首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increasing use of nanomaterials in healthcare and industrial products heightens the possibility of their ingestion by humans, other mammals, and fish. While toxicity of many nanomaterials has recently been studied, reports of non-lethal effects of nanomaterials remain ill-defined. This study investigates possible pathways by which nanoparticles, titanium dioxide (TiO2), could cross the epithelium layer by employing both toxicity and mechanistic studies. This study provides evidence that at 10 μg/mL and above, TiO2 nanoparticles cross the epithelial lining of the intestinal model by transcytosis, albeit at low levels. TiO2 was able to penetrate into and through the cells without disrupting junctional complexes, as measured by γ-catenin. To monitor the epithelial integrity, transepithelial electrical resistance (TEER) was employed and determined low concentrations (10 or 100 μg/mL) of TiO2 do not disrupt epithelial integrity. Live/dead analysis results did not show cell death after exposure to TiO2. In addition, at 10 μg/mL (and above) TiO2 nanoparticles begin alteration of both microvillar organization on the apical surface of the epithelium as well as induce a rise in intracellular-free calcium. The latter is a mechanism cells use to respond to extracellular stimuli and may be linked to the alteration of the apical microvilli. Although TiO2 does not show cell death, the implication of other, non-lethal, effects could lead to undesired outcomes (i.e., disease, malnutrition, shortened life span, etc.).  相似文献   

2.
Titanium dioxide (TiO2) is one of the most widely used pigments in the world. Due to its heavy use in industry and daily life, such as food additives, cosmetics, pharmaceuticals, and paints, many residues are released into the environment and currently TiO2 nanoparticles are considered an emerging environmental contaminant. Although several studies have shown the effect of TiO2 nanoparticles on a wide range of organisms including bacteria, algae, plankton, fish, mice, and rats, little research has been performed on land plants. In this study, we investigated the effect of TiO2 nanoparticles on the growth, development, and gene expression of tobacco, an important economic and agricultural crop in the southeastern USA as well as around the world. We found that TiO2 nanoparticles significantly inhibited the germination rates, root lengths, and biomasses of tobacco seedlings after 3 weeks of exposure to 0.1, 1, 2.5, and 5 % TiO2 nanoparticles and that overall growth and development of the tobacco seedlings significantly decreased as TiO2 nanoparticle concentrations increased. Overall, tobacco roots were the most sensitive to TiO2 nanoparticle exposure. Nano-TiO2 also significantly influenced the expression profiles of microRNAs (miRNAs), a recently discovered class of small endogenous noncoding RNAs (~20–22 nt) that are considered important gene regulators and have been shown to play an important role in plant development as well as plant tolerance to abiotic stresses such as drought, salinity, cold, and heavy metal. Low concentrations (0.1 and 1 %) of TiO2 nanoparticles dramatically induced miRNA expression in tobacco seedlings with miR395 and miR399 exhibiting the greatest fold changes of 285-fold and 143-fold, respectively. The results of this study show that TiO2 nanoparticles have a negative impact on tobacco growth and development and that miRNAs may play an important role in tobacco response to heavy metals/nanoparticles by regulating gene expression.  相似文献   

3.
Iron oxide nanoparticles offer unique possibilities due to the change in their physico-chemical parameters when synthesized on the nanoscale (10?9 m) compared to their bulk forms. While novel uses exist for these materials when synthesized as nanoparticles, their unintended effects on the human body and specifically during pregnancy remain ill defined. In this study, an iron oxide nanoparticle, α-Fe2O3, was employed and the potential toxicity due to exposure was assessed in the widely used model human placental cell line BeWo b30. These cells were grown as epithelia, and subsequently assessed for their epithelial integrity, reactive oxygen species production and cellular viability, ultrastructural and morphological disruption, and genotoxicity as a result of exposure to α-Fe2O3 nanoparticles. Transepithelial electrical resistance indicated that exposure to the large (50 and 78 nm), but not small (15 nm) diameter particles of α-Fe2O3 nanomaterial resulted in leakiness of the epithelium. Exposure to the large diameters of 50 and 78 nm resulted in increases in cell death and reactive oxygen species. Disruption of junctional integrity as monitored by immunolocalization of the tight junction protein ZO-1 was found to occur as a consequence of exposure to large diameter NPs. It was found that there was reduction in the number of microvilli responsible for increased surface area for nutrient absorption after exposing the epithelia to large diameter NPs. Finally, genotoxicity as assessed by DNA microarray and confirmed by QPCR indicated that the large diameter particles (78 nm) induce apoptosis in these cells. These data indicate that large (50 and 78 nm), but not small (15 nm) α-Fe2O3 nanoparticles disrupt the barrier function of this epithelium as assessed by in vitro analysis.  相似文献   

4.
The potential impact of titanium dioxide nanoparticles (TiO2 NPs) on nitrogen removal from wastewater in activated sludge was investigated using a sequencing batch reactor. The addition of 2–50 mg L?1 of TiO2 NPs did not adversely affect nitrogen removal. However, when the activated sludge was exposed to 100–200 mg L?1 of TiO2 NPs, the effluent total nitrogen removal efficiencies were 36.5 % and 20.3 %, respectively, which are markedly lower than the values observed in the control test (80 %). Further studies showed that the decrease in biological nitrogen removal induced by higher concentrations of TiO2 NPs was due to an inhibitory effect on the de-nitrification process. Denaturing gradient gel electrophoresis profiles showed that 200 mg L?1 of TiO2 NPs significantly reduced microbial diversity in the activated sludge. The effect of light on the antibacterial activity of TiO2 NPs was also investigated, and the results showed that the levels of TiO2-dependent inhibition of biological nitrogen removal were similar under both dark and light conditions. Additional studies revealed that different TiO2 concentrations had a significant effect on dehydrogenase activity, and this effect was most likely the result of decreased microbial activity.  相似文献   

5.
The potential toxicity of nanoparticles in plants is scarce and contradictory. Despite the diversity of research efforts, a detailed explanation of the TiO2NPS effects in plant photosynthesis is still missing. The present work gives a new approach to examine the impact of the TiO2NPs on crop production (development and photosynthesis) and plant protection (tolerance and defense systems) in fenugreek (Trigonella foenum graecum L.). Seedlings were assessed in greenhouse trials to estimate the influence of TiO2NPs on physiological characters for 16 days. They were treated with TiO2NPs at a size less than 20 nm. The results revealed that there were no significant effects on seedlings growth and biomass of stem, but a decrease in the fresh weight of leaves after TiO2NPs treatment. Plants treated with 100 mg·L?1 of TiO2NPs presented a reduction and chlorosis in leaf area due to a significant decrease in the chlorophyll a and b contents. The highest value of the photosynthetic pigments was recorded at 50 mg·L?1 of TiO2NPs. However, the treatment with 100 mg·L?1 of TiO2NPs caused a decrease in the levels of chlorophyll a, b and of carotenoids. Both doses of TiO2NPs induced an accumulation of anthocyanins compared to the control after 16 days of seedling development. A nano-stress significantly decreased the flavonoids level, but increased that of polyphenols compared to control after 16 days of exposure. The decrease in the translocation ratio of flavonoids suggests that many of them contain an enediol group, which suggests that they may act as bidentate ligands for anatase TiO2NPs. Accordingly, nano-stressed leaves exhibited significantly enhanced GPOX, CAT and APX activity levels. On the contrary, GPOX and CAT activities were reduced substantially in stems treated with 100 mg·L?1 TiO2NPs. The accumulation of MDA was found to be higher in stems than in leaves. This could be explained by the accumulation of nanoparticles in different organs; it could be that the stems are the favored targets of nanoparticles. These results underline the necessity for a deeper estimation of nanoparticle ecotoxicity and particularly concerning their interaction with plants.  相似文献   

6.
Surface plasmonic-enhanced light trapping from metal nanoparticles is a promising way of increasing the light absorption in the active silicon layer and, therefore, the photocurrent of the silicon solar cells. In this paper, we applied silver nanoparticles on the rear side of polycrystalline silicon thin film solar cell and systematically studied the dielectric environment effect on the absorption and short-circuit current density (Jsc) of the device. Three different dielectric layers, magnesium fluoride (MgF2, n?=?1.4), tantalum pentoxide (Ta2O5, n?=?2.2), and titanium dioxide (TiO2, n?=?2.6), were investigated. Experimentally, we found that higher refractive index dielectric coatings results in a redshift of the main plasmonic extinction peak and higher modes were excited within the spectral region that is of interest in our thin film solar cell application. The optical characterization shows that nanoparticles coated with highest refractive index dielectric TiO2 provides highest absorption enhancement 75.6 %; however, from the external quantum efficiency characterization, highest short-circuit current density Jsc enhancement of 45.8 % was achieved by coating the nanoparticles with lower refractive index MgF2. We also further optimize the thickness of MgF2 and a final 50.2 % Jsc enhancement was achieved with a 210-nm MgF2 coating and a back reflector.  相似文献   

7.
8.
Given the increasing discoveries related to the eco-toxicity of titanium dioxide (TiO2) nanoparticles (NPs) in different ecosystems and with respect to public health, it is important to understand their potential effects in drinking water treatment (DWT). The effects of TiO2 NPs on ammonia reduction, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in biological activated carbon (BAC) filters for drinking water were investigated in static and dynamic states. In the static state, both the nitrification potential and AOB were significantly inhibited by 100 μg L?1 TiO2 NPs after 12 h (p < 0.05), and the threshold decreased to 10 μg L?1 with prolonged exposure (36 h, p < 0.05). However, AOA were not considerably affected in any of the tested conditions (p > 0.05). In the dynamic state, different amounts of TiO2 NP pulses were injected into three pilot-scale BAC filters. The decay of TiO2 NPs in the BAC filters was very slow. Both titanium quantification and scanning electron microscope analysis confirmed the retention of TiO2 NPs in the BAC filters after 134 days of operation. Furthermore, the TiO2 NP pulses considerably reduced the performance of ammonia reduction. This study identified the retention of TiO2 NPs in BAC filters and the negative effect on the ammonia reduction, suggesting a potential threat to DWT by TiO2 NPs.  相似文献   

9.
A novel highly sensitive electrochemical impedimetric Protein A immunosensor for the determination of immunoglobulin G (IgG) was developed by immobilization of Protein A within a newly synthesized, and characterized polymer, poly(maleicanhydride-alt-decene-1). TiO2 nanoparticles (10–30 nm) were synthesized, characterized with X-ray diffraction, transmission electron microscopy and Brunauer–Emmett–Teller surface analysis. The electron transfer between IgG and the poly(maleicanhydride-alt-decene-1)-TiO2-Protein A is quasireversible with a formal potential of 225 mV vs Ag|AgCl. The response of the poly(maleicanhydride-alt-decene-1)-TiO2-Protein A immunosensor was proportional to IgG concentration with a correlation coefficient of 0.9963. The detection limit and linear range was 0.57 ng mL?1 and 0.0062–500 μg mL?1, respectively. Impedance measurments showed that synthesized TiO2 nanoparticles have better conducting properties compared with commercial degussa P25 TiO2 nanoparticles. The nonspecific binding of anti-MBP was 10 %. The label-free impedimetric immunosensor provided a simple and sensitive detection method for the specific determination of IgG in human serum.  相似文献   

10.
Titanium dioxide nanoparticles (TiO2-NPs) interaction with human serum albumin (HSA) and DNA was studied by UV–visible spectroscopy, spectrofluorescence, circular dichroism (CD), and transmission electron microscopy (TEM) to analyze the binding parameters and protein corona formation. TEM revealed protein corona formation on TiO2-NPs surface due to adsorption of HSA. Intrinsic fluorescence quenching data suggested significant binding of TiO2-NPs (avg. size 14.0 nm) with HSA. The Stern–Volmer constant (Ksv) was determined to be 7.6 × 102 M?1 (r2 = 0.98), whereas the binding constant (Ka) and number of binding sites (n) were assessed to be 5.82 × 102 M?1 and 0.97, respectively. Synchronous fluorescence revealed an apparent decrease in fluorescence intensity with a red shift of 2 nm at Δλ = 15 nm and Δλ = 60 nm. UV–visible analysis also provided the binding constant values for TiO2-NPs–HSA and TiO2-NPs-DNA complexes as 2.8 × 102 M?1 and 5.4 × 103 M?1. The CD data demonstrated loss in α-helicity of HSA and transformation into β-sheet, suggesting structural alterations by TiO2-NPs. The docking analysis of TiO2-NPs with HSA revealed its preferential binding with aromatic and non-aromatic amino acids in subdomain IIA and IB hydrophobic cavity of HSA. Also, the TiO2-NPs docking revealed the selective binding with A-T bases in minor groove of DNA.  相似文献   

11.
Localized surface plasmon resonance incurred by silver nanoparticles is used to enhance the photoelectric conversion efficiency of a TiO2 nanorod-based dye-sensitized solar cell (DSSC). Improved light transmission is observed experimentally in silver nanoparticle-coated FTO glass. The transmission data are used to explore the effect on electrical parameters of DSSC using theoretical model. Current density increased from 11.7 to 12.34 mA/cm2 and open-circuit voltage increased from 704 to 709.5 mV. Overall efficiency enhancement of 6.67 % is observed in TiO2 nanorod-based DSSC due to plasmon-induced light trapping.  相似文献   

12.
Titanium dioxide (TiO2) has been extensively studied and demonstrated to be suitable to enhance the efficiency of solar cell. In this work, TiO2 is doped with silver nanoparticles (AgNP’s) on glass and the Si substrate by using Pulsed Laser Deposition (PLD) technique. UV–vis spectroscopy, X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Atomic Force Microscope (AFM), electrical conductivity (σ dc), Hall coefficient (RH), current–voltage (I–V), and capacity–voltage (C–V) characterizations have been used to examine the optical, the morphological, and the electrical properties of the films. It has been found that 5 wt.% (Ag) doped TiO2 thin film has the most effect on efficiency of TiO2:Ag /Si solar cell. The (I–V) characteristics showed that the (TiO2) thin film enhances the efficiency of the (p–n) junction solar cell from 1.26 % pure TiO2 to 7.19 % with doping of noble metal (Ag) representing improvement in the efficiency of solar cell leading to estimate empirical equations between efficiency, extinction coefficient, and energy band gap which have a total fit with the experimental data.  相似文献   

13.
This study was performed to determine the histomorphological alterations occurring in maternal and neonatal pulmonary distal airspaces of Wistar rats after maternal administration of titanium dioxide nanoparticles (TiO2 NPs). Thirty adult pregnant rats (150–250 g) and their offspring were used in this study. Pregnant rats were randomly divided into control (n = 15) and TiO2 NP-treated (n = 15) groups. A suspension of TiO2 NPs in phosphate-buffered saline was given orally to the treated group (0.1 ml/10 g body weight once daily) from days 6 to 12 of gestation. At term, maternal and neonatal lungs were collected and processed for energy-dispersive X-ray (EDX) and histological analysis. The mean linear intercept (MLI) and airspace wall thickness were measured by a stereological procedure with image analysis to assess alveolarization. EDX analysis demonstrated the presence of TiO2 in maternal and neonatal lungs. The lungs of TiO2 NP-treated mothers revealed evidence of pneumocytic apoptosis, abnormal lamellar inclusions, and macrophage and inflammatory cell infiltrates. Significant thinning of alveolar septa was detected in the treated rats (p < 0.001), but the MLI was constant in both groups (p = 0.207). Neonatal lungs from treated mothers revealed deficient septation, thickened mesenchyme between the saccules, pneumocytic apoptosis, atypical lamellar inclusions, and macrophage infiltration. The thickness of the primary septa was significantly increased (p = 0.001) with no significant change in MLI (p = 0.579) compared with the control group. In conclusion, TiO2 NPs were detected in maternal and neonatal lungs after oral intake by pregnant rats. The pulmonary response manifested as inflammatory lesions and delayed saccular development in neonates.  相似文献   

14.
Ag-loaded TiO2 (Ag/TiO2) nanocomposites were prepared by microwave-assisted chemical reduction method using tetrabutyl titanate as the Ti source. The prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption–desorption isotherms, UV–vis absorption spectrum, X-ray photoelectron spectrum, photoluminescence spectrum, and Raman scattering spectrum, respectively. Results revealed that Ag nanoparticles (NPs) were successfully deposited on TiO2 by reduction of Ag+, and the visible light absorption and Raman scattering of TiO2 were enhanced by Ag NPs based on its surface plasmon resonance effect. Besides, Ag NPs could also effectively restrain the recombination of photogenerated electrons and holes with a longer luminescence life time. In addition, photocatalytic reduction of CO2 with H2O on the composites was conducted to obtain methanol. Experimental results indicated that Ag-loaded TiO2 had better photocatalytic activity than pure TiO2 due to the synergistic effect between UV light excitation and surface plasmon resonance enhancement, and 2.5 % Ag/TiO2 exhibited the best activity; the corresponding energy efficiency was about 0.5 % and methanol yield was 405.2 μmol/g-cat, which was 9.4 times higher than that of pure TiO2. Additionally, an excitation enhancement synergistic mechanism was proposed to explain the experimental results of photocatalytic reduction of CO2 under different reaction conditions.  相似文献   

15.
Valant J  Drobne D 《Protoplasma》2012,249(3):835-842
Isolated digestive gland epithelium from a model invertebrate organism was used in an ex vivo system to assess the potential of nanoparticulate TiO2 to disrupt cell membranes. Primary particle size, surface area, concentration of particles in a suspension, and duration of exposure to TiO2 particles were all found to have effects, which are observed at concentrations of nano-TiO2 as low as 1 μg mL?1. The test system employed here can be used as a fast screening tool to assess biological potential of nanoparticles with similar chemical composition but different size, concentration, or duration of exposure. We discuss the potential of ex vivo tests to avoid some of the limitations of conventional in vitro tests.  相似文献   

16.
We evaluated the effects of zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles (NPs) preilluminated with ultraviolet light on Escherichia coli and Bacillus subtilis. The experiments were conducted using three different types of light: visible, Ultraviolet A (UVA, 315–400 nm), and Ultraviolet B (UVB, 280–315 nm). The bacteria were exposed to NPs, either as liquid suspensions for growth inhibition assays or on agar plates for colony forming unit (CFU) assays. We found that the ZnO NPs were more toxic when preilluminated with UVA or UVB light than with visible light in both growth inhibition and CFU assays. TiO2 NPs were not toxic to the bacteria under UVA or UVB preillumination conditions. The photo-dissolution of ZnO NPs increased with UV preillumination, which could explain the observed toxicity of ZnO NPs. We detected oxidative stress elicited by photoactive nanoparticles by measuring superoxide dismutase activity. The results of this study show that the toxicity of photoactive nanoparticles can be increased by UV preillumination by dissolution of toxic ions, which suggests the potential for preillumination-dependent toxicity of nanoparticles on soil environments in low light or darkness.  相似文献   

17.
Current exanimation reports, green fabrication of silver doped TiO2 nanoparticles (Ag/TiO2) using aqueous extract of Acacia nilotica as bio-reductant and assess its potential as antimicrobial and anticancer agent. The obtained spherical Ag/TiO2 were characterized by various analytical techniques including FTIR, (XRD), (FE-SEM EDS), and (TEM). Synthesized Ag/TiO2 demonstrated broad spectrum antibacterial and anticandidal activity. The order of antimicrobial activity was found to be E. coli > C. albicans > MRSA > P. aeruginosa. In addition, cytotoxicity and oxidative stress of Ag/TiO2 nanoparticles in (MCF-7) cells was also investigated. Outcomes of MTT assay showed concentration dependent reduction in cell viability. Further, synthesized NPs reduced the level of glutathione, induced ROS generation and lipid peroxidation in the treated cells. Therefore, it is envisaged that these spherical nanoparticles may be exploited in drug delivery, pharmaceutical, and food industry.  相似文献   

18.
Bioavailability of engineered metal nanoparticles affects uptake in plants, impacts on ecosystems, and phytoremediation. We studied uptake and translocation of Ti in plants when the main source of this metal was TiO2 nanoparticles. Two crops (Phaseolus vulgaris (bean) and Triticum aestivum (wheat)), a wetland species (Rumex crispus, curly dock), and the floating aquatic plant (Elodea canadensis, Canadian waterweed), were grown in nutrient solutions with TiO2 nanoparticles (0, 6, 18 mmol Ti L?1 for P. vulgaris, T. aestivum, and R. crispus; and 0 and 12 mmol Ti L?1 for E. canadensis). Also examined in E. canadensis was the influence of TiO2 nanoparticles upon the uptake of Fe, Mn, and Mg, and the influence of P on Ti uptake. For the rooted plants, exposure to TiO2 nanoparticles did not affect biomass production, but significantly increased root Ti sorption and uptake. R. crispus showed translocation of Ti into the shoots. E. canadensis also showed significant uptake of Ti, P in the nutrient solution significantly decreased Ti uptake, and the uptake patterns of Mn and Mg were altered. Ti from nano-Ti was bioavailable to plants, thus showing the potential for cycling in ecosystems and for phytoremediation, particularly where water is the main carrier.  相似文献   

19.
In order to study the possibility of using titanium dioxide (TiO2) nanoparticles to deliver peptide nucleic acids (PNA) in eukaryotic cells, a PNA oligomer was synthesized, and a method of PNA immobilization in the form of hybrid DNA/PNA duplexes on the surface of TiO2 nanoparticles covered with polylysine (PL) was developed. The attachment of a DNA/PNA duplex to TiO2 · PL nanoparticles occurs due to electrostatic interactions between the negatively charged DNA chain and the positively charged amino groups of PL. The binding of the PNA to the nanocomposite is achieved through noncovalent Watson-Crick interactions between PNA and complementary DNA. The capacity of the obtained TiO2 · PL · DNA/PNA nano-composites depending on immobilization conditions was 10?C30 nmol PNA per 1 mg of TiO2 particles, which corresponds to ??1?C3 PNA molecules per one TiO2 particle with a size of 4?C6 nm. It was shown by confocal laser scanning microscopy that fluorescently-labeled PNA molecules in the TiO2 · PL · DNA/FluPNA nano-composites effectively penetrate into HeLa cells without transfection agents, electroporation, or other auxiliary procedures.  相似文献   

20.
Nano-functionalized products such as UV protective paints additives, antimicrobial food packaging, and fuel additives offering reduced CO2 emissions have the potential to secure a significant Irish market share in the near future. This scoping study gives a first estimation of nanomaterial surface water concentrations and population ingestional exposure through drinking water resulting from these products. As nanomaterial behavior in wastewater treatment plants (WWTPs) and water treatment plants (WTPs) is currently unclear, bridging data relating to potentially relevant materials (pharmaceuticals and metal removal efficiencies in WWTPs; pathogen removal efficiencies in WTPs) are employed in this study. Mean nanomaterial removal efficiencies of 59.8% and 70.2% were predicted for Irish WWTPs, between 96.95% and 0% for Irish WTPs. Predicted nano-scale TiO2 concentrations in surface waters (resulting from exterior paints) were 2 orders of magnitude greater than that of Ag (resulting from food packaging) and CeO2 (resulting from fuel additives), respectively. Predicted surface and drinking water concentrations were unlikely to pose any ecotoxicological or human health risk, although nano-scale TiO2 and Ag may warrant monitoring as part of standard surface water monitoring schemes. Future research should be directed toward characterizing the behavior of different categories of nanomaterials within WWTP processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号