首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Climate change is likely to affect agroecosystems in many ways. This study was performed to investigate how a rice–winter wheat rotation agroecosystem in southeast China would respond to global warming. By using an infrared heater system, the soil surface temperature was maintained about 1.5 °C above ambient milieu over 3 years. In the third growing season (2009–2010), the evapotranspiration (ET) rate, crop production, soil respiration, and soil carbon pool were monitored. The ET rate was 23 % higher in the warmed plot as compared to the control plot during the rice paddy growing season, and the rice grain yield was 16.3 % lower, but there was no significant difference in these parameters between the plots during the winter wheat-growing season. The phenology of the winter wheat shifted under experimental warming, and ET may decrease late in the winter wheat-growing season. Experimental warming significantly enhanced soil respiration, with mean annual soil respiration rates of 2.57 ± 0.17 and 1.96 ± 0.06 μmol CO2 m?2 s?1 observed in the warmed and control plots, respectively. After 3 years of warming, a significant decrease in the total organic carbon was observed, but only in the surface soil (0–5 cm). Warming also stimulated the belowground biomass, which may have compensated for any heat-induced loss of soil organic carbon. Paddy rice seemed to be more vulnerable to warming than winter wheat in terms of water-use efficiency and grain production.  相似文献   

2.
Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI) facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming) were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05), respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05) higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.  相似文献   

3.
Aims Understanding the effect of long-term fertilization on the sensitivity of grain yield to temperature changes is critical for accurately assessing the impact of global warming on crop production. In this study, we aim to assess the impacts of temperature changes on grain yields of winter wheat (Triticum aestivum L.) under different fertilization treatments in a long-term manipulative experiment in North China.Methods We measured grain yields of winter wheat under four fertilization treatments at the Yucheng Comprehensive Experimental Station each year from 1993 to 2012. We also measured air temperature at 0200, 0800, 1400 and 2000h each day since 1 January 1980. We then used the first-difference method and simple linear regression models to examine the relationship of crop yield changes to mean air temperature, mean daytime and nighttime air temperature in crop growing seasons.Important findings We found that increases in mean daily temperature, mean daytime temperature and mean nighttime temperature each had a positive impact on the grain yield of winter wheat. Grain yield increased by 16.7–85.6% for winter wheat in response to a 1°C increase in growing season mean daily temperature. Winter wheat yield was more sensitive to variations of nighttime temperature than to that of daytime temperature. The observed temperature impacts also varied across different fertilization treatments. Balanced fertilization significantly enhanced grain yields for winter wheat under a warming climate. Wheat plots treated with nitrogen and phosphorous balanced fertilization (NPK- and NP-treated plots) were more responsive to temperature changes than those without. This report provides direct evidence of how temperature change impacts grain yields under different fertilization treatments, which is useful for crop management in a changing global climate.  相似文献   

4.
被动式夜间增温设施设计及其增温效果   总被引:2,自引:0,他引:2  
为了建立一套简便节能的野外夜间增温设施,参照国际上夜间被动式增温系统(passive nighttime warming, PNW),在江苏丹阳设计了稻麦系统夜间被动式增温设施.结果表明:该系统可以保证15.75 m2的有效采样区域,温度增幅均匀,水稻冠层全生育期夜间平均温度升高1.1 ℃,冬小麦冠层和5 cm土层全生育期夜间平均温度分别提高1.3 ℃和0.8 ℃;该增温系统在运行期间,水稻和冬小麦全生育期的冠层和土壤温度的日变化趋势与非增温对照区基本一致.该系统使麦田土壤含水量略微降低,但对小麦生长的影响不明显.将该系统在我国水稻和冬小麦主要产区应用时发现,该夜间增温系统可以使水稻和冬小麦始花期分别平均提前3 d和5 d.该系统的增温效果在不同区域和季节存在一定的差异,但综合考虑该系统的增温均匀性和增温区域有效性,及其对稻麦生育期的影响效果,该设施不仅节能,而且可以满足野外增温试验研究的基本要求.  相似文献   

5.
气候变暖存在明显的昼夜不对称性,夜间气温升高幅度显著高于白天.本研究采用夜间被动式增温系统,于2009-2010年在我国冬小麦主产区(石家庄、徐州、许昌和镇江)进行全生育期田间增温试验,研究了土壤pH值、速效养分和抽穗期冬小麦根系对夜间增温的响应.结果表明: 与不增温对照相比,夜间增温显著降低了土壤pH值和速效养分含量,并在一定程度上提高了根系干质量和根冠比.冬小麦整个生育期,夜间增温分别使石家庄、徐州、许昌和镇江试验点土壤pH值平均降低0.4%、0.4%、0.7%和0.9%,碱解氮含量平均降低8.1%、8.1%、7.1%和6.0%,速效磷含量平均降低15.7%、12.1%、19.6%和25.8%;速效钾含量平均降低11.5%、7.6%、7.6%和10.1%.增温处理下,石家庄、徐州和镇江试验点抽穗期冬小麦根系干质量分别平均增加31.5%、27.0%和14.5%;石家庄、许昌和镇江试验点抽穗期冬小麦根冠比分别平均提高23.8%、13.7%和9.7%.夜间增温可能通过改变土壤化学特性影响土壤养分供应和冬小麦生长  相似文献   

6.
夜间增温对冬小麦根系生长和土壤养分有效性的影响   总被引:4,自引:0,他引:4  
气候变暖存在明显的昼夜不对称性,夜间气温升高幅度显著高于白天.本研究采用夜间被动式增温系统,于2009-2010年在我国冬小麦主产区(石家庄、徐州、许昌和镇江)进行全生育期田间增温试验,研究了土壤pH值、速效养分和抽穗期冬小麦根系对夜间增温的响应.结果表明: 与不增温对照相比,夜间增温显著降低了土壤pH值和速效养分含量,并在一定程度上提高了根系干质量和根冠比.冬小麦整个生育期,夜间增温分别使石家庄、徐州、许昌和镇江试验点土壤pH值平均降低0.4%、0.4%、0.7%和0.9%,碱解氮含量平均降低8.1%、8.1%、7.1%和6.0%,速效磷含量平均降低15.7%、12.1%、19.6%和25.8%;速效钾含量平均降低11.5%、7.6%、7.6%和10.1%.增温处理下,石家庄、徐州和镇江试验点抽穗期冬小麦根系干质量分别平均增加31.5%、27.0%和14.5%;石家庄、许昌和镇江试验点抽穗期冬小麦根冠比分别平均提高23.8%、13.7%和9.7%.夜间增温可能通过改变土壤化学特性影响土壤养分供应和冬小麦生长  相似文献   

7.
In Morocco, wheat production shows a high inter-annual variability due to uncertain rainfall. In view of the importance of this resource to the country’s economy, it is important to gain a better understanding of the natural large-scale climate oscillation governing this variability. In this study, we analyzed de-trended (1) time series of common wheat yields (1983–2008) from 11 agricultural provinces that account for 80 % of national wheat production; (2) monthly rainfall and 10-day temperature from ten meteorological stations; (3) 10-day normalized difference vegetation index (NDVI) from the AVHRR sensor; (4) monthly atmospheric climate indices [North Atlantic Oscillation (NAO) and Scandinavian Pattern (SCA)] and monthly 500 hPa geopotentials fields; and (5) monthly sea surface temperature (SST) fields and indices (NIÑO3, Tropical North Atlantic and Tropical South Atlantic). The relationship between rainfall and temperature during tillering in early winter and grain filling in early spring and wheat yields already observed at the plot scale was also found to be significant at the provincial scale. The linkages between wheat yields and large scale climate have been analyzed for the first time over Morocco. In agreement with previous studies, results show a complex and competing influence of different climate phenomena. The NAO is found to be significantly related to yields during the early stage of wheat growth in December, whereas the SCA correlates with yields later in the season, in January and February. Interesting lagged correlations with higher lead time are also highlighted, with the leading modes of SST variability in the equatorial Atlantic during October (the “Atlantic Niño” mode) and in the North Atlantic (the “Atlantic tripole” mode) in February. Our conclusion is that regional climate indices and variables represent valuable information with which to increase lead time and skill regarding wheat yield predictions in Morocco.  相似文献   

8.
Previous reports from laboratory-controlled experiments and models considered that a shorter reproductive period could be the main reason for wheat yield reduction in the warmer world. However, this conclusion needs to be proved carefully by field-scale experiments. In this study, a field-scale continuous open-warming experiment was conducted to quantify the adjustment of winter wheat growth and yield under conventional tillage (CT) and no-till (NT) systems in the North China Plain (NCP). Canopy temperatures were warmed using infrared heaters between 1.0 and 1.6°C (daytime and nighttime, respectively) above the control. Wheat yields under CT were not significantly reduced over the two seasons (2010 and 2011), but yields under NT were 3.3% and 6.1% lower, respectively. The growing seasons for both CT and NT were shortened 6 days in 2010 and 11 days in 2011; however, the reproductive periods were maintained. The shortened days were due to a significantly shorter springtime re-greening stage followed by minimal changes in other phenological stages (jointing, flag completed, heading, anthesis, and grain-filling). The temporal advance by warming resulted in lower growing-season mean air temperatures (MAT) for warmed plots than the control from 0.23 to 4.22°C for the same subsequent phenological stages. Warming increased the number of tillers m−2 and kernel weight, but tended to decrease the number of spikes m−2 in the two tillage systems. The heavier kernels offset the yield reduction from smaller number of spikes. Warming increased the wheat aboveground biomass from 10% to 20% suggesting the potential to sequester more CO2. This study suggests that winter wheat might adjust its growth (shortened vegetative period to maintain reproductive period) to partly compensate for the negative effects from global warming in this temperate irrigated cropland.  相似文献   

9.
在江苏南京(2007-2009年)设置了全天增温(AW)、白天增温(DW)和夜间增温(NW)3种处理,研究冬小麦生长及产量构成的响应差异.结果表明:非对称性增温条件下,冬小麦的无效分蘖减少,有效分蘖增加.对照(CK)处理的无效分蘖分别是AW、DW和NW处理的2.6、1.7和3.5倍,但有效分蘖却比3个增温处理分别减少13.7%、3.2%和0.5%.AW、DW和NW处理小麦株高分别较CK提高了5.6%、4.5%和1.3%.旗叶面积分别提高了45.7%、39.4%和26.1%,开花期总绿叶面积分别提高了25.1%、29.8%和17.3%,同期绿叶比分别提高了37.7%、43.3%和38.7%.穗部性状中,AW、DW和NW处理的每穗颖花数平均比CK提高了4.1%、5.7%和1.7%,每穗实粒数分别提高了2.2%、5.3%和2.6%.AW、DW和NW处理冬小麦的粒叶比平均分别较CK降低了15.3%、8.5%和11.3%,但千粒重平均分别提高了6.9%、6.2%和11.8%,单位面积产量平均分别提高了27.0%、40.1%和18.3%.表明预期增温条件下华东地区冬小麦生产力将可能进一步提高.  相似文献   

10.
The effect of soil warming on bulk soil vs. rhizosphere respiration   总被引:1,自引:0,他引:1  
There has been considerable debate on whether root/rhizosphere respiration or bulk soil respiration is more sensitive to long-term temperature changes. We investigated the response of belowground respiration to soil warming by 3 °C above ambient in bare soil plots and plots planted with wheat and maize. Initially, belowground respiration responded more to the soil warming in bare soil plots than in planted plots. However, as the growing season progressed, a greater soil-warming response developed in the planted plots as the contribution of root/rhizosphere respiration to belowground respiration declined. A negative correlation was observed between the contribution of root/rhizosphere respiration to total belowground respiration and the magnitude of the soil-warming response indicating that bulk soil respiration is more temperature sensitive than root/rhizosphere respiration. The dependence of root/rhizosphere respiration on substrate provision from photosynthesis is the most probable explanation for the observed lower temperature sensitivity of root/rhizosphere respiration. At harvest in late September, final crop biomass did not differ between the two soil temperature treatments in either the maize or wheat plots. Postharvest, flux measurements during the winter months indicated that the response of belowground respiration to the soil-warming treatment increased in magnitude (response equated to a Q 10 value of 5.7 compared with ∼2.3 during the growing season). However, it appeared that this response was partly caused by a strong indirect effect of soil warming. When measurements were made at a common temperature, belowground respiration remained higher in the warmed subplots suggesting soil warming had maintained a more active microbial community through the winter months. It is proposed that any changes in winter temperatures, resulting from global warming, could alter the sink strength of terrestrial ecosystems considerably.  相似文献   

11.
Carbon loss under high night‐time temperature (HNT) leads to significant reduction in wheat yield. Growth chamber studies were carried out using six winter wheat genotypes, to unravel postheading HNT (23°C)–induced alterations in carbon balance, source‐sink metabolic changes, yield, and yield‐related traits compared with control (15°C) conditions. Four of the six tested genotypes recorded a significant increase in night respiration after 4 days of HNT exposure, with all the cultivars regulating carbon loss and demonstrating different degree of acclimation to extended HNT exposure. Metabolite profiling indicated carbohydrate metabolism in spikes and activation of the TriCarboxylic Acid (TCA) cycle in leaves as important pathways operating under HNT exposure. A significant increase in sugars, sugar‐alcohols, and phosphate in spikes of the tolerant genotype (Tascosa) indicated osmolytes and membrane protective mechanisms acting against HNT damage. Enhanced night respiration under HNT resulted in higher accumulation of TCA cycle intermediates like isocitrate and fumarate in leaves of the susceptible genotype (TX86A5606). Lower grain number due to lesser productive spikes and reduced grain weight due to shorter grain‐filling duration determined HNT‐induced yield loss in winter wheat. Traits and mechanisms identified will help catalyze the development of physiological and metabolic markers for breeding HNT‐tolerant wheat.  相似文献   

12.
Global surface temperature is predicted to increase by 1.4–5.8°C by the end of this century. However, the impacts of this projected warming on soil C balance and the C budget of terrestrial ecosystems are not clear. One major source of uncertainty stems from warming effects on soil microbes, which exert a dominant influence on the net C balance of terrestrial ecosystems by controlling organic matter decomposition and plant nutrient availability. We, therefore, conducted an experiment in a tallgrass prairie ecosystem at the Great Plain Apiaries (near Norman, OK) to study soil microbial responses to temperature elevation of about 2°C through artificial heating in clipped and unclipped field plots. While warming did not induce significant changes in net N mineralization, soil microbial biomass and respiration rate, it tended to reduce extractable inorganic N during the second and third warming years, likely through increasing plant uptake. In addition, microbial substrate utilization patterns and the profiles of microbial phospholipid fatty acids (PLFAs) showed that warming caused a shift in the soil microbial community structure in unclipped subplots, leading to the relative dominance of fungi as evidenced by the increased ratio of fungal to bacterial PLFAs. However, no warming effect on soil microbial community structure was found in clipped subplots where a similar scale of temperature increase occurred. Clipping also significantly reduced soil microbial biomass and respiration rate in both warmed and unwarmed plots. These results indicated that warming‐led enhancement of plant growth rather than the temperature increase itself may primarily regulate soil microbial response. Our observations show that warming may increase the relative contribution of fungi to the soil microbial community, suggesting that shifts in the microbial community structure may constitute a major mechanism underlying warming acclimatization of soil respiration.  相似文献   

13.
甘肃省冬小麦生长发育对暖冬现象的响应   总被引:30,自引:2,他引:28  
运用甘肃省天水、西峰两地1951-2005年的气温资料及天水、西峰农业气象试验站1981-2003年冬小麦物候观测资料,分析探讨了甘肃冬小麦种植区50多年的冬季气温变暖趋势及冬小麦生长发育过程对气候变暖的响应.结果表明:冬季气温升高对冬小麦生长发育产生了较大影响.在最近20多年,冬小麦越冬死亡率下降到2%以下,越冬天数减少了7~8d,整个生育期缩短8~10d,返青一开花期天数延长7d,这有利于冬小麦生产及气候资源的利用-同时,冬季气温升高及降水减少也使冬小麦产量稳定性变差,麦田病、虫危害发生率增加,给冬小麦的安全生产增加了不确定因素.  相似文献   

14.
Salinity and drought are important agro-environmental problems occurring separately as well as together with the combined occurrence increasing with time due to climate change. Screening of bread wheat genotypes against salinity or drought alone is common; however, little information is available on the response of wheat genotypes to a combination of these stresses. This study investigates the response of a salt-resistant (SARC-1) and a salt-sensitive (7-Cerros) wheat genotype to drought at different growth stages under non-saline (ECe 2.1 dS m?1) and saline soil (ECe 15 dS m?1) conditions. Drought was applied by withholding water for 21 days at a particular growth stage viz. tillering, booting, and grain filling stages. At booting stage measurements regarding water relations, leaf ionic composition and photosynthetic attributes were made. At maturity grain yield and different yield, components were recorded. Salinity and drought significantly decreased grain yield and different yield components with a higher decrease in the case of combined stress of salinity × drought. The complete drought treatment (drought at tillering + booting + grain filling stages) was most harmful for wheat followed by drought at booting stage and grain filling–tillering stages, respectively. The salt-resistant wheat genotype SARC-1 performed better than the salt-sensitive genotype 7-Cerros in different stress treatments. A decrease in the water and turgor potentials, photosynthetic and transpiration rates, stomatal conductance, leaf K+, and increased leaf Na+ were the apparent causes of growth and yield reduction of bread wheat due to salinity, drought, and salinity × drought.  相似文献   

15.
Global environmental change is altering temperature, precipitation patterns, resource availability, and disturbance regimes. Theory predicts that ecological presses will interact with pulse events to alter ecosystem structure and function. In 2006, we established a long‐term, multifactor global change experiment to determine the interactive effects of nighttime warming, increased atmospheric nitrogen (N) deposition, and increased winter precipitation on plant community structure and aboveground net primary production (ANPP) in a northern Chihuahuan Desert grassland. In 2009, a lightning‐caused wildfire burned through the experiment. Here, we report on the interactive effects of these global change drivers on pre‐ and postfire grassland community structure and ANPP. Our nighttime warming treatment increased winter nighttime air temperatures by an average of 1.1 °C and summer nighttime air temperature by 1.5 °C. Soil N availability was 2.5 times higher in fertilized compared with control plots. Average soil volumetric water content (VWC) in winter was slightly but significantly higher (13.0% vs. 11.0%) in plots receiving added winter rain relative to controls, and VWC was slightly higher in warmed (14.5%) compared with control (13.5%) plots during the growing season even though surface soil temperatures were significantly higher in warmed plots. Despite these significant treatment effects, ANPP and plant community structure were highly resistant to these global change drivers prior to the fire. Burning reduced the cover of the dominant grasses by more than 75%. Following the fire, forb species richness and biomass increased significantly, particularly in warmed, fertilized plots that received additional winter precipitation. Thus, although unburned grassland showed little initial response to multiple ecological presses, our results demonstrate how a single pulse disturbance can interact with chronic alterations in resource availability to increase ecosystem sensitivity to multiple drivers of global environmental change.  相似文献   

16.
熊沛  徐振锋  林波  刘庆 《植物生态学报》2010,34(12):1369-1376
冬季的土壤呼吸是生态系统呼吸的重要组成部分, 对气候变化的响应可能更为敏感。该文采用红外辐射加热器模拟土壤增温, 研究了岷江上游华山松(Pinus armandii)人工林冬季的土壤呼吸、微生物生物量及无机氮库对模拟增温的响应。结果表明: 在冬季(2009年11月-翌年3月), 模拟增温往往能显著提高土壤呼吸速率, 平均增幅达31.4%; 同样模拟增温使土壤微生物生物量碳、氮分别增加23.2%和22.7%, 而对微生物生物量碳氮比没有影响, 温度升高显著促进了微生物的生长, 但没有改变微生物的群落结构; 增温样地土壤的NO3 --N和NH4 +-N浓度较对照分别增加了38.5%和12.3%, 增温显著提高了土壤的可溶性无机氮含量。综上所述, 该区针叶林冬季土壤呼吸、微生物生长和养分矿化对未来气候变暖非常敏感。  相似文献   

17.
对青藏高原东缘窄叶鲜卑花土壤转化酶与脲酶活性对增温(0.6~1.3 ℃)和植物去除的响应进行研究,以了解气候变暖和植被干扰对高寒灌丛生长季不同时期土壤生态过程的影响.结果表明: 增温在整个生长季节使去除/不去除植物处理土壤转化酶活性显著增加了3.7%~13.3%.增温除在生长季末期对不去除植物处理土壤脲酶活性影响不显著以外,在其他时期使去除/不去除植物处理土壤脲酶活性显著增加10.8%~56.3%.去除植物处理对土壤转化酶与脲酶活性的影响因增温与生长季节而存在显著差异.去除植物显著降低了不增温样方生长季初期和末期与增温样方整个生长季节土壤转化酶活性,而没有显著影响生长季中期不增温样方土壤转化酶活性.去除植物仅在生长季末期使不增温样方土壤脲酶活性显著降低了10.5%;而在增温样方,去除植物仅在生长季初期和中期使土壤脲酶活性显著降低16.0%~18.7%.以上结果有利于全面认识高寒灌丛生态系统土壤碳氮循环过程.  相似文献   

18.

Background and Aims

The reclamation of natural salt marshes for agricultural use is expected to profoundly influence the effects of predicted global warming on the carbon balance of coastal areas globally. This study was undertaken to understand the potential for soil respiration changes in a disturbed coastal ecosystem under future atmospheric warming

Methods

An in situ simulated warming experiment was conducted in a reclaimed salt marsh on Chongming Island in the Yangtze Estuary, China. Open-top chambers (OTCs) were applied to simulate air-warming conditions.

Results

Based on the 2-year study, we found the following: (1) Averaged across the entire study period, the OTCs significantly increased the mean air temperature by 1.53?±?0.17 °C. (2) The air warming resulted in no significant stimulation of the mean soil respiration averaged across the entire study period. Warming had no significant effect on soil respiration in the growing season, but it markedly reduced soil respiration by 16 % in the non-growing season. (3) Air warming had no significant effect on the mean soil temperature or volumetric moisture at a 5 cm depth, but it increased the mean soil porewater salinity by 119 % averaged across the entire study period. (4) Air warming had no significant effect on total organic carbon, total nitrogen or the molar C/molar N ratio of the soil in the uppermost 10 cm layer during the 2 years of soil respiration measurement. The warming treatment also had no significant effect on aboveground biomass or fine root (<2 mm) density during the second year of soil respiration measurement. (5) Soil temperature accounted for 81.0 % and 79.0 % of the temporal variations of soil respiration in the control (CON) and elevated temperature (ET) plots, respectively. No significant correlation between soil volumetric moisture and soil respiration was observed in either CON or ET. Soil porewater salinity was positively correlated with soil respiration in CON, but such a positive correlation was not found in ET. No change of the temperature sensitivity of soil respiration (Q 10 value) was observed.

Conclusions

Based on above results, we speculate that soil porewater salinity was the key factor controlling the effects of air warming on soil respiration in the reclaimed salt marsh. Our results suggest that an air warming of approximately 1.5 °C over the next few decades may not lead to a higher soil respiration in reclaimed salt marshes.  相似文献   

19.
Climate warming is expected to increase respiration rates of tropical forest trees and lianas, which may negatively affect the carbon balance of tropical forests. Thermal acclimation could mitigate the expected respiration increase, but the thermal acclimation potential of tropical forests remains largely unknown. In a tropical forest in Panama, we experimentally increased nighttime temperatures of upper canopy leaves of three tree and two liana species by on average 3  ° C for 1 week, and quantified temperature responses of leaf dark respiration. Respiration at 25  ° C (R25) decreased with increasing leaf temperature, but acclimation did not result in perfect homeostasis of respiration across temperatures. In contrast, Q10 of treatment and control leaves exhibited similarly high values (range 2.5–3.0) without evidence of acclimation. The decrease in R25 was not caused by respiratory substrate depletion, as warming did not reduce leaf carbohydrate concentration. To evaluate the wider implications of our experimental results, we simulated the carbon cycle of tropical latitudes (24 ° S–24 ° N) from 2000 to 2100 using a dynamic global vegetation model (LM3VN) modified to account for acclimation. Acclimation reduced the degree to which respiration increases with climate warming in the model relative to a no‐acclimation scenario, leading to 21% greater increase in net primary productivity and 18% greater increase in biomass carbon storage over the 21st century. We conclude that leaf respiration of tropical forest plants can acclimate to nighttime warming, thereby reducing the magnitude of the positive feedback between climate change and the carbon cycle.  相似文献   

20.
In West-Europe, intensive cereal management uses plant growth regulators (PGRs) especially for wheat. A green-house experiment compared the effects of two PGRs on flag leaf characteristics and yield of winter wheat. Chlormequat chloride + choline chloride (CCC) and chlormequat chloride + choline chloride + imazaquin (CCC+I) were applied to winter wheat at growth stage 5 (Feekes Large scale). CCC and CCC+I significantly increased flag leaf surface area at anthesis. Both treatments also enhanced chlorophyll content of the main stem flag leaf. The grain filling period was extended with PGR application by 2 days. CCC and CCC+I significantly increased net CO2 assimilation rates during the flag leaf life. No effects of PGR spraying were observed on the pattern of 14C labelled assimilate distribution. Increased grain yield was due to the increase in average grain weight. The results indicate that PGR treatments increased flag leaf contribution to grain filling. The addition of imazaquin (I) to chlormequat (CCC) improved the effects of CCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号