首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multidrug resistance (MDR) mediated by overexpression of MDR1 P-glycoprotein (Pgp) is one of the best characterized transporter-mediated barriers to successful chemotherapy in cancer patients. Thus, noninvasive interrogation of Pgp-mediated transport activity in vivo would be beneficial in guiding therapeutic choices. Both small organic medicinals as well as metal complexes characterized as transport substrates for Pgp are amenable to incorporation of PET or SPECT radionuclides and may enable noninvasive imaging of Pgp in cancer patients. Toward this objective, clinically approved agents, exemplified by (99m)Tc-Sestamibi and (99m)Tetrofosmin, have already shown promise for the functional evaluation of Pgp-mediated transport activity in human tumors in vivo. In addition, selected agents from an upcoming class of substituted Schiff-base gallium(III) complexes containing an N(4)O(2) donor core in their organic scaffold and capable of generating both SPECT and PET radiopharmaceuticals have also been shown to be promising for noninvasive assessment of Pgp activity in vitro and in vivo.  相似文献   

2.
The best characterized mechanism of multidrug resistance (MDR) in cancer involves the MDR1 efflux transporter P-glycoprotein (Pgp). The positron-emitting radiotracer hexakis(2-methoxyisobutylisonitrile)-(94m)Tc ((94m)Tc-MIBI) was synthesized and validated in cell transport studies as a substrate for MDR1 Pgp. In vivo small-scale PET imaging and biodistribution studies of mdr1a/1b (-/-) gene deleted and wild-type mice demonstrated the use of (94m)Tc-MIBI to detect Pgp function. The reversal effect of a Pgp modulator was shown in tissue distribution studies of KB 3-1 (Pgp-) and KB 8-5 (Pgp+) tumor-bearing nude mice. The current (94m)Tc-MIBI experiments parallel previous studies employing (99m)Tc-MIBI, showing essentially identical performance of the two technetium radiotracers and providing biological validation of (94m)Tc-MIBI for PET imaging of multidrug resistance.  相似文献   

3.
Localization of the drug transporter P-glycoprotein (Pgp) to the plasma membrane is thought to be the only contributor of Pgp-mediated multidrug resistance (MDR). However, very little work has focused on the contribution of Pgp expressed in intracellular organelles to drug resistance. This investigation describes an additional mechanism for understanding how lysosomal Pgp contributes to MDR. These studies were performed using Pgp-expressing MDR cells and their non-resistant counterparts. Using confocal microscopy and lysosomal fractionation, we demonstrated that intracellular Pgp was localized to LAMP2-stained lysosomes. In Pgp-expressing cells, the Pgp substrate doxorubicin (DOX) became sequestered in LAMP2-stained lysosomes, but this was not observed in non-Pgp-expressing cells. Moreover, lysosomal Pgp was demonstrated to be functional because DOX accumulation in this organelle was prevented upon incubation with the established Pgp inhibitors valspodar or elacridar or by silencing Pgp expression with siRNA. Importantly, to elicit drug resistance via lysosomes, the cytotoxic chemotherapeutics (e.g. DOX, daunorubicin, or vinblastine) were required to be Pgp substrates and also ionized at lysosomal pH (pH 5), resulting in them being sequestered and trapped in lysosomes. This property was demonstrated using lysosomotropic weak bases (NH4Cl, chloroquine, or methylamine) that increased lysosomal pH and sensitized only Pgp-expressing cells to such cytotoxic drugs. Consequently, a lysosomal Pgp-mediated mechanism of MDR was not found for non-ionizable Pgp substrates (e.g. colchicine or paclitaxel) or ionizable non-Pgp substrates (e.g. cisplatin or carboplatin). Together, these studies reveal a new mechanism where Pgp-mediated lysosomal sequestration of chemotherapeutics leads to MDR that is amenable to therapeutic exploitation.  相似文献   

4.
Multidrug resistance (MDR) mediated by overexpression of MDR1 P-glycoprotein (Pgp) is one of the best characterized barriers to chemotherapy in cancer patients. Furthermore, the protective function of Pgp-mediated efflux of xenobiotics in various organs has a profound effect on the bioavailability of drugs in general. Thus, there is an expanding requirement to noninvasively interrogate Pgp transport activity in vivo. We herein report the Pgp recognition properties of a novel 99mTc(I)-tricarbonyl complex, [99mTc(CO)3(MIBI)3]+ (Tc-CO-MIBI). Tc-CO-MIBI showed 60-fold higher accumulation in drug-sensitive KB 3-1 cells compared to colchicine-selected drug-resistant KB 8-5 cells. In KB 8-5 cells, tracer enhancement was observed with the potent MDR modulator LY335979 (EC50 = 62 nM). Similar behavior was observed using drug-sensitive MCF-7 breast adenocarcinoma cells and MCF-7/MDR1 stable transfectants, confirming that Tc-CO-MIBI is specifically excluded by overexpression of MDR1 Pgp. By comparison, net accumulation in control H69 lung tumor cells was 9-fold higher than in MDR-associated protein (MRP1)-expressing H69AR cells, indicating only modest transport by MRP1. Biodistribution analysis following tail vein injection of Tc-CO-MIBI showed delayed liver clearance as well as enhanced brain uptake and retention in mdr1a/1b(-/-) gene deleted mice versus wild-type mice, directly demonstrating that Tc-CO-MIBI is a functional probe of Pgp transport activity in vivo.  相似文献   

5.
MDR1 P-glycoprotein transports endogenous opioid peptides   总被引:3,自引:0,他引:3  
MDR1 P-glycoprotein is generally regarded as an efflux pump for amphipathic toxic compounds. The question remains, however, whether certain endogenous compounds are also substrates for this transporter. Certain peptides have been shown to interact with MDR1 Pgp as well and we have therefore investigated whether endogenous bioactive peptides are substrates. We demonstrate here that the synthetic μ-opioid peptide DAMGO is a good substrate for MDR1 Pgp. In view of its low interaction with the membrane it is an attractive ligand for measurement of MDR1 Pgp-mediated transport activity in membrane vesicles. Various linear peptides with amidated C-termini were found to inhibit MDR1 Pgp-mediated DAMGO transport. This group includes endogenous opioid peptides such as adrenorphin and endomorphin 1 and 2, as well as the neurokinin, Substance P. The latter bioactive peptides have a relatively high affinity for the transporter. Transport of endomorphin 1 and 2 could be directly demonstrated by the uptake of the radiolabeled opioid peptides in membrane vesicles from MDR1-transfected cells with a Km of 15 and 12 μM, respectively. This opens the possibility that MDR1 Pgp is involved in the elimination and/or tissue distribution of these bioactive peptides.  相似文献   

6.
P-glycoprotein (Pgp) is an ATP-driven membrane exporter for a broad spectrum of hydrophobic xenobiotics. Pgp-overexpression is a common cause of multidrug resistance (MDR) in cancer cells and could lead to chemotherapeutic failure. Through an extensive herbal drug screening program we previously showed that (+/-)-praeruptorin A (PA), a naturally existing pyranocumarin isolated from the dried root of Peucedanum praeruptorum Dunn., re-sensitizes Pgp-mediated MDR (Pgp-MDR) cancer cells to cancer drugs. A number of PA derivatives were synthesized and one of these, (+/-)-3'-O, 4'-O-dicynnamoyl-cis-khellactone (DCK), was more potent than PA or verapamil in the reversal of Pgp-MDR. In Pgp-MDR cells DCK increased cellular accumulation of doxorubicin without affecting the expression level of Pgp. In Pgp-enriched membrane fractions DCK moderately stimulated basal Pgp-ATPase activity, suggesting some transport substrate-like function. However, DCK also inhibited Pgp-ATPase activity stimulated by the standard substrates verapamil or progesterone with decreased V(max)s but K(m)s were relatively unchanged, suggesting a primarily non-competitive mode of inhibition. While the binding of substrates to active Pgp would increase the reactivity of the Pgp-specific antibody UIC2, DCK decreased UIC2 reactivity. These results suggest that DCK could bind simultaneously with substrates to Pgp but perhaps at an allosteric site and thus affect Pgp-substrate interactions.  相似文献   

7.
Multidrug resistance P-glycoprotein (Pgp) has been reported to localize in low-density, cholesterol-enriched membranes. However, effects of low-density membrane domains on function of Pgp remain unexplored in whole cell systems. In cells that express modest levels of the protein endogenously or through drug selection, Pgp predominantly localized to low-density membranes following separation on a sucrose gradient. When highly overexpressed in NIH 3T3 cells, a prominent amount of Pgp also was detected in high-density membranes. Removing cholesterol from cells with beta-methylcyclodextrin (CD), a sterol acceptor molecule, shifted fractions that contained Pgp from low toward high density, and this effect was reversed to a similar extent by restoring sterols with either cholesterol or enantiomeric cholesterol. However, function of human MDR1 Pgp as probed with Tc-Sestamibi, a transport substrate for Pgp, was not dependent on localization of Pgp in cholesterol-enriched membranes. Specific inhibition of MDR1 Pgp with GF120918 or LY335979 also was independent of cholesterol. Cell-type-specific effects of cholesterol content on function of human Pgp were detected by use of daunomycin, another substrate for Pgp, although efficacy of inhibitors remained independent of cholesterol. Conversely, both function and inhibition of hamster Pgp as measured with Tc-Sestamibi and daunomycin were in part dependent on normal cell content of cholesterol. These data show that Pgp preferentially localizes to low-density, cholesterol-enriched membrane domains, but acute depletion of cholesterol impacts Pgp-mediated drug transport in a substrate- and cell-type-specific manner.  相似文献   

8.
The study of multidrug resistance (MDR) in tumor cell lines has led to the discovery of the plasma membrane P-glycoprotein (Pgp) molecule. This protein functions as an energy-dependent pump for the efflux of diverse anticancer drugs from MDR cells. It now appears that Pgp-mediated MDR tumor cells do occur in human cancers, and that they are likely to play a role in the ultimate response of patients to chemotherapy. Chemosensitizers, compounds able to reverse the MDR phenotype, have been identified and offer the exciting possibility of improving efficacy for some nonresponsive malignancies. Surprisingly, Pgp-like molecules can be found in evolutionarily distant species among both eukaryotes and prokaryotes. As a group, these proteins form a superfamily of ATP-dependent transport proteins. This finding has broad implications and provides new insights into how living organisms use this fundamental transport system to regulate the trafficking of diverse molecules across biological membranes.  相似文献   

9.
In the previous study we have found that Djungarian hamster fibroblasts with high levels of multidrug resistance (MDR) (colchicine-resistance index RI of 1000 to 42000) produce soluble factor(s) communicating MDR to the drug-sensitive cells of the same species by elevating the functional activity of P-glycoprotein (Pgp). Here we have shown that these cells can influence human tumor cells in the same fashion. Rat hepatoma McA RH7777 cells and their colchicine-resistant derivatives are shown to produce a factor with similar effects (induction of MDR and Pgp functional activity in the drug-sensitive cells). These effects seem to depend on the drug resistance level of the donor cells. Our results show that induction of the Pgp-mediated MDR is not species-specific and the tumor cells with intrinsic MDR (arising from the tissue with a high level of Pgp expression) can produce a factor(s) communicating this type of drug resistance to the sensitive cells.  相似文献   

10.
The multidrug resistance (MDR) is one of the main reasons for chemotherapeutic failures in cancer patients. The overexpression of mdr1 gene product, P-glycoprotein (Pgp), leads to the appearance of resistant tumor cells. In the previous paper (Erokhina, 1997) we have demonstrated that the first stages of Pgp-mediated MDR are accompanied by the reorganization of cytoskeleton elements and the vacuolar system. These data were true for two independently isolated sublines of Syrian hamster embryo fibroblasts transformed by Raus sarcoma virus. In this study, we continued the investigation of the properties of the vacuolar system in Pgp-expressing cells. Brefeldin A (BFA), which is not a Pgp substrate, affects different elements of the vacuolar system and blocks vesicular transport. Our data demonstrate that BFA has different effects on parental and resistant cells. In parental cells, the Golgi apparatus and vesicular transport are sensitive to BFA, while in resistant sublines, BFA affects the vesicular transport but not the Golgi apparatus structure. We discuss the existence of similar and different BFA targets in parental and resistant cells and their role in the evolution of multidrug resistance mechanisms.  相似文献   

11.
Fifteen 4-phenyl-3,5-dibenzoyl-1,4-dihydropyridines (BzDHPs) (1-15) substituted at the 4-phenyl ring were synthesized and compared to their cytotoxic activity and multidrug resistance (MDR)-reversing activity in in vitro assay systems. Among them, 2-CF3 (5) (IC50=8.7 microM), 2-Cl (11) (IC50=7.0 microM) and 3-Cl (12) (IC50=7.0 microM) derivatives showed the highest cytotoxic activity against human oral squamous carcinoma (HSC-2) cells. The activity of P-glycoprotein (Pgp) response for MDR in tumor cells was reduced by some of derivatives (3, 4, 8, 12), verapamil (VP) and nifedipine (NP). These data suggest that 3,5-dibenzoyl-4-(3-chlorophenyl)-1,4-dihydro-2,6-dimethylpyridine (12) can be recommended as a new drug candidate for MDR cancer treatment.  相似文献   

12.
A proportion of Pgp-1+ cells in the thymus have been shown to have progenitor activity. In adult AKR/Cum mice the total Pgp-1+ population in the thymus differs from that of the bulk of thymocytes and is antigenically heterogeneous when examined by flow cytometry. Pgp-1+ thymocytes are enriched for several minor cell populations compared to total thymocytes: B2A2-, interleukin-2-receptor+ (IL-2R+), and Lyt-2-, L3T4-. However, these subsets are still a minor proportion of the Pgp-1+ cells, the majority being Lyt-2+ and/or L3T4+ and B2A2+. Pgp-1+ thymocytes also differ from the bulk of thymocytes in having lower amounts of Thy-1 and in showing a higher proportion of single positive (Lyt-2+, L3T4- or Lyt-2-, L3T4+) cells. Populations of adult thymocytes that are enriched in progenitor cells can be isolated by cytotoxic depletion using either anti-Thy-1 antibody (Thy-1 depletion) or anti-Lyt-2 and anti-L3T4 antibody (Lyt-2, L3T4 depletion). Pgp-1+ cells in progenitor cell-enriched populations are also phenotypically heterogeneous. Pgp-1+ cells in both populations may be IL-2R+ or IL-2R- and B2A2+ or B2A2-. The population of Pgp-1+ cells in progenitor cell-enriched populations in the adult differs from that of the fetus at 14 days of gestation in that in the 14-day fetus, most Pgp-1+ cells are IL-2R+. By Day 15 of gestation, distinct populations of Pgp-1+, IL-2R-; Pgp-1+, IL-2R+; and Pgp-1-, IL-2R+ cells are observed. In the 15-day fetus, as in the adult, many Pgp-1+ thymocytes express low to moderate levels of Thy-1. The total percentage of Pgp-1+ cells in the thymus varies among different mouse strains, ranging from 4 to 35% in the thymus of young adult mice. Pgp 1.1 strains contain more detectably Pgp-1+ thymocytes than Pgp 1.2 strains; however, there is variability in the proportion of Pgp-1+ cells, even among Pgp 1.2 strains. In contrast to AKR/Cum mice, the Pgp-1+ thymocyte population in BALB/c mice, which contain a high proportion of Pgp-1+ thymocytes, closely resembles the total thymocyte population.  相似文献   

13.
P-glycoprotein/ABCB1 (Pgp) is a well known protein of cell defense system. It is localized in cell membrane and pumps different drugs out of various cells using ATP energy. Its overexpression is associated with the development of multidrug resistance (MDR) in cancer cells. The data showing that Pgp also has other functions appeared recently, and this review surveys these data. In particular, (1) Pgp can protect cells from apoptosis; it suppresses the expression of endogenous protein TRAIL and decreases the activity of caspases 8 and 3; (2) Pgp is able to act as an outwardly directed flippase; (3) Pgp participates in a proper development of the innate immune response to intracellular pathogens and in the development of inflammation; (4) functionally active Pgp can be transferred from drug-resistant to drug-sensitive cells by microvesicles (MV). This is a new way of the Pgp-mediated MDR emergence in populations of tumor cells. Thus, Pgp functions as a regulator of some cellular processes. Molecular mechanisms of the Pgp influence on tumor cell viability are related not only with the drug efflux but also with some other functions.  相似文献   

14.
A microplate screening method has been developed to evaluate the effects of test agents on the accumulation of the fluorescent P-glycoprotein (Pgp) substrates Hoechst 33342, rhodamine 123, and rhodamine 6G in multidrug-resistant (MDR) breast cancer cells that overexpress Pgp. All three substrates exhibit substantially higher accumulation in MCF7 non-MDR cells versus NCI/ADR-RES MDR cells, while incubation with 50 microM reserpine significantly reduces or eliminates these differences. Rhodamine 123 shows the lowest substrate accumulation efficiency in non-MDR cells relative to the substrate incubation level. The effects of several chemosensitizing agents and a series of paclitaxel analogs on the accumulation of each fluorescent substrate suggest that there are distinct differences in the substrate interaction profiles exhibited by these different agents. The described methods may be useful in Pgp-related research in the areas of cancer MDR, oral drug absorption, the blood-brain barrier, renal/hepatic transport processes, and drug-drug interactions.  相似文献   

15.
The human multidrug transporter P-glycoprotein (Pgp, ABCB1) contributes to the poor bioavailability of many anticancer and antimicrobial agents as well as to drug resistance at the cellular level. For rational design of effective Pgp inhibitors, a clear understanding of its mechanism of action and functional regulation is essential. In this study, we demonstrate that inhibition of Pgp-mediated drug transport by cis-(Z)-flupentixol, a thioxanthene derivative, occurs through an allosteric mechanism. Unlike competitive inhibitors, such as cyclosporin A and verapamil, cis-(Z)-flupentixol does not interfere with substrate ([(125)I]iodoarylazidoprazosin) recognition by Pgp, instead it prevents substrate translocation and dissociation, resulting in a stable but reversible Pgp-substrate complex. cis-(Z)-Flupentixol-induced complex formation requires involvement of the Pgp substrate site, because agents that either physically compete (cyclosporin A) for or indirectly occlude (vanadate) the substrate-binding site prevent formation of the complex. Allosteric modulation by cis-(Z)-flupentixol involves a conformational change in Pgp detectable by monoclonal antibody UIC2 binding to a conformation-sensitive external epitope of Pgp. The conformational change observed is distinct from that induced by Pgp substrates or competitive inhibitors. A single amino acid substitution (F983A) in TM12 of Pgp that impairs inhibition by cis-(Z)-flupentixol of Pgp-mediated drug transport also affects stabilization of the Pgp-substrate complex as well as the characteristic conformational change. Taken together, our results describe the molecular mechanism by which the Pgp modulator cis-(Z)-flupentixol allosterically inhibits drug transport.  相似文献   

16.
The drug concentration inside multidrug-resistant cells is the outcome of competition between the active export of drugs by drug efflux pumps, such as P-glycoprotein (Pgp), and the passive permeation of drugs across the plasma membrane. Thus, reversal of multidrug resistance (MDR) can occur either by inhibition of the efflux pumps or by acceleration of the drug permeation. Among the hundreds of established modulators of Pgp-mediated MDR, there are numerous surface-active agents potentially capable of accelerating drug transbilayer movement. The aim of the present study was to determine whether these agents modulate MDR by interfering with the active efflux of drugs or by allowing for accelerated passive permeation across the plasma membrane. Whereas Pluronic P85, Tween-20, Triton X-100 and Cremophor EL modulated MDR by inhibition of Pgp-mediated efflux, with no appreciable effect on transbilayer movement of drugs, the anesthetics chloroform, benzyl alcohol, diethyl ether and propofol modulated MDR by accelerating transbilayer movement of drugs, with no concomitant inhibition of Pgp-mediated efflux. At higher concentrations than those required for modulation, the anesthetics accelerated the passive permeation to such an extent that it was not possible to estimate Pgp activity. The capacity of the surface-active agents to accelerate passive drug transbilayer movement was not correlated with their fluidizing characteristics, measured as fluorescence anisotropy of 1-(4-trimethylammonium)-6-phenyl-1,3,5-hexatriene. This compound is located among the headgroups of the phospholipids and does not reflect the fluidity in the lipid core of the membranes where the limiting step of drug permeation, namely drug flip-flop, occurs.  相似文献   

17.
Novel furoxan-based nitric oxide (NO)-releasing DDB derivatives (7a-j) were synthesized. Compounds 7i and 7j significantly reversed the resistance of MCF-7/Adr cells to doxorubicin in the combination treatment, and markedly increased the intracellular accumulation of doxorubicin probably via inhibiting Pgp-mediated intracellular drug efflux as well as down-regulating doxorubicin-induced Pgp expression. It was demonstrated that NO released by 7i and 7j played an important role in increasing intracellular doxorubicin accumulation and chemo-sensitizing MCF-7/Adr cells to doxorubicin, and the synergic effects of DDB and NO-donor moieties in 7i and 7j may contribute to reversing Pgp-mediated MDR in MCF-7/Adr cells to doxorubicin.  相似文献   

18.
The drug transport function of human P-glycoprotein (Pgp, ABCB1) can be inhibited by a number of pharmacological agents collectively referred to as modulators or reversing agents. In this study, we demonstrate that certain thioxanthene-based Pgp modulators with an allosteric mode of action induce a distinct conformational change in the cytosolic domain of Pgp, which alters susceptibility to proteolytic digestion. Both cis and trans-isomers of the Pgp modulator flupentixol confer considerable protection of an 80 kDa Pgp fragment against trypsin digestion, that is recognized by a polyclonal antibody specific for the NH(2)-terminal half to Pgp. The protection by flupentixol is abolished in the Pgp F983A mutant that is impaired in modulation by flupentixols, indicating involvement of the allosteric site in generating the conformational change. A similar protection to an 80 kDa fragment is conferred by ATP, its nonhydrolyzable analog ATPgammaS, and by trapping of ADP-vanadate at the catalytic domain, but not by transport substrate vinblastine or by the competitive modulator cyclosporin A, suggesting different outcomes from modulator interaction at the allosteric site and at the substrate site. In summary, we demonstrate that allosteric interaction of flupentixols with Pgp generates conformational changes that mimic catalytic transition intermediates induced by nucleotide binding and hydrolysis, which may play a crucial role in allosteric inhibition of Pgp-mediated drug transport.  相似文献   

19.
Ruth A  Stein WD  Rose E  Roninson IB 《Biochemistry》2001,40(14):4332-4339
The MDR1 P-glycoprotein (Pgp), responsible for a clinically important form of multidrug resistance in cancer, is an ATPase efflux pump for multiple lipophilic drugs. The G185V mutation near transmembrane domain 3 of human Pgp increases its relative ability to transport several drugs, including etoposide, but decreases the transport of other substrates. MDR1 cDNA with the G185V substitution was used in a function-based selection to identify mutations that would further increase Pgp-mediated resistance to etoposide. This selection yielded the I186N substitution, adjacent to G185V. Pgps with G185V, I186N, or both mutations were compared to the wild-type Pgp for their ability to confer resistance to different drugs in NIH 3T3 cells. In contrast to the differential effects of G185V, I186N mutation increased resistance to all the tested drugs and augmented the effect of G185V on etoposide resistance. The effects of the mutations on conformational transitions of Pgp induced by different drugs were investigated using a conformation-sensitive antibody UIC2. Ligand-binding analysis of the drug-induced increase in UIC2 reactivity was used to determine the K(m) value that reflects the apparent affinity of drugs for Pgp, and the Hill number reflecting the apparent number of drug-binding sites. Both mutations altered the magnitude of drug-induced increases in UIC2 immunoreactivity, the K(m) values, and the Hill numbers for individual drugs. Mutation-induced changes in the magnitude of UIC2 reactivity shift did not correlate with the effects of the mutations on resistance to the corresponding drugs. In contrast, an increase or a decrease in drug resistance relative to that of the wild type was accompanied by a corresponding increase or decrease in the K(m) or in both the K(m) and the Hill number. These results suggest that mutations that alter the ability of Pgp to transport individual drugs change the apparent affinity and the apparent number of drug-binding sites in Pgp.  相似文献   

20.

Background

Multidrug resistance (MDR) is a major factor which contributes to the failure of cancer chemotherapy, and numerous efforts have been attempted to overcome MDR. To date, none of these attempts have yielded a tolerable and effective therapy to reverse MDR; thus, identification of new agents would be useful both clinically and scientifically.

Methodology/Principal Findings

To identify small molecule compounds that can reverse chemoresistance, we developed a 96-well plate high-throughput cell-based screening assay in a paclitaxel resistant ovarian cancer cell line. Coincubating cells with a sublethal concentration of paclitaxel in combination with each of 2,000 small molecule compounds from the National Cancer Institute Diversity Set Library, we identified a previously uncharacterized molecule, NSC23925, that inhibits Pgp1 and reverses MDR1 (Pgp1) but does not inhibit MRP or BCRP-mediated MDR. The cytotoxic activity of NSC23925 was further evaluated using a panel of cancer cell lines expressing Pgp1, MRP, and BCRP. We found that at a concentration of >10 µM NSC23925 moderately inhibits the proliferation of both sensitive and resistant cell lines with almost equal activity, but its inhibitory effect was not altered by co-incubation with the Pgp1 inhibitor, verapamil, suggesting that NSC23925 itself is not a substrate of Pgp1. Additionally, NSC23925 increases the intracellular accumulation of Pgp1 substrates: calcein AM, Rhodamine-123, paclitaxel, mitoxantrone, and doxorubicin. Interestingly, we further observed that, although NSC23925 directly inhibits the function of Pgp1 in a dose-dependent manner without altering the total expression level of Pgp1, NSC23925 actually stimulates ATPase activity of Pgp, a phenomenon seen in other Pgp inhibitors.

Conclusions/Significance

The ability of NSC23925 to restore sensitivity to the cytotoxic effects of chemotherapy or to prevent resistance could significantly benefit cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号