.5), and elemental sulfur or thiosulfate serves as terminal electron acceptor. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain AR80T belonged to the genus Petrotoga and shared approximately 94.5 % sequence similarity with the type species of this genus. The G + C content of genomic DNA was 32.4 mol% while the value of DNA–DNA hybridization between the closest relative species Petrotoga miotherma and AR80T was 58.1 %. The major cellular fatty acids of strain AR80T consisted of 18:1 w9c, 16:0, and 16:1 w9c. Based on genetic and phenotypic properties, strain AR80T was different with other identified Petrotoga species and represents as a novel species, for which the name Petrotoga japonica sp. nov. is proposed. The type strain is AR80T (=NBRC 108752T = KCTC 15103T = HUT 8122T).  相似文献   

5.
A new aerobic, Gram-negative, chemo-organotrophic, euryhaline bacterium, designated strain JL2009T, was isolated from surface water of the Caribbean Sea. The strain formed flaxen colonies on marine ager 2216 (MA; Difco) medium. Cells were dimorphic, with stalks or a polar flagellum, and reproduction occurred by means of binary fission. Growth occurred at 15–45 °C (optimum at 35 °C), 0–15 % (w/v) NaCl (optimum at 1–10 %) and pH 5–9 (optimum at pH 7–8). Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain formed a distinct evolutionary lineage within the family Hyphomonadaceae. Strain JL2009T was most closely related to Maricaulis parjimensis MCS 25T (92.2 % DNA sequence similarity), Woodsholea maritime CM2243T (90.9 %), and Oceanicaulis alexandrii C116-18T (90.9 %). The major respiratory quinone was Q-10. The dominant cellular fatty acids were summed feature 8 (C18:1 ω7c), C18:0 and 11-methyl C18:1 ω7c. The polar lipid pattern indicated the presence of phospholipid, phosphatidyl glycerol and glycolipids. The G + C content of the genomic DNA was 70.5 mol%. On the basis of the chemotaxonomic and phenotypic characteristics and the phylogenetic evidence, strain JL2009T represents a novel genus and species in the family Hyphomonadaceae, for which the name Euryhalocaulis caribicus gen. nov., sp. nov. is proposed. The type strain of Euryhalocaulis caribicus is JL2009T (=CGMCC 1.12036T = JCM 18163T).  相似文献   

6.
A novel bacterium, designated strain 13-2-B6T, was isolated from seawater adjacent to Songak Mountain on Jeju Island, South Korea. The novel strain was observed to be Gram-negative, aerobic, rod-shaped and motile with a single polar flagellum. On the basis of 16S rRNA gene sequence similarity, strain 13-2-B6T was determined to be phylogenetically closely related to the type strain of Antarctobacter heliothermus, currently the sole species of the genus Antarctobacter (family Rhodobacteraceae). Sequence similarity between the 16S rRNA genes of strain 13-2-B6T and A. heliothermus EL-219T is 96.9 %. Strain 13-2-B6T was found to grow optimally at 25–30 °C, pH 7.0–8.0 and 3 % (w/v) NaCl. The predominant isoprenoid quinone in strain 13-2-B6T was identified as ubiquinone Q-10 and the major fatty acids were identified as C18:1 ω7c and/or C18:1 ω6c. Phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, two unknown aminolipids, two unknown phospholipids, an unknown glycolipid and an unknown lipid were found to be components of the polar lipid profile. The G + C content of strain 13-2-B6T was determined to be 62 mol %. On the basis of its phenotypic, chemotaxonomic and phylogenetic distinctiveness, strain 13-2-B6T is considered to represent a novel species of the genus Antarctobacter, for which the name Antarctobacter jejuensis sp. nov. is proposed. The type strain is 13-2-B6T (=KCTC 42009T =JCM 19898T).  相似文献   

7.
A Gram-negative, non-endospore-forming, rod shaped, strictly aerobic, moderately halophilic bacterium, designated strain M9BT, was isolated from the hypersaline lake Aran-Bidgol in Iran. Cells of strain M9BT were found to be motile and produce colonies with an orange-yellow pigment. Growth was determined to occur between 5 and 20 % (w/v) NaCl and the isolate grew optimally at 7.5–10 % (v/w) NaCl. The optimum pH and temperature for growth of the strain were determined to be pH 7.0 and 35 °C, respectively, while it was able to grow over pH and temperature ranges of 6–8 and 25–45 °C, respectively. Phylogenetic analysis based on the comparison of 16S rRNA gene sequences revealed that strain M9BT is a member of the genus Marinobacter. The closest relative to this strain was found to be Marinobacter hydrocarbonoclasticus MBIC 1303T with a similarity level of 97.7 %. DNA–DNA hybridization between the novel isolate and this phylogenetically related species was 13 ± 2 %. The major cellular fatty acids of the isolate were identified as C16:0, C19:1 ω6c, C18:1 ω9c and C16:1 ω9c. The polar lipid pattern of strain M9BT was determined to consist of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine and three phospholipids. Ubiquinone 9 (Q-9) was the only lipoquinone detected. The G+C content of the genomic DNA of this strain was determined to be 58.6 mol%. Phenotypic characteristics, phylogenetic analysis and DNA–DNA relatedness data suggest that this strain represents a novel species of the genus Marinobacter, for which the name Marinobacter persicus sp. nov. is proposed. The type strain of Marinobacter persicus is strain M9BT (=IBRC-M 10445T = CCM 7970T = CECT 7991T = KCTC 23561T).  相似文献   

8.
A bacterial strain, designated M26T, was isolated from a fish gastrointestinal tract, collected from Zhanjiang Port, South China. 16S rRNA gene sequence analysis indicated that strain M26T belongs to the subclass α-Proteobacteria, being related to the genus Paracoccus, and sharing highest sequence similarity with Paracoccus alcaliphilus JCM 7364T (98.1 %), Paracoccus huijuniae FLN-7T (97.3 %), Paracoccus stylophorae KTW-16T (97.1 %) and Paracoccus seriniphilus DSM 14827T (96.9 %). The major quinone was determined to be ubiquinone Q-10, with Q-9 and Q-8 as minor components. The major fatty acid was identified as C18:1ω7c, with smaller amounts of C18:0 and C16:0. The G+C content of the genomic DNA was determined to be 64.3 mol%. The DNA hybridization value between strain M26T and the most closely related type strain, P. alcaliphilus, was 29.0 ± 1.0 %. The results of physiological and biochemical tests and low DNA–DNA relatedness showed that the strain could be readily distinguished from closely related species. On the basis of these phenotypic and genotypic data, strain M26T is concluded to represent a novel species of the genus Paracoccus, for which the name Paracoccus siganidrum sp. nov. is proposed. The type strain is M26T (=CCTCC AB 2012865T = DSM 26381T).  相似文献   

9.
Gram-negative, free-living bacterial strain ptl-3T was isolated from Himalayan valley soil, India. Polyphasic taxonomy was performed including morphological characterization, fatty acid analysis, biochemical tests, 16S rRNA and nifH gene sequence analyses. 16S rRNA gene sequence analysis showed that the strain ptl-3T belonged to the genus Azospirillum and was closely related to A. brasilense (98.7 % similarity) and A. rugosum (97 % similarity). 16S rRNA gene sequence similarity (96–95 %) was shown with other members of the genus Azospirillum. Major fatty acid 18:1ω7c was also similar to the genus Azospirillum. DNA–DNA relatedness value between strain ptl-3T and A. brasilense was found to be 47 %. Various biochemical tests showed that the strain ptl-3T differed from its closely related species A. brasilense. On the basis of phenotypic, chemotaxonomic and molecular genetics evidence, a bacterium with the type strain ptl-3T is proposed as a novel species of the genus Azospirillum. The name of bacterial strain ptl-3T has been proposed as Azospirillum himalayense sp. nov. The type strain of ptl-3T (CCUG 58760T, KCTC 23189T) has been submitted to two culture collection centres. The accession numbers for 16S rRNA and nifH gene are GQ 284588 and GQ 249665. respectively.  相似文献   

10.
A novel non-sporulating, non-motile, catalase-positive, oxidase-negative, facultatively anaerobic, Gram-positive coccus, designated strain JSM 078151T, was isolated from an intertidal sediment sample collected from Naozhou Island in the South China Sea, China. Growth was found to occur in the presence of 0–15 % (w/v) NaCl (optimum 0.5–3 % (w/v) NaCl), at pH 6.5–10.5 (optimum pH 7.0–8.0) and at 5–35 °C (optimum 25–30 °C). The peptidoglycan type was determined to be A3a, containing lysine, glutamic acid and alanine. The major cellular fatty acid identified was anteiso-C15:0 and the predominant menaquinones are MK-7 and MK-8. The polar lipids were found to consist of diphosphatidylglycerol, phosphatidylglycerol, glycolipid and one unidentified phospholipid. The genomic DNA G+C content of strain JSM 078151T was determined to be 55.2 mol%. A phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 078151T should be assigned to the genus Rothia, and was most closely related to Rothia nasimurium CCUG 35957T (98.3 % sequence similarity), followed by Rothia amarae J18T (97.5 %) and Rothia terrae L-143T (97.3 %). A combination of phylogenetic analysis, DNA–DNA relatedness values, phenotypic characteristics and chemotaxonomic data supports the suggestion that strain JSM 078151T represents a novel species of the genus Rothia, for which the name Rothia marina sp. nov. is proposed. The type strain is JSM 078151T (= DSM 21080T = KCTC 19432T).  相似文献   

11.
A Gram stain-negative, aerobic and rod-shaped bacterium, strain DY22T, was isolated from a deep-sea sediment collected from the east Pacific Ocean. The isolate was found to grow in the presence of 0–20.0 % (w/v) NaCl and at pH 4.5–8.5; optimum growth was observed with 0.5–2.0 % (w/v) NaCl and at pH 5.0–7.0. Chemotaxonomic analysis showed the presence of ubiquinone-9 as predominant respiratory quinone and C16:0, C19:0 ω8c cyclo and C12:0 3-OH as major cellular fatty acids. The genomic DNA G+C content was determined to be 59.6 mol%. Comparative 16S rRNA gene sequence analysis revealed that the novel isolate belongs to the genus Salinicola. Strain DY22T exhibited the closest phylogenetic affinity to the type strain of Salinicola salarius with 97.2 % sequence similarity and less than 97 % sequence similarity with respect to other Salinicola species with validly published names. The DNA–DNA reassociation values between strain DY22T and S. salarius DSM 18044T was 52 ± 4 %. On the basis of phenotypic, chemotaxonomic and genotypic data, strain DY22T represents a novel species of the genus Salinicola, for which the name Salinicola peritrichatus sp. nov. (type strain DY22T = CGMCC 1.12381T = JCM 18795T) is proposed.  相似文献   

12.
A taxonomic study was carried out on strain 22II-S10sT, which was isolated from the surface seawater of the Atlantic Ocean. The bacterium was found to be Gram-negative, oxidase and catalase positive, rod shaped and motile by subpolar flagella. The isolate was capable of gelatine hydrolysis but unable to reduce nitrate to nitrite or degrade Tween 80 or aesculin. Growth was observed at salinities of 0.5–18 % (optimum, 2–12 %), at pH of 3–10 (optimum, 7) and at temperatures of 10–41 °C (optimum 28 °C). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 22II-S10sT belongs to the genus Roseivivax, with highest sequence similarity to Roseivivax halodurans JCM 10272T (97.2 %), followed by Roseivivax isoporae LMG 25204T (97.0 %); other species of genus Roseivivax shared 95.2–96.7 % sequence similarity. The DNA–DNA hybridization estimate values between strain 22II-S10sT and the two type strains (R. halodurans JCM 10272T and R. isoporae LMG 25204T) were 22.00 and 21.40 %. The principal fatty acids were identified as Summed Feature 8 (C18:1 ω7c/ω6c) (67.4 %), C18:0 (7.2 %), C19:0 cyclo ω8c (7.1 %), C18:1 ω7c 11-methyl (6.8 %) and C16:0 (5.9 %). The respiratory quinone was determined to be Q-10 (100 %). Phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an aminolipid, a glycolipid and three phospholipids were present. The G+C content of the chromosomal DNA was determined to be 67.5 mol%. The combined genotypic and phenotypic data show that strain 22II-S10sT represents a novel species within the genus Roseivivax, for which the name Roseivivax atlanticus sp. nov. is proposed, with the type strain 22II-S10sT (= MCCC 1A09150T = LMG 27156T).  相似文献   

13.
A Gram-negative and aerobic bacterium, designated YIM 77875T, was isolated from a geothermal soil sample collected at Rehai National Park, Tengchong, Yunnan Province, south-west China. Bacterial growth occurred from 37 to 65 °C (optimum 50 °C), pH 6.0–8.0 (optimum pH 7.0) and 0–1 % NaCl (w/v). Cells were rod-shaped and colonies were convex, circular, smooth, yellow and non-transparent. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain YIM 77875T belongs to the genus Lysobacter. The 16S rRNA gene sequence similarity values between strain YIM 77875T and other species of the genus Lysobacter were all below 94.7 %. The polar lipids of strain YIM 77875T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and five unknown phospholipids. The predominant respiratory quinone was Q-8 and the G+C content was 68.8 mol%. Major fatty acids were iso-C16:0, iso-C15:0 and iso-C11:0. On the basis of the morphological and chemotaxonomic characteristics, as well as genotypic data, strain YIM 77875T represents a novel species, Lysobacter thermophilus sp. nov., in the genus Lysobacter. The type strain is YIM 77875T (CCTCC AB 2012064T = KCTC 32020T).  相似文献   

14.
A pink-pigmented, Gram negative, aerobic, facultatively methylotrophic bacterium, strain BL44T, was isolated from bamboo leaves and identified as a member of the genus Methylobacterium. Phylogenetic analysis based on 16S rRNA gene sequences showed similarity values of 98.7–97.0 % with closely related type strains and showed highest similarity to Methylobacterium zatmanii DSM 5688T (98.7 %) and Methylobacterium thiocyanatum DSM 11490T (98.7 %). Methylotrophic metabolism in this strain was confirmed by PCR amplification and sequencing of the mxaF gene coding for the α-subunit of methanol dehydrogenase. Strain BL44T produced three known quorum sensing signal molecules with similar retention time to C8, C10 and C12-HSLs when characterized by GC–MS. The fatty acid profiles contained major amounts of C18:1 ω7c, iso-3OH C17:0 and summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH), which supported the grouping of the isolate in the genus Methylobacterium. The DNA G+C content was 66.9 mol%. DNA relatedness of the strain BL44T to its most closely related strains ranged from 12–43.3 %. On the basis of the phenotypic, phylogenetic and DNA–DNA hybridization data, strain BL44T is assigned to a novel species of the genus Methylobacterium for which the name Methylobacterium pseudosasae sp. nov. is proposed (type strain BL44T = NBRC 105205T = ICMP 17622T).  相似文献   

15.
The taxonomic status of a bacterium, strain NCCP-246T, isolated from rhizosphere of Vigna mungo, was determined using a polyphasic taxonomic approach. The strain NCCP-246T can grow at 16–37 °C (optimum 32 °C), at pH ranges of 6–8 (optimum growth occurs at pH 7) and in 0–4 % (w/v) NaCl. Phylogenetic analysis based upon on 16S rRNA gene sequence comparison revealed that strain NCCP-246T belonged to genus Sphingobacterium. Strain NCCP-246T showed highest similarity to the type strain of Sphingobacterium canadense CR11T (97.67 %) and less than 97 % with other species of the genus. The DNA–DNA relatedness value of strain NCCP-246T with S. canadense CR11T and Sphingobacterium thalpophilum JCM 21153T was 55 and 44.4 %, respectively. The chemotaxonomic data revealed the major menaquinone as MK-7 and dominant cellular fatty acids were summed feature 3 [C16:1 ω7c/C16:1 ω6c] (37.07 %), iso-C15:0 (28.03 %), C16:0 (11.85 %), C17:0 cyclo (8.84 %) and C14:0 (2.42 %). The G+C content of the strain was 39.2 mol%. On the basis of DNA–DNA hybridization, phylogenetic analyses, physiological and, biochemical data, strain NCCP-246T can be differentiated from the validly named members of genus Sphingobacterium and thus represents as a new species, for which the name, Sphingobacterium pakistanensis sp. nov. is proposed with the type strain NCCP-246T (= JCM18974 T = KCTC 23914T).  相似文献   

16.
A novel, red-pigmented and coccoid haloarchaeon, designated strain CBA1101T, was isolated from a marine sediment. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CBA1101T is most closely related to the genus Halococcus in the family Halobacteriaceae. Strain CBA1101T had a highest 16S rRNA gene sequence similarity of 98.4 % with Halococcus dombrowskii DSM 14522T, followed by 93.7–98.3 % with sequences of other type strains in the genus Halococcus. The RNA polymerase subunit B′ gene sequence similarity of strain CBA1101T with that of Halococcus qingdaonensis JCM 13587T is 89.5 % and lower with those of other members of the genus Halococcus. Strain CBA1101T was observed to grow at 25–40 °C, pH 6.0–9.0 and in the presence of 15–30 % (w/v) NaCl, with optimal growth at 35–40 °C, pH 7.0 and with 20 % NaCl. The cells of strain CBA1101T are Gram-negative and did not lyse in distilled water. The major polar lipids were identified as phosphatidylglyerol, phosphatidylglycerol phosphate methyl ester, sulfated diglycosyl diether, unidentified phospholipids and unidentified glycolipids. The genomic DNA G+C content was determined 66.0 mol%. The DNA–DNA hybridization experiment showed that there was less than 40 % relatedness between strain CBA1101T and the reference species in the genus Halococcus. Based on this polyphasic taxonomic analysis, strain CBA1101T is considered to represent a new species in the genus Halococcus, for which the name Halococcus sediminicola sp. nov. is proposed. The type strain is CBA1101T (=JCM 18965T = CECT 8275T).  相似文献   

17.
Two gram-positive, aerobic, spore-forming, rod-shaped bacteria, designated HB09003T and HB12160, were isolated from seawater and sediment in the northern South China Sea, respectively. Cells were found to be motile by means of peritrichous flagella. The strains were found to grow with 0–15 % (w/v) NaCl, at 10–45 °C and pH 5.0–10.7, with an optimum of 3 % NaCl, 28 °C and pH 8.5, respectively. The predominant isoprenoid quinone of strain HB09003T, selected as the representative strain, was identified as MK-7. This strain was found to possess anteiso-C15:0, iso-C15:0, anteiso-C17:0 and C16:0 as the major fatty acids. The G+C contents of strain HB09003T and HB12160 were determined to be 34.1 and 34.3 mol%, respectively. Analysis of the 16S rRNA gene sequences of the two strains showed an affiliation with the genus Gracilibacillus, with Gracilibacillus kekensis CGMCC 1.10681T (similarity of 97.4, 98.0 %, respectively) and Gracilibacillus ureilyticus CGMCC 1.7727T (similarity of 97.1, 97.8 %, respectively) as their closest relatives. The DNA–DNA hybridization values between strain HB09003T and the two type strains were 42.2 and 54.1 %, respectively. On the basis of phenotypic and genotypic data, strain HB09003T and HB12160 are proposed to represent a novel species of the genus Gracilibacillus, for which the name Gracilibacillus marinus sp. nov. is proposed. The type strain is HB09003T (=CGMCC 1.10343T = DSM 23372T).  相似文献   

18.
A novel Gram-negative, strictly aerobic, heterotrophic, non-motile and yellow-pigmented bacterial strain, designated HD4T, was isolated from the sea urchin Hemicentrotus pulcherrimus collected from the Yellow Sea in China. Optimal growth of the strain was observed at 28–30 °C, pH 6.8–7.3, and in the presence of 3–5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence revealed that strain HD4T exhibited high similarity with the members of Salegentibacter (92.3–95.4 %). The DNA G+C content was 37.0 mol%, MK-6 was the main respiratory quinone and summed feature 3 (comprising iso-C15:0 2-OH/C16:1ω7c), iso-C15:0, iso-C17:0 3-OH and anteiso-C15:0 were the major cellular fatty acids. The predominant polar lipids in strain HD4T were phosphatidylethanolamine and two unknown lipids (L2, L4). Based on the phylogenetic, physiological and biochemical characteristics, strain HD4T should be classified as a novel species within the genus Salegentibacter, for which the name Salegentibacter echinorum sp. nov. is proposed. The type strain is HD4T (=CICC 10466T = NRRL B-59666T).  相似文献   

19.
A Gram-negative, motile and rod-shaped bacterial strain, G-M8T, which was isolated from seashore sand around a seaweed farm at Geoje island in South Korea, was characterized taxonomically. It grew optimally at 30–37 °C, at pH 7.0–8.0 and in presence of 2 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences revealed that strain G-M8T joined the cluster comprising the type strains of Ruegeria atlantica and Ruegeria lacuscaerulensis, showing 97.5 % sequence similarity, by a bootstrap resampling value of 85.8 %. It exhibited 16S rRNA gene sequence similarity values of 95.4–96.7 % to the type strains of the other Ruegeria species. Strain G-M8T exhibited the highest gyrB sequence similarity value (88.5 %) to the type strain of R. lacuscaerulensis. Strain G-M8T contained Q-10 as the predominant ubiquinone and C18:1 ω7c as the predominant fatty acid. The polar lipid profile of strain G-M8T was similar to that of R. atlantica KCTC 12424T. The DNA G+C content of strain G-M8T was 64.6 mol% and its mean DNA–DNA relatedness values with R. atlantica KCTC 12424T and R. lacuscaerulensis KCTC 2953T were 18 ± 5.3 and 10 ± 3.6 %, respectively. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, demonstrated that strain G-M8T is distinguished from other Ruegeria species. On the basis of the data presented, strain G-M8T (=KCTC 23960T = CCUG 62412T) represents a novel species of the genus Ruegeria, for which the name Ruegeria arenilitoris sp. nov. is proposed.  相似文献   

20.
A novel bacterial strain, designated SGD-1123T was isolated from Chorao Island, in Goa Province, India. The strain was found to be able to grow at 15–42 °C, pH 5–12 and 0–12 % (w/v) NaCl. The whole cell hydrolysates were found to contain meso-diaminopimelic acid, galactose and arabinose. The major fatty acids were identified as iso-C15:0 and anteiso-C15:0, MK-7 was identified as the predominant menaquinone and the predominant polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified aminolipid. The genomic DNA G+C content was determined to be 44.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences placed the isolate within the genus Bacillus and further revealed that strain SGD-1123T had highest sequence similarity with Bacillus aquimaris, and forms a separate clade with its closest relatives i.e. B. aquimaris, Bacillus vietnamensis and Bacillus marisflavi, with which it shares 94.5, 94.1 and 94.1 % similarity respectively. The phylogenetic, chemotaxonomic and phenotypic analyses indicated that strain SGD-1123T represents a novel species within the genus Bacillus, for which the name Bacillus enclensis is proposed. The type strain is SGD-1123T (NCIM 5450T=CCTCC AB 2011125T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号