首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study tested the hypothesis that membrane-bound NAD(P)H oxidase in coronary arterial myocytes (CAMs) is capable of producing superoxide (O(2)(*-)) toward extracellular space to exert an autocrine- or paracrine-like action in these cells. Using a high-speed wavelength-switching fluorescent microscopic imaging technique, we simultaneously monitored the binding of dihydroethidium-oxidizing product to exogenous salmon testes DNA trapped outside CAMs and to nuclear DNA as indicators of extra- and intracellular O(2)(*-) production. It was found that a muscarinic agonist oxotremorine (OXO; 80 microM) increased O(2)(*-) levels more rapidly outside than inside CAMs. In the presence of superoxide dismutase (500 U/ml) plus catalase (400 U/ml) and NAD(P)H oxidase inhibitor diphenylene iodonium (50 microM) or apocynin (100 microM), these increases in extra- and intracellular O(2)(*-) levels were substantially abolished or attenuated. The O(2)(*-) increase outside CAMs was also confirmed by detecting oxidation of nitro blue tetrazolium and confocal microscopic localization of Matrigel-trapped OxyBURST H(2)HFF Green BSA staining around these cells. By electron spin resonance spectrometry, the extracellular accumulation of O(2)(*-) was demonstrated as a superoxide dismutase-sensitive component outside CAMs. Furthermore, RNA interference of NAD(P)H oxidase subunits Nox1 or p47 markedly blocked OXO-induced increases in both extra- and intracellular O(2)(*-) levels, whereas small inhibitory RNA of Nox4 only attenuated intracellular O(2)(*-) accumulation. These results suggest that Nox1 represents a major NAD(P)H oxidase isoform responsible for extracellular O(2)(*-) production. This rapid extracellular production of O(2)(*-) seems to be unique to OXO-induced M(1)-receptor activation, since ANG II-induced intra- and extracellular O(2)(*-) increases in parallel. It is concluded that the outward production of O(2)(*-) via NAD(P)H oxidase in CAMs may represent an important producing pattern for its autocrine or paracrine actions.  相似文献   

2.
3.
Recently, it has been shown that the exogenous addition of hydrogen peroxide (H(2)O(2)) increases endothelial nitric oxide (NO(.)) production. The current study is designed to determine whether endogenous levels of H(2)O(2) are ever sufficient to stimulate NO(.) production in intact endothelial cells. NO(.) production was detected by a NO(.)-specific microelectrode or by an electron spin resonance spectroscopy using Fe(2+)-(DETC)(2) as a NO(.)-specific spin trap. The addition of H(2)O(2) to bovine aortic endothelial cells caused a potent and dose-dependent increase in NO(.) release. Incubation with angiotensin II (10(-7) mol) elevated intracellular H(2)O(2) levels, which were attenuated with PEG-catalase. Angiotensin II increased NO(.) production by 2-fold, and this was prevented by Losartan and by PEG-catalase, suggesting a critical role of AT1 receptor and H(2)O(2) in this response(.) In contrast, NO(.) production evoked by either bradykinin or calcium ionophore was unaffected by PEG-catalase. As in bovine aortic endothelial cells, angiotensin II doubled NO(.) production in aortic endothelial cells from C57BL/6 mice but had no effect on NO(.) production in endothelial cells from p47(phox-/-) mice. In contrast, stimulated NO(.) production to a similar extent in endothelial cells from wild-type and p47(phox-/-) mice. In summary, the present study provides direct evidence that endogenous H(2)O(2), derived from the NAD(P)H oxidase, mediates endothelial NO(.) production in response to angiotensin II. Under disease conditions associated with elevated levels of angiotensin II, this response may represent a compensatory mechanism. Because angiotensin II also stimulates O(2)() production from the NAD(P)H oxidase, the H(2)O(2) stimulation of NO(.) may facilitate peroxynitrite formation in response to this octapeptide.  相似文献   

4.
Doxorubicin is a highly effective antineoplastic drug associated with a dose-dependent cardiotoxicity that may result in irreversible cardiomyopathy and heart failure. Gene variants of the superoxide-generating enzyme NAD(P)H oxidase have recently been associated with this phenotype. We investigated the mechanism of this association using lucigenin-enhanced chemiluminescence, spectrophotometry, electrochemical sensor, and electron paramagnetic resonance spectroscopy. Superoxide production was measured in female wild-type and NAD(P)H oxidase-deficient (gp91phox knockout) mice. The magnitude of the increase in superoxide production on the addition of doxorubicin was much higher in hearts of wild-type mice than in enzyme-deficient mice. An increase in superoxide production was observed also on the addition of the NADPH cytochrome P450 reductase. However, doxorubicin reacted with NADPH producing superoxide even in the absence of any enzymatic activity. Taken together, gp91phox-containing NAD(P)H oxidase and NADPH cytochrome P450 reductase can enhance superoxide production caused by the chemical interaction of doxorubicin and NADPH. These findings are in agreement with the recently reported reduced cardiotoxicity following doxorubicin treatment in gp91phox knockout mice and with associations between NAD(P)H oxidase gene variants and sensitivity to doxorubicin.  相似文献   

5.
To characterise the NADH oxidase activity of both xanthine dehydrogenase (XD) and xanthine oxidase (XO) forms of rat liver xanthine oxidoreductase (XOR) and to evaluate the potential role of this mammalian enzyme as an O2 •− source, kinetics and electron paramagnetic resonance (EPR) spectroscopic studies were performed. A steady-state kinetics study of XD showed that it catalyses NADH oxidation, leading to the formation of one O2 •− molecule and half a H2O2 molecule per NADH molecule, at rates 3 times those observed for XO (29.2 ± 1.6 and 9.38 ± 0.31 min−1, respectively). EPR spectra of NADH-reduced XD and XO were qualitatively similar, but they were quantitatively quite different. While NADH efficiently reduced XD, only a great excess of NADH reduced XO. In agreement with reductive titration data, the XD specificity constant for NADH (8.73 ± 1.36 μM−1 min−1) was found to be higher than that of the XO specificity constant (1.07 ± 0.09 μM−1 min−1). It was confirmed that, for the reducing substrate xanthine, rat liver XD is also a better O2 •− source than XO. These data show that the dehydrogenase form of liver XOR is, thus, intrinsically more efficient at generating O2 •− than the oxidase form, independently of the reducing substrate. Most importantly, for comparative purposes, human liver XO activity towards NADH oxidation was also studied, and the kinetics parameters obtained were found to be very similar to those of the XO form of rat liver XOR, foreseeing potential applications of rat liver XOR as a model of the human liver enzyme.  相似文献   

6.
Arterial regions exposed to oscillatory shear (OS) in branched arteries are lesion-prone sites of atherosclerosis, whereas those of laminar shear (LS) are relatively well protected. Here, we examined the hypothesis that OS and LS differentially regulate production of O2- from the endothelial NAD(P)H oxidase, which, in turn, is responsible for their opposite effects on a critical atherogenic event, monocyte adhesion. We used aortic endothelial cells obtained from C57BL/6 (MAE-C57) and p47phox-/- (MAE-p47-/-) mice, which lack a component of NAD(P)H oxidase. O2- production was determined by dihydroethidium staining and an electron spin resonance using an electron spin trap methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine. Chronic exposure (18 h) to an arterial level of OS (+/- 5 dynes/cm2) increased O2- (2-fold) and monocyte adhesion (3-fold) in MAE-C57 cells, whereas chronic LS (15 dynes/cm2, 18 h) significantly decreased both monocyte adhesion and O2- compared with static conditions. In contrast, neither LS nor OS were able to induce O2- production and monocyte adhesion to MAE-p47-/-. Treating MAE-C57 with a cell-permeable superoxide dismutase compound, polyethylene glycol-superoxide dismutase, also inhibited OS-induced monocyte adhesion. In addition, over-expressing p47phox in MAE-p47-/- restored OS-induced O2- production and monocyte adhesion. These results suggest that chronic exposure of endothelial cells to OS stimulates O2- and/or its derivatives produced from p47phox-dependent NAD(P)H oxidase, which, in turn, leads to monocyte adhesion, an early and critical atherogenic event.  相似文献   

7.
We tested the hypothesis that the NAD(P)H oxidase-dependent generation of superoxide anion (O2-*) mediates tumor necrosis factor-alpha (TNF)-induced alterations in the permeability of pulmonary microvessel endothelial monolayers (PMEM). The permeability of PMEM was assessed by the clearance rate of Evans blue-labeled albumin. The NAD(P)H oxidase subcomponents p47phox and p22phox were assessed by immunofluorescent microscopy and Western blot. The reactive oxygen species O2-* was measured by the fluorescence of 6-carboxy-2',7'-dichlorodihydrofluorescein diacetatedi(acetoxymethyl ester), 5 (and 6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate-acetyl ester, and dihydroethidium. TNF treatment (50 ng/ml for 4.0 h) induced 1) p47phox translocation, 2) an increase in p22phox protein, 3) increased localization of p47phox with p22phox, 4) O2-* generation, and 5) increased permeability to albumin. p22phox antisense oligonucleotide prevented the TNF-induced effect on p22phox, p47phox, O2-*, and permeability. The scrambled nonsense oligonucleotide had no effect. The TNF-induced increase in O2-* and permeability to albumin was also prevented by the O2-* scavenger Cu-Zn superoxide dismutase (100 U/ml). The results indicate that the activation of NAD(P)H oxidase, via the generation of O2-*, mediates TNF-induced barrier dysfunction in PMEM.  相似文献   

8.
Nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase complex has been shown to be involved in the process of glucose‐stimulated insulin secretion (GSIS). In this study, we examined the effect of palmitic acid on superoxide production and insulin secretion by rat pancreatic islets and the mechanism involved. Rat pancreatic islets were incubated during 1 h with 1 mM palmitate, 1% fatty acid free‐albumin, 5.6 or 10 mM glucose and in the presence of inhibitors of NAD(P)H oxidase (DPI—diphenyleneiodonium), PKC (calphostin C) and carnitine palmitoyl transferase‐I (CPT‐I) (etomoxir). Superoxide content was determined by hydroethidine assays. Palmitate increased superoxide production in the presence of 5.6 and 10 mM glucose. This effect was dependent on activation of PKC and NAD(P)H oxidase. Palmitic acid oxidation was demonstrated to contribute for the fatty acid induction of superoxide production in the presence of 5.6 mM glucose. In fact, palmitate caused p47PHOX translocation to plasma membrane, as shown by immunohistochemistry. Exposure to palmitate for 1 h up‐regulated the protein content of p47PHOX and the mRNA levels of p22PHOX, gp91PHOX, p47PHOX, proinsulin and the G protein‐coupled receptor 40 (GPR40). Fatty acid stimulation of insulin secretion in the presence of high glucose concentration was reduced by inhibition of NAD(P)H oxidase activity. In conclusion, NAD(P)H oxidase is an important source of superoxide in pancreatic islets and the activity of NAD(P)H oxidase is involved in the control of insulin secretion by palmitate. J. Cell. Physiol. 226: 1110–1117, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Vascular endothelial cell superoxide (O(*)(2)) has an important role in intracellular signaling, in interaction with other reactive species such as nitric oxide, and in vascular dysfunction. Little is known regarding the source and function of O(*)(2) from microvascular endothelial cells from specific tissues. Mouse lung microvascular endothelial cells stimulated with phorbol ester (PMA) or NADPH generated significant O(*)(2), which was inhibited by diphenyleneiodonium (DPI) but not by allopurinol, rotenone, indomethacin, or quinacrine. Optimal O(*)(2) generation required cytosolic as well as particulate cell fractions of cells. In parallel studies, PMA induced increased expression of the p47 component of the NAD(P)H oxidase in the particulate fraction, which was inhibited by staurosporine and calphostin. These data demonstrate that NAD(P)H oxidase is an important source of O(*)(2) generation in lung microvascular endothelial cells.  相似文献   

10.
Particulate matter (PM) induces oxidative stress and cardiovascular adverse health effects, but the mechanistic link between the two is unclear. We hypothesized that PM enhanced oxidative stress in vascular endothelial cells and investigated the enzymatic sources of reactive oxygen species and their effects on mitogen-activated protein kinase (MAPK) activation and vasoconstriction. We measured the production of extracellular H2O2, activation of extracellular signal-regulated kinases1/2 (ERK1/2) and p38 MAPKs in human pulmonary artery endothelial cells (HPAEC) treated with urban particles (UP; SRM1648), and assessed the effects of H2O2 on vasoconstriction in pulmonary artery ring and isolated perfused lung. Within minutes after UP treatment, HPAEC increased H2O2 production that could be inhibited by diphenyleneiodonium (DPI), apocynin (APO), and sodium azide (NaN3). The water-soluble fraction of UP as well as its two transition metal components, Cu and V, also stimulated H2O2 production. NaN3 inhibited H2O2 production stimulated by Cu and V, whereas DPI and APO inhibited only Cu-stimulated H2O2 production. Inhibitors of other H2O2-producing enzymes, including N-methyl-L-argnine, indomethacin, allopurinol, cimetidine, rotenone, and antimycin, had no effects. DPI but not NaN3 attenuated UP-induced pulmonary vasoconstriction and phosphorylation of ERK1/2 and p38 MAPKs. Knockdown of p47phox gene expression by small interfering RNA attenuated UP-induced H2O2 production and phosphorylation of ERK1/2 and p38 MAPKs. Intravascular administration of H2O2 generated by glucose oxidase increased pulmonary artery pressure. We conclude that UP induce oxidative stress in vascular endothelial cells by activating NAD(P)H oxidase and the mitochondria. The endothelial oxidative stress may be an important mechanism for PM-induced acute cardiovascular health effects. mitogen-activated protein kinase; extracellular signal-regulated kinase; p38; vasoconstriction  相似文献   

11.
12.
A fundamental requirement for cellular vitality is the maintenance of plasma ion concentration within strict ranges. It is the function of the kidney to match urinary excretion of ions with daily ion intake and nonrenal losses to maintain a stable ionic milieu. NADPH oxidase is a source of reactive oxygen species (ROS) within many cell types, including the transporting renal epithelia. The focus of this review is to describe the role of NADPH oxidase-derived ROS toward local renal tubular ion transport in each nephron segment and to discuss how NADPH oxidase-derived ROS signaling within the nephron may mediate ion homeostasis. In each case, we will attempt to identify the various subunits of NADPH oxidase and reactive oxygen species involved and the ion transporters, which these affect. We will first review the role of NADPH oxidase on renal Na(+) and K(+) transport. Finally, we will review the relationship between tubular H(+) efflux and NADPH oxidase activity.  相似文献   

13.
A novel superoxide-producing NAD(P)H oxidase in kidney   总被引:34,自引:0,他引:34  
During phagocytosis, gp91(phox), the catalytic subunit of the phagocyte NADPH oxidase, becomes activated to produce superoxide, a precursor of microbicidal oxidants. Currently increasing evidence suggests that nonphagocytic cells contain similar superoxide-producing oxidases, which are proposed to play crucial roles in various events such as cell proliferation and oxygen sensing for erythropoiesis. Here we describe the cloning of human cDNA that encodes a novel NAD(P)H oxidase, designated NOX4. The NOX4 protein of 578 amino acids exhibits 39% identity to gp91(phox) with special conservation in membrane-spanning regions and binding sites for heme, FAD, and NAD(P)H, indicative of its function as a superoxide-producing NAD(P)H oxidase. The membrane fraction of kidney-derived human embryonic kidney (HEK) 293 cells, expressing NOX4, exhibits NADH- and NADPH-dependent superoxide-producing activities, both of which are inhibited by diphenylene iodonium, an agent known to block oxygen sensing, and decreased in cells expressing antisense NOX4 mRNA. The human NOX4 gene, comprising 18 exons, is located on chromosome 11q14.2-q21, and its expression is almost exclusively restricted to adult and fetal kidneys. In human renal cortex, high amounts of the NOX4 protein are present in distal tubular cells, which reside near erythropoietin-producing cells. In addition, overexpression of NOX4 in cultured cells leads to increased superoxide production and decreased rate of growth. The present findings thus suggest that the novel NAD(P)H oxidase NOX4 may serve as an oxygen sensor and/or a regulator of cell growth in kidney.  相似文献   

14.
The objective of the present study was to examine the role of the angiotensin II type 1 receptor (AT(1)-R) in the diabetes-aggravated oxidative stress and brain injury observed in a rat model of combined diabetes and focal cerebral ischemia. Diabetes was induced by an injection of streptozotoxin (STZ; 55 mg/kg iv) at 8 wk of age. Two weeks after the induction of diabetes, some animals received continuous subcutaneous infusion of the AT(1)-R antagonist candesartan (0.5 mg.kg(-1).day(-1)) for 14 days. Focal cerebral ischemia, induced by middle cerebral artery occlusion/reperfusion (MCAO), was conducted at 4 wk after STZ injection. Male Sprague-Dawley rats (n = 189) were divided into five groups: normal control, diabetes, MCAO, diabetes + MCAO, and diabetes + MCAO + candesartan. The major observations were that 1) MCAO produced typical cerebral infarction and neurological deficits at 24 h that were accompanied by elevation of NAD(P)H oxidase gp91(phox) and p22(phox) mRNAs, and lipid hydroperoxide production in the ipsilateral hemisphere; 2) diabetes enhanced NAD(P)H oxidase gp91(phox) and p22(phox) mRNA expression, potentiated lipid peroxidation, aggravated neurological deficits, and enlarged cerebral infarction; and 3) candesartan reduced the expression of gp91(phox) and p22(phox), decreased lipid peroxidation, lessened cerebral infarction, and improved the neurological outcome. We conclude that diabetes exaggerates the oxidative stress, NAD(P)H oxidase induction, and brain injury induced by focal cerebral ischemia. The diabetes-aggravated brain injury involves AT(1)-Rs. We have shown for the first time that candesartan reduces brain injury in a combined model of diabetes and cerebral ischemia.  相似文献   

15.
Lambert AJ  Buckingham JA  Brand MD 《FEBS letters》2008,582(12):1711-1714
The relationship between the rate of superoxide production by complex I and NAD(P)H redox state was investigated in rat skeletal muscle mitochondria. A high rate of superoxide production was observed during succinate oxidation; the rate during pyruvate oxidation was over fourfold lower. However, the NAD(P)H pool was significantly less reduced during succinate oxidation than during pyruvate oxidation. We conclude that there is no unique relationship between superoxide production by complex I and the reduction state of the NAD(P)H pool. Our data suggest that less than 10% of the superoxide originates from the flavin site during reverse electron transport from succinate.  相似文献   

16.
Hyperoxia increases reactive oxygen species (ROS) production in vascular endothelium; however, the mechanisms involved in ROS generation are not well characterized. We determined the role and regulation of NAD(P)H oxidase in hyperoxia-induced ROS formation in human pulmonary artery endothelial cells (HPAECs). Exposure of HPAECs to hyperoxia for 1, 3, and 12 h increased the generation of superoxide anion, which was blocked by diphenyleneiodonium but not by rotenone or oxypurinol. Furthermore, hyperoxia enhanced NADPH- and NADH-dependent and superoxide dismutase- or diphenyleneiodonium-inhibitable ROS production in HPAECs. Immunohistocytochemistry and Western blotting revealed the presence of gp91, p67 phox, p22 phox, and p47 phox subcomponents of NADPH oxidase in HPAECs. Transfection of HPAECs with p22 phox antisense plasmid inhibited hyperoxia-induced ROS production. Exposure of HPAECs to hyperoxia activated p38 MAPK and ERK, and inhibition of p38 MAPK and MEK1/2 attenuated the hyperoxia-induced ROS generation. These results suggest a role for MAPK in regulating hyperoxia-induced NAD(P)H oxidase activation in HPAECs.  相似文献   

17.
Since an increased endothelial superoxide formation plays an important role in the pathogenesis of endothelial dysfunction its specific detection is of particular interest. The widely used superoxide probe lucigenin, however, has been reported to induce superoxide under certain conditions, especially in the presence of NADH. This raises questions as to the conclusion of a NAD(P)H oxidase as the major source of endothelial superoxide. Using independent methods, we showed that lucigenin in the presence of NADH leads to the production of substantial amount of superoxide (~ 15-fold of control) in endothelial cell homogenates. On the other hand, these independent methods revealed that endothelial cells without lucigenin still produce superoxide in a NAD(P)H-dependent manner. This was blocked by inhibitors of the neutrophil NADPH oxidase diphenyleniodonium and phenylarsine oxide. Our results demonstrate that a NAD(P)H-dependent oxidase is an important source for endothelial superoxide but the latter, however, cannot be measured reliably by lucigenin.  相似文献   

18.
Since an increased endothelial superoxide formation plays an important role in the pathogenesis of endothelial dysfunction its specific detection is of particular interest. The widely used superoxide probe lucigenin, however, has been reported to induce superoxide under certain conditions, especially in the presence of NADH. This raises questions as to the conclusion of a NAD(P)H oxidase as the major source of endothelial superoxide. Using independent methods, we showed that lucigenin in the presence of NADH leads to the production of substantial amount of superoxide (∼ 15-fold of control) in endothelial cell homogenates. On the other hand, these independent methods revealed that endothelial cells without lucigenin still produce superoxide in a NAD(P)H-dependent manner. This was blocked by inhibitors of the neutrophil NADPH oxidase diphenyleniodonium and phenylarsine oxide. Our results demonstrate that a NAD(P)H-dependent oxidase is an important source for endothelial superoxide but the latter, however, cannot be measured reliably by lucigenin.  相似文献   

19.
Available evidence for oxidative stress after angioplasty is indirect or ambiguous. We sought to characterize the pattern, time course, and possible sources of free radical generation early after arterial balloon injury. Ex vivo injury performed in arterial rings in buffer with lucigenin yielded a massive oxygen-dependent peak of luminescence that decayed exponentially and was proportional to the degree of injury. Signals for injured vs. control arteries were 207. 1 +/- 17.9 (n = 13) vs 4.1 +/- 0.7 (n = 22) cpm x 10(3)/mg/min (p <. 001). Data obtained with 0.25 mmol/l lucigenin were validated with 0. 005-0.05 mmol/l lucigenin or the novel superoxide-sensitive probe coelenterazine (5 micromol/l). Gentle removal of endothelium prior to injury scarcely affected the amount of luminescence. Lucigenin signals were amplified 5- to 20-fold by exogenous NAD(P)H, and were >85% inhibited by diphenyliodonium (DPI, a flavoenzyme inhibitor). Antagonists of several other potential free radical sources, including xanthine oxidase, nitric oxide synthase, and mitochondrial electron transport, were without effect. Overdistension of intact rabbit iliac arteries in vivo (n = 7) induced 72% fall in intracellular reduced glutathione and 68% increase in oxidized glutathione, so that GSH/GSSG ratio changed from 7.93 +/- 2.14 to 0. 81 +/- 0.16 (p <.005). There was also 28.7% loss of the glutathione pool. Further studies were performed with electron paramagnetic resonance spectroscopy. Rabbit aortas submitted to ex vivo overdistension in the presence of the spin trap DEPMPO (5-diethoxy-phosphoryl-5-methyl-1-pyrroline-N-oxide, 100 mmol/l, n = 5) showed formation of radical adduct spectra, abolished by DPI or superoxide dismutase. Computer simulation indicated a mixture of hydroxyl and carbon-centered radical adducts, likely due to decay of superoxide adduct. Electrical mobility shift assays for NF-kappaB activation were performed in nuclear protein extracts from intact or previously injured rabbit aortas. Balloon injury induced early NF-kappaB activation, which was decreased by DPI. In conclusion, our data show unambiguously that arterial injury induces an immediate profound vascular oxidative stress. Such redox imbalance is likely accounted for by activation of vessel wall NAD(P)H oxidoreductase(s), generating radical species potentially involved in tissue repair.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号