首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
铁离子是鱼腥蓝细菌PCC7120进行呼吸作用、光合作用和固氮作用中相关酶的重要辅基之一,缺铁将严重影响蓝细菌的生存.富氧的生态环境中铁通常以不溶的Fe3+形式存在,不易被细胞吸收利用.低铁条件下,鱼腥蓝细菌PCC7120分泌能螯合铁离子的嗜铁素,通过外膜上相应的转运体将嗜铁素-铁复合物转运到细胞内.综述了近年来在嗜铁素的种类及其生物合成途径、铁吸收系统的组成和功能等方面的最新进展,分析了铁吸收系统的调控机制,为进一步开展鱼腥蓝细菌铁吸收机制的研究提供依据.  相似文献   

2.
生物反应器培养转基因鱼腥藻的研究   总被引:2,自引:0,他引:2  
在反应器中研究了转人TNF-α基因鱼腥藻7120(Anabaena sp.PCC7120,pDC-TNF)的培养。结果表明气升式反应器适合于转基因鱼腥藻的培养。气升式反应器中通气量和光照是主要的影响因素,观察到1L罐中最适通气量为60~75L/h,最适光照强度为1200lx,此时在25℃混养,光照时间/黑暗时间为12h/12h,15d生物量干重大于3g/L,TNF表达水平约占总可溶蛋白的22%,达到了摇瓶培养水平。实验发现添加维生素B1 300μg/L、B12 200μg/L和生物素4μg/L时,生产周期为12d,缩短20%,表达水平相同。培养过程通入含有5%CO2的空气,能促进生长,缩短生产周期,但收获生物量不受影响。从添加维生素和通入CO2的培养结果证明反应器中培养时,光照是限制性因素,当反应器系统一定时,最终生物量有一个最大值,如需进一步提高产量,必须设法改变光照系统。  相似文献   

3.
Characterization of HetR protein turnover in Anabaena sp. PCC 7120   总被引:2,自引:0,他引:2  
The hetR gene plays an important role in heterocyst development and pattern formation in heterocystous cyanobacteria. The hetR gene from Anabaena sp. PCC 7120 was overexpressed in Escherichia coli. Antibodies raised against the recombinant HetR protein (rHetR) were used to characterize metabolism of the HetR of Anabaena sp. PCC 7120 in vivo. HetR was present at a low level when Anabaena sp. PCC 7120 was grown in the presence of combined nitrogen. Shifting from nitrogen repletion conditions to nitrogen depletion conditions led to a two fold increase of HetR in total cell extracts, and most of HetR was located in heterocysts. The amount of HetR in total cellular extracts increased rapidly after shifting to nitrogen depletion conditions and reached a maximum level 3 h after the shift. Isoelectrofocusing electrophoresis revealed that the native HetR had a more acidic isoelectric point than did rHetR. After combined nitrogen was added to the nitrogen-depleted cultures, the degradation of HetR depended on culture conditions: before heterocysts were fully developed, HetR was rapidly degraded; after heterocysts were fully developed, HetR was degraded much more slowly. The distribution of HetR in other species of cyanobacteria was also studied. Received: 24 June 1997 / Accepted: 5 December 1997  相似文献   

4.
5.
In prokaryotes, cell division is normally achieved by binary fission, and the key player FtsZ is considered essential for the complete process. In cyanobacteria, much remains unknown about several aspects of cell division, including the identity and mechanism of the various components involved in the division process. Here, we report results obtained from a search of the players implicated in cell division, directly associating to FtsZ in the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Histidine tag pull-downs were used to address this question. However, the main observation was that FtsZ is a target of proteolysis. Experiments using various cell-free extracts, an unrelated protein, and protein blot analyses further supported the idea that FtsZ is proteolytically cleaved in a specific manner. In addition, we show evidence that both FtsZ termini seem to be equally prone to proteolysis. Taken together, our data suggest the presence of an unknown player in cyanobacterial cell division, opening up the possibility to investigate novel mechanisms to control cell division in Anabaena PCC 7120.  相似文献   

6.
We establish here that iron deficiency causes oxidative stress in the cyanobacterium Anabaena sp. strain PCC 7120. Iron starvation leads to a significant increase in reactive oxygen species, whose effect can be abolished by treatment with the antioxidant tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl). Oxidative stress induced by iron starvation could be a common feature of photosynthetic bacteria.  相似文献   

7.
The filamentous cyanobacterium Anabaena (Nostoc) sp. strain PCC 7120 responds to starvation for fixed nitrogen by producing a semiregular pattern of nitrogen-fixing cells called heterocysts. Overexpression of the hetY gene partially suppressed heterocyst formation, resulting in an abnormal heterocyst pattern. Inactivation of hetY increased the time required for heterocyst maturation and caused defects in heterocyst morphology. The 489-bp hetY gene (alr2300), which is adjacent to patS (asl2301), encodes a protein that belongs to a conserved family of bacterial hypothetical proteins that contain an ATP-binding motif.  相似文献   

8.
9.
10.
刘志伟  张晨  郭勇 《生物技术》2004,14(2):11-13
为了实现转基因鱼腥藻培养生产TMF的目的,讲究了转基因鱼腥藻的稳定性。影印法证实转TNF-α。基因鱼腥藻7120能保持质粒分配稳定性。比较无选择压力下连续传代的转丛因鱼醒藻7120在不同培养基中的生长和外源基因表达,证实没有发生质粒部分缺失,但转基因鱼腥藻在无选择压力下会降低重组质粒拷贝数。在培养过程中,种子培养越含有的新霉素可以保持生产过程质粒稳定,这可以大火减少新霉素用量。  相似文献   

11.
As an approach towards elucidation of the biochemical regulation of the progression of heterocyst differentiation in Anabaena sp. strain PCC 7120, we have identified proteins that bind to a 150-bp sequence upstream from hepC, a gene that plays a role in the synthesis of heterocyst envelope polysaccharide. Such proteins were purified in four steps from extracts of vegetative cells of Anabaena sp. Two of these proteins (Abp1 and Abp2) are encoded by neighboring genes in the Anabaena sp. chromosome. The genes that encode the third (Abp3) and fourth (Abp4) proteins are situated at two other loci in that chromosome. Insertional mutagenesis of abp2 and abp3 blocked expression of hepC and hepA and prevented heterocyst maturation and aerobic fixation of N(2).  相似文献   

12.
13.
14.
Components of a protein tyrosine phosphorylation/dephosphorylation network were identified in the cyanobacterium Anabaena sp. strain PCC 7120. Three phosphotyrosine (P-Tyr) proteins of 27, 36, and 52 kDa were identified through their conspicuous immunoreactions with RC20H monoclonal antibodies specific for P-Tyr. These immunoreactions were outcompeted completely by free P-Tyr (5 mM) but not by phosphoserine or phosphothreonine. The P-Tyr content of the three major P-Tyr proteins and several minor proteins increased with their time of incubation in the presence of Mg-ATP and the protein phosphatase inhibitors sodium orthovanadate and sodium fluoride. Incubation of the same extracts with [gamma-32P]ATP but not [alpha-32P]ATP led to the phosphorylation of five polypeptides with molecular masses of 20, 27, 52, 85, and 100 kDa. Human placental protein tyrosine phosphatase 1B, with absolute specificity for P-Tyr, liberated significant quantities of 32Pi from four of the polypeptides, confirming that a portion of the protein-bound phosphate was present as 32P-Tyr. Alkaline phosphatase and the dual-specificity protein phosphatase IphP from the cyanobacterium Nostoc commune UTEX 584 also dephosphorylated these proteins and did so with greater apparent efficiency. Two of the polypeptides were partially purified, and phosphoamino analysis identified 32P-Tyr, [32P]phosphoserine, and [32P]phosphothreonine. Anabaena sp. strain PCC 7120 cell extracts contained a protein tyrosine phosphatase activity that was abolished in the presence of sodium orthovanadate and inhibited significantly by the sulfhydryl-modifying agents p-hydroxymercuriphenylsulfonic acid and p-hydroxymercuribenzoate as well as by heparin. In Anabaena sp. strain PCC 7120 the presence and/or phosphorylation status of P-Tyr proteins was influenced by incident photon flux density.  相似文献   

15.
hGM-CSF基因穿梭表达载体的构建及其在鱼腥藻7120中的克隆   总被引:5,自引:0,他引:5  
人粒-巨噬细胞集落刺激因子(hGM-CSF)作为一种造血生长因子,能够刺激T细胞和巨噬细胞增殖、成熟和分化,具有极其重要的免疫调解功能.本研究运用PCR方法,从质粒pAG-MT-8中克隆该基因,并在其5′端添加有利于在蓝藻细胞中高效表达的SD序列,然后插入到表达载体(pRL-439)强启动子PpsbA的下游,进一步与穿梭表达载体pDC-08相连构建成穿梭表达载体pDC-GM.利用三亲接合转移方法将该穿梭表达载体(pDC-GM)转入丝状鱼腥藻7120,通过相应抗生素筛选后得到能稳定遗传的转基因藻.以该转基因藻的基因组DNA为模板进行PCR检测,结果表明hGM-CSF基因已转入鱼腥藻7120.这是首次尝试把蓝藻作为制备重组hGM-CSF的新宿主,具有潜在的经济价值和社会效益.  相似文献   

16.
Abstract Whole cells of the dinitrogen-fixing cyanobacterium Anabaena sp. PCC7120 exhibited K m values for l -glutamine and l -glutamate of 33 μM and 0.5 mM, respectively. V max of uptake was ca. 30 nmol mg−1 (chlorophyll) min−1 for both amino acids. The similar pattern of sensitivity to other amino acids exhibited by both transport activities suggests that a common transport system is involved in glutamine and glutamate uptake by this cyanobacterium.  相似文献   

17.
A proteomic approach was employed to elucidate the response of an agriculturally important microbe, Anabaena sp. strain PCC7120, to methyl viologen (MV). Exposure to 2 μM MV caused 50% lethality (LD50) within 6 h and modified the cellular levels of several proteins. About 31 proteins increased in abundance and 24 proteins decreased in abundance, while 55 proteins showed only a minor change in abundance. Of these, 103 proteins were identified by MS. Levels of proteins involved in ROS detoxification and chaperoning activities were enhanced but that of crucial proteins involved in light and dark reactions of photosynthesis declined or constitutive. The abundance of proteins involved in carbon and energy biogenesis were altered. The study elaborated the oxidative stress defense mechanism deployed by Anabaena, identified carbon metabolism and energy biogenesis as possible major targets of MV sensitivity, and suggested potential biotechnological interventions for improved stress tolerance in Anabaena 7120.  相似文献   

18.
Wu X  Liu D  Lee MH  Golden JW 《Journal of bacteriology》2004,186(19):6422-6429
The patS gene encodes a small peptide that is required for normal heterocyst pattern formation in the cyanobacterium Anabaena sp. strain PCC 7120. PatS is proposed to control the heterocyst pattern by lateral inhibition. patS minigenes were constructed and expressed by different developmentally regulated promoters to gain further insight into PatS signaling. patS minigenes patS4 to patS8 encode PatS C-terminal 4 (GSGR) to 8 (CDERGSGR) oligopeptides. When expressed by P(petE), P(patS), or P(rbcL) promoters, patS5 to patS8 inhibited heterocyst formation but patS4 did not. In contrast to the full-length patS gene, P(hepA)-patS5 failed to restore a wild-type pattern in a patS null mutant, indicating that PatS-5 cannot function in cell-to-cell signaling if it is expressed in proheterocysts. To establish the location of the PatS receptor, PatS-5 was confined within the cytoplasm as a gfp-patS5 fusion. The green fluorescent protein GFP-PatS-5 fusion protein inhibited heterocyst formation. Similarly, full-length PatS with a C-terminal hexahistidine tag inhibited heterocyst formation. These data indicate that the PatS receptor is located in the cytoplasm, which is consistent with recently published data indicating that HetR is a PatS target. We speculated that overexpression of other Anabaena strain PCC 7120 RGSGR-encoding genes might show heterocyst inhibition activity. In addition to patS and hetN, open reading frame (ORF) all3290 and an unannotated ORF, orf77, encode an RGSGR motif. Overexpression of all3290 and orf77 under the control of the petE promoter inhibited heterocyst formation, indicating that the RGSGR motif can inhibit heterocyst development in a variety of contexts.  相似文献   

19.
This study provides first-hand proteomic data on the survival strategy of Anabaena sp. PCC 7120 when subjected to long-term iron-starvation conditions. 2D-gel electrophoresis followed by MALDI-TOF/MS analysis of iron-deficient Anabaena revealed significant and reproducible alterations in ten proteins, of which six are associated with photosynthesis and respiration, three with the antioxidative defense system, and the last, hypothetical protein all1861, conceivably connected with iron homeostasis. Iron-starved Anabaena registered a reduction in growth, photosynthetic pigments, PSI, PSII, whole-chain electron transport, carbon and nitrogen fixation, and ATP and NADPH content. The kinetics of hypothetical protein all1861 expression, with no change in expression until day 3, maximum expression on the 7th day, and a decline in expression from the 15th day onward, coupled with in silico analysis, suggested its role in iron sequestration and homeostasis. Interestingly, the up-regulated FBP-aldolase, Mn/Fe-SOD, and all1861 all appear to assist the survival of Anabeana subjected to iron-starvation conditions. Furthermore, the N2-fixation capabilities of the iron-starved Anabaena encourage us to recommend its application as a biofertilizer, particularly in iron-limited paddy soils.  相似文献   

20.
丝状蓝藻鱼腥藻7120(Anabaena sp.PCC7120)中可成功表达外源基因,但其转化和表达效率不高,改变细胞的生理状态可能会影响外源基因的转化和表达效率。将鱼腥藻7120藻丝体通过几种因素诱导形成短藻丝体(具有25个左右细胞),并对其光合活性进行了测定。结果表明:红光和高温对鱼腥藻7120短藻丝体较为有效,且红光诱导在48h时,短藻丝体细胞数占总细胞数的比例达到85%;DCMU单独诱导效果不明显,适当浓度的DCMU+红光诱导时诱导效率略有增加;高温以45℃诱导12h比例最高,约达87%;高温45℃诱导时,对数生长后期的鱼腥藻7120较易形成短藻丝体。光合活性测定结果显示,诱导形成的短藻丝体光合放氧速率比正常营养藻丝体的低,这种具有光合放氧能力的短藻丝体显示出作为表达外源基因受体的可能性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号