首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate the distribution of leukocytes and the morphological changes of the sow endometrium throughout the oestrous cycle. Fifteen crossbred multiparous sows (Swedish Landrace x Swedish Yorkshire), with an average parity number of 3.4 +/- 0.7 (mean +/- S.D.) were used. Blood samples were collected from the jugular vein 1h before slaughter for analyses of oestradiol-17beta and progesterone levels. Uterine samples from the mesometrial side of both horns, taken immediately after slaughter at late dioestrus, prooestrus, oestrus, early dioestrus and dioestrus, were fixed, embedded in plastic resin and stained with toluidine blue. The surface and glandular epithelium as well as subepithelial and glandular connective tissue layers were examined by light microscopy.The significantly highest surface and the glandular epithelium were observed at oestrus and dioestrus, respectively.The largest number of capillaries (underneath the surface epithelium) was found at oestrus. In the surface epithelium, the largest number of intraepithelial lymphocytes (IELs, round nucleus) was found at early dioestrus. The largest number of lymphocytes and macrophages within the glandular epithelium were found at early dioestrus and oestrus, respectively.In the subepithelial connective tissue layer, the most common type of leukocytes during all stages was the lymphocyte. The largest numbers of lymphocytes and neutrophils were found at oestrus while the largest number of eosinophils was found at dioestrus.The dominating cells of the immune system in the connective tissue of the glandular layer were lymphocytes and macrophages. The significantly largest numbers of lymphocytes and plasma cells were found at early dioestrus and dioestrus, respectively.The number of lymphocytes in the connective tissue of the glandular layer and the number of plasma cells in the subepithelial layer were positively correlated with the plasma level of progesterone (P < or = 0.05). The numbers of capillaries and neutrophils in the subepithelial layer underneath the surface epithelium as well as the number of macrophages in both surface and glandular epithelium were positively correlated with the plasma level of oestradiol-17beta (P < or = 0.05).In conclusion, the present study showed a variation in the infiltration and distribution of lymphocytes, neutrophils, eosinophils, macrophages, mast cells and plasma cells in the sow endometrium during different stages of the oestrous cycle. Also morphological parameters (e.g. height of surface and glandular epithelium, capillaries density and degree of oedema) varied throughout the oestrous cycle.  相似文献   

2.
The aim of this study was to investigate the distribution of CD2(+), CD4(+), CD8(+) lymphocyte subpopulations and MHC class II expressing cells in the sow endometrium throughout the oestrous cycle. Fifteen crossbred multiparous sows (Swedish Landrace x Swedish Yorkshire), with an average parity number of 3.4 +/- 0.7 (mean +/- S.D.) were used. Uterine samples from the mesometrial side of both horns, taken immediately after slaughter at late dioestrus (day 17, n = 3), prooestrus (day 19, n = 3), oestrus (day 1, n = 3), early dioestrus (day 4, n = 3) and dioestrus (days 11-12, n = 3), were stored in a freezer at -70 degrees C until analysed by immunohistochemistry with an avidin-biotin peroxidase method using monoclonal antibodies to lymphocyte subpopulations and MHC class II molecules. The surface and glandular epithelium as well as connective tissue layers in subepithelial and glandular areas were examined by light microscopy. For the T lymphocyte subpopulations, all oestrous cycle stages and different tissue layers taken together, the most commonly observed cell type was CD2(+) cells. The largest number of CD2(+) cells within the surface and glandular epithelium were observed at oestrus and early dioestrus. In the surface epithelium, a larger number of CD8(+) cells compared with CD4(+) cells were observed and no CD4(+) cells were found within the glandular epithelium at any stage of the oestrous cycle. In the subepithelial and glandular connective tissue layers, during the oestrus cycle stages, a larger number of CD4(+) cells compared with CD8(+) cells were found. Endothelial cells in the connective tissue generally expressed MHC class II. However, no obvious differences between oestrous cycle stages were observed. For other cells than endothelial cells, the result was as follows. In the surface epithelium, a large number of MHC class II expressing cells was observed at oestrus compared with the other stages. No MHC class II expressing cells were found at late dioestrus and dioestrus. MHC class II expressing cells were also found in the glandular epithelium, and in the subepithelial and glandular connective tissue layers during all oestrous cycle stages but with no significant differences between stages. In conclusion, the present study showed a variation in the distribution of T lymphocyte subpopulations (CD2(+), CD4(+) and CD8(+)) and MHC class II expressing cells in the sow endometrium during different stages of the oestrous cycle. Also a variation between different tissue layers was found. It is suggested that helper and cytotoxic function of the immune system have primary locations in different tissue layers of the endometrium.  相似文献   

3.
The aim of this study was to investigate the distribution of CD2+, CD4+, CD8+ lymphocyte subpopulations and MHC class II expressing cells in the sow endometrium throughout the oestrous cycle. Fifteen crossbred multiparous sows (Swedish Landrace x Swedish Yorkshire), with an average parity number of 3.4+/-0.7 (mean+/-S.D.) were used. Uterine samples from the mesometrial side of both horns, taken immediately after slaughter at late dioestrus (day 17, n=3), prooestrus (day 19, n=3), oestrus (day 1, n=3), early dioestrus (day 4, n=3) and dioestrus (days 11-12, n=3), were stored in a freezer at -70 degrees C until analysed by immunohistochemistry with an avidin-biotin peroxidase method using monoclonal antibodies to lymphocyte subpopulations and MHC class II molecules. The surface and glandular epithelium as well as connective tissue layers in subepithelial and glandular areas were examined by light microscopy.For the T lymphocyte subpopulations, all oestrous cycle stages and different tissue layers taken together, the most commonly observed cell type was CD2+ cells. The largest number of CD2+ cells within the surface and glandular epithelium were observed at oestrus and early dioestrus. In the surface epithelium, a larger number of CD8+ cells compared with CD4+ cells were observed and no CD4+ cells were found within the glandular epithelium at any stage of the oestrous cycle.In the subepithelial and glandular connective tissue layers, during the oestrus cycle stages, a larger number of CD4+ cells compared with CD8+ cells were found.Endothelial cells in the connective tissue generally expressed MHC class II. However, no obvious differences between oestrous cycle stages were observed. For other cells than endothelial cells, the result was as follows. In the surface epithelium, a large number of MHC class II expressing cells was observed at oestrus compared with the other stages. No MHC class II expressing cells were found at late dioestrus and dioestrus. MHC class II expressing cells were also found in the glandular epithelium, and in the subepithelial and glandular connective tissue layers during all oestrous cycle stages but with no significant differences between stages.In conclusion, the present study showed a variation in the distribution of T lymphocyte subpopulations (CD2+, CD4+ and CD8+) and MHC class II expressing cells in the sow endometrium during different stages of the oestrous cycle. Also a variation between different tissue layers was found. It is suggested that helper and cytotoxic function of the immune system have primary locations in different tissue layers of the endometrium.  相似文献   

4.
The aim of this study was to investigate the distribution of leukocytes in the sow endometrium following insemination and during early pregnancy. Cross-bred multiparous sows (Swedish Landrace x Swedish Yorkshire) were artificially inseminated (AI) once at 20-15 h before ovulation. Blood samples were collected from the jugular vein 1 h before slaughter for analyses of oestradiol-17beta and progesterone levels. The sows were slaughtered at 5-6 h (group I, n = 4) after AI or at different times after ovulation: 20-25 h (group II, n = 4), 70 h (group III, n = 4), day 11 (group IV, n = 3; first day of standing oestrus = day 1) and day 19 (group V, n = 3). Uterine horns were flushed to control for the presence of spermatozoa and neutrophils (groups I-IV) and/or for recovery of oocytes and/or embryos (groups II-IV, control of pregnancy). Mesometrial uterine samples were fixed, embedded in plastic resin and stained with toluidine blue. The surface and glandular epithelia as well as subepithelial and glandular connective tissue layers were examined by light microscopy. A marked number of neutrophils and spermatozoa were observed in the flushings from the uterine horns of sows slaughtered at 5-6 h after insemination. All animals slaughtered after ovulation were pregnant but no morphological effect of pregnancy was observed until day 11. In the surface epithelium, the largest numbers of intraepithelial lymphocytes were found in groups II and III, the smallest number was found in group V. The largest number of lymphocytes within the glandular epithelium was found in group III. The largest number of macrophages within the surface and glandular epithelia were found in group I. Neutrophils were found within the surface epithelium only in groups I and II. In the subepithelial connective tissue layer, a high infiltration of neutrophils was found in groups I and II while the largest number of eosinophils was found in group IV. The largest number of lymphocytes was observed in group V. In conclusion, this study showed a variation in the infiltration and distribution of neutrophils, lymphocytes, macrophages, eosinophils and plasma cells in the endometrium following insemination and during different stages of early pregnancy. Particularly, the pattern of lymphocyte presence on day 19 of pregnancy, indicate that the lymphocyte function may play a role during embryonic attachment in the pig.  相似文献   

5.
Immunoglobulins in the mouse uterus during the oestrous cycle   总被引:1,自引:0,他引:1  
The distribution of IgA, IgG and IgM was studied by an immunoperoxidase technique on sections of mouse uteri at each stage of the oestrous cycle. Staining for IgG and IgA was highest at pro-oestrus, declined at oestrus and was very low during the other stages. At pro-oestrus IgG was found throughout the stroma, in the uterine lumen, and in 10% of glandular lumina; very few IgG-containing plasma cells were present. At pro-oestrus, IgA was found in the uterine lumen, and in most of the uterine glands, both in the lumen and in the epithelium; little IgA was present in the stroma. IgA-plasma cells were detected at each stage of the cycle and were particularly numerous at pro-oestrus and oestrus. These results suggest that IgA is secreted locally from plasma cells into the uterine gland through the glandular epithelium, but that IgG enters the stroma from the local capillaries. The obvious increase in IgG and IgA secretion at pro-oestrus, when plasma oestradiol levels are highest, supports the hypothesis that, during the oestrous cycle, the humoral immune response is regulated in the uterus by ovarian hormones.  相似文献   

6.
Blood flow through the endometrium was visualized by using incident-light fluorescence microscopy and a video image recorded for later detailed analysis. The subepithelial microvascular density was calculated for each day of the oestrous cycle and at 7 days after ovariectomy. The results showed that the microvasculature was significantly more dense at dioestrus I, pro-oestrus, and after ovariectomy than at oestrus, with dioestrus II being in between. Mean capillary path lengths running from arteriole to venule were longest at pro-oestrus, followed by oestrus, dioestrus II, dioestrus I, and shortest after ovariectomy. The results suggest that endometrial growth and regression precede microvascular growth and regression. The technique of in-vivo microscopy provides an important new avenue for investigating the role of local factors in the control of the endometrial microcirculation.  相似文献   

7.
Thioredoxin expression within the reproductive tissues of the female mouse was analysed during the oestrous cycle stages of dioestrus, oestrus and metoestrus by Western blot analyses and immunocytochemistry. From Western blot analyses the expression of thioredoxin was found to be increased in oestrus compared to dioestrus and metoestrus. Localisation of thioredoxin within the reproductive organs of the mouse during the oestrous cycle has shown that the expression of thioredoxin is specific for distinct areas within the reproductive organs. These areas are the stratified squamous epithelium of the vagina, the simple columnar epithelium and the uterine glands of the uterus, the ciliated columnar epithelium of the oviduct, the corpus lutea, the interstitial cells and the secondary follicles of the ovary. The discrete cellular localisation and oestrous dependence of thioredoxin expression are suggestive of specific roles in various reproductive processes.  相似文献   

8.
Study of the esophageal microscopic morphology of adult Rana perezi by light and electron microscopy discloses some large folds throughout the esophagus that are in themselves ringed. Glandular ostia open in the furrows of the luminal surface. The esophageal wall is made up of a connective adventitia rich in melanocytes, a muscular tunica, a connective and glandular subepithelial layer, and a pseudostratified ciliated epithelium. This epithelium basically consists of ciliated, goblet, basal, microvillous-apex, and migratory cells. Two types of goblet cells are distinguished with regard to the granular ultrastructure. The microvillous-apex cell has not been found in other amphibians. It shows a very differentiated morphology with a high number of mitochondria. The basal cells give the epithelium a pseudostratified morphology, and they have a proliferative function. Glands are branched and drain through an excretory duct that has a monolayered mucosecreting epithelium. The glandular units are formed by two principal types of cells: mucosecretory and serous.  相似文献   

9.
Summary Constitutive endothelial nitric oxide synthase (NOS III) expression during the oestrous cycle was mapped immunocytochemically on 5 μm-thick paraffin sections of rat female reproductive organs. Ovarian NOS III immunoreactivity increased with follicular maturation (strongest in dioestrus corpora lutea), suggesting that nitric oxide may regulate folliculogenesis and luteal functions. Oviductal NOS III, localized in mucosal epithelium and muscular wall, was maximal during pro-oestrus and oestrus, suggesting that nitric oxide may impart periovulatory quiescence for reception, retention and fertilization of ovulated oocytes. Uterine NOS III, localized in endometrial and glandular epithelium, and in myometrial smooth muscle cells, was abundantly expressed during pro-oestrus and oestrus. The peri-implantation period in pregnant rats corresponds to the periovulatory period and the elevated NOS, and thus nitric oxide may provide uterine relaxation to facilitate embryo implantation following fertilization. Cervical NOS III, localized in the mucus-secreting epithelium and smooth muscle cells, exhibited enzyme abundance during pro-oestrus and oestrus, probably indicating cervical preparation to facilitate sperm entry following mating. Vaginal NOS III, found in the stratified squamous epithelial lining and in smooth muscle cells, was maximal during oestrus and pro-oestrus, suggesting that nitric oxide may stimulate vaginal secretions. Differential expression of NOS III by different reproductive organs during the oestrus cycle suggests a role for nitric oxide in modulating reproduction.  相似文献   

10.
The aim was to investigate the distribution of CD2(+), CD4(+) and CD8(+) lymphocyte subpopulations and MHC class II expressing cells in the sow endometrium following pre-ovulatory insemination and during early pregnancy. Crossbred multiparous sows (Swedish Landrace x Swedish Yorkshire) were inseminated once at 15-20 h before ovulation. The sows were slaughtered at 5-6h (group I, n=4) after AI or at 20-25 h (group II, n=4) and 70 h (group III, n=4) after ovulation, day 11 (group IV, day 1=first day of standing oestrus, n=3) and day 19 (group V, n=3). Uterine horns were flushed to control for the presence of spermatozoa and neutrophils (groups I-IV) and/or for recovery of oocytes and/or embryos (groups II-IV, control of pregnancy). Cryofixed mesometrial uterine samples were analysed by immunohistochemistry with an avidin-biotin-peroxidase method using monoclonal antibodies to lymphocyte subpopulations and MHC class II molecules. The surface (SE) and glandular (GE) epithelia as well as connective tissue layers in subepithelial (SL) and glandular (GL) areas were examined by light microscopy. Taking all groups and different tissue layers together, the most commonly observed positive cells were CD2(+) cells (P相似文献   

11.
The object of the study was to investigate the clinical and endocrine patterns of progesterone, oestradiol-17β and LH during the peripubertal period in female pigs. Crossbred gilts were penned in groups at an age of 10–12 weeks and boars were kept in adjacent pens during the entire experimental period. Daily oestrous checks started at 4.5 months of age and the gilts were slaughtered after their third heat. At the age of 4.5–5 months a permanent catheter was inserted in the cephalic vein and blood samples were collected from the gilts once daily until either the first or second oestrus. In three gilts hourly blood samples were taken during their first and second oestrus, beginning at early pro-oestrus.The gilts showed their first oestrus at the average age of 183 days. No corpora lutea from earlier ovulations were observed in gilts laparoscoped after their first detected oestrus. During the 30-day period before first oestrus the mean daily progesterone levels varied between 32 and 329 pmol/l. The average levels of oestradiol-17β varied between 15.6 and 30.8 pmol/l. There was no tendency for the oestradiol-17β level to rise before onset of first pro-oestrus. The average levels of LH varied between 0.15 and 0.94 μg/l. The statistical analyses revealed no significant relationship between the level of the hormones studied and onset of first oestrus. The mean progesterone levels during the first and second oestrous cycles were almost identical, however. Oestradiol-17β increased gradually during pro-oestrus, reaching maximum levels before onset of oestrus and thereafter decreasing sharply to values around 30 pmol/l. The oestradiol-17β levels were higher at the second than at the first pro-oestrous period. The concentrations of plasma LH rose sharply with declining plasma levels of oestradiol-17β. The duration of elevated plasma LH levels (> 1 μg/l) was, on average, 26 h and the LH levels were higher during the first oestrus than during the second oestrus. The first rise in progesterone was observed 11–29 h after the LH levels had decreased to concentrations below 1 μg/l.  相似文献   

12.
Six beef heifers were immunized over a 4-month period with an oestradiol-17beta-BSA conjugate in Freund's adjuvant. There was an interference with oestrus in the treated heifers; 2 ceased to exhibit oestrus, one exhibited one oestrus and three exhibited oestrus after Day 47 of treatment. The control heifers treated with Freund's adjuvant had normal oestrous cycles. The antiserum titre rose in all treated heifers and attained its highest level in the 2 animals in which oestrus did not recur. The temporal changes in plasma LH, progesterone and oestradiol were normal during the pretreatment period, but became abnormal during the 120 days after immunization. Although plasma oestradiol-17beta rose at the expected time of oestrus after treatment, it was apparently effectively neutralized by the antiserum induced by treatment as evidenced by the absence of an LH surge. Plasma progesterone levels fell to baseline and remained low, indicating lack of formation of corpora lutea.  相似文献   

13.
We have recently shown that the conditioned media from bovine oviductal epithelial cell culture suppress sperm phagocytosis by neutrophils, suggesting that the oviduct around oestrus supplies the anti‐inflammatory microenvironment. To investigate the immune response of neutrophils toward the sperm at ovulation in the buffalo oviduct, we examined (a) a detailed distribution of neutrophils in the oviduct in buffaloes, (b) the effect of ovulatory follicular fluid (FF) and oviductal fluid (OF) on sperm phagocytosis by neutrophils, and (c) the interaction of the ovulatory FF with OF on sperm phagocytosis by neutrophils in vitro. Buffalo oviducts were collected from healthy reproductive tracts at a local slaughterhouse. A detailed observation by histological examination and transmission electron microscopy revealed that neutrophils exist in the oviduct epithelium and lumen throughout the oestrous cycle in buffaloes. The number of neutrophils at the oestrus stage was higher in ampulla compared with those in isthmus, whereas they remained relatively constant at the dioestrus stage. Two hours of preincubation of neutrophils with FF enhanced sperm phagocytosis through the formation of neutrophil extracellular traps (NETs) together with H2O2 production, whereas OF around oestrus (eOF) suppressed sperm phagocytosis, NETs formation, and H2O2 production and relieved the above FF‐induced inflammatory response. Our findings show that neutrophils exist in the healthy cyclic oviduct across bovine species, and the OF supplies a strong anti‐inflammatory environment that could minimize the inflammatory effect of the FF that flows into the oviduct lumen after ovulation and supports the occurrence of fertilization.  相似文献   

14.
The study was designed to determine the distribution of prostaglandin H-synthase (PGS) also known as cyclooxygenase in specific uterine cell populations during the oestrous cycle. Endometrial biopsy samples were obtained from a total of 10 clinically healthy cows at days 1 (initiation of behavioural oestrus), 8, 15, and 19 of the oestrous cycle. All animals conceived after biopsy regimen. Data of semiquantitatively scored immunoreactivities were analysed using analyses of variance, t-tests for paired data and correlation analyses. Biotin-streptavidin-peroxidase immunostaining technique was employed to localise PGS. Specific staining was consistently present in endothelial cells of arteries but not capillaries and venules. A gradient of staining intensity was clearly apparent within the endometrium: surface epithelial cells and stromal cells located near the endometrial surface are consistently stained more intensely than glandular epithelial cells and stromal cells lying deeper in the endometrium. Days of oestrous cycle also influenced PGS immunoreactivities. Generally, higher immunoreactivities were recorded in surface epithelium, uterine glands and endometrial stromal cells at cycle days 1 and 19 as compared to cycle days 8 and 15. Minimal scoring values were mainly found at cycle day 8. The results of the present study suggest that the amount of bovine endometrial PGS varies considerably with the day of cycle in the above mentioned cell-type- and location-restricted manner. Therefore, the capacity of the bovine uterine mucosa for prostaglandin production may—amongst other factors—depend on the cycle-restricted availability of the respective enzyme systems.  相似文献   

15.
16.
Soluble proteins extracted from the endometria and oviducts of normal sexually mature cycling Swiss Webster mice were analysed by two-dimensional high-resolution sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Thirty endometrial and 25 oviductal proteins showed differential expression related to the oestrous cycle. In the endometrium, 19 proteins were maximally expressed in the oestrous phase, and significantly decreased or could not be detected in dioestrus. Eleven additional proteins were more prominent in dioestrus. Most of these endometrial cyclic proteins were acidic. In the oviduct, almost two-thirds of cycle-related, differentially expressed proteins were more strongly expressed in dioestrus and were significantly less prominent or could not be detected in the oestrous phase. In contrast to the endometrial proteins, most of the oviductal cyclic proteins were basic. Fourteen proteins appeared to be identical in both organs, and five of these showed the same cyclic pattern of expression. The remaining cyclic proteins were organ specific and showed uterus- or oviduct-specific changes during the oestrous cycle. Among the cyclic proteins, four endometrial and two oviductal proteins were restricted to oestrus, whereas two endometrial and seven oviductal proteins were restricted to dioestrus. These proteins could serve as markers for specific phases of the oestrous cycle. Our data show that the mouse oestrous cycle is associated with consistent and predictable changes in protein expression in both the endometrium and oviduct.  相似文献   

17.
Uterine fluid was collected from four-day cyclic rats at each stage of the oestrous cycle and assayed for progesterone and protein content. Progesterone was determined by radioimmunoassay either after ethanol (or 2.5% NaOH) denaturation of proteins from uterine flushings ('total' progesterone) or without protein denaturation ('ether-extractable' progesterone). The amount of 'ether-extractable' progesterone in the lumen was constant from metoestrus to pro-oestrus (340 pg per uterus) but lower in oestrus (200 pg per uterus). However, 'total' progesterone content of uterine fluid was subject to cyclic variations and was highest in dioestrus (890 pg per uterus) and lowest in oestrus (350 pg per uterus), in contrast to serum progesterone which is lowest in dioestrus and highest in oestrus. Protein content of uterine flushings peaked to 780 micrograms per uterus in pro-oestrus then fell to about 140 micrograms per uterus until the end of the oestrous cycle. Changes in protein content of the lumen were followed by qualitative variations since the mean amount of 'bound' progesterone ('total' progesterone minus 'ether-extractable' progesterone) released per milligram of denatured lumen protein rose from 1.8 pmol in pro-oestrus to 18.2 pmol in dioestrus. The changes of luminal 'bound' progesterone during the oestrous cycle suggest that progesterone binding to luminal proteins could be an important modulator of progesterone action in rat uterus. Moreover, the variations in progesterone content of the lumen, irrespective of serum progesterone concentrations, are consistent with the hypothesis that progesterone synthesis occurs in the uterus.  相似文献   

18.
Uterine electromyography was performed by means of chronically implanted surface electrodes in 3 Pony mares during spontaneous oestrous cycles and following luteolysis induced by a prostaglandin analogue (fluprostenol). Three distinct patterns were recognized during the oestrous cycle. (1) During oestrus well defined phases of activity with closely grouped high-amplitude spikes were separated by long periods (10-45 min) of complete inactivity. (2) During dioestrus more diffuse phases of activity with low-amplitude spikes were separated by variable periods of relative inactivity. (3) During luteolysis, short and frequently occurring phases of activity were propagated between the two electrodes on one uterine horn; a similar pattern also occurred between 1 and 3 h after injection of fluprostenol. Peripheral plasma progesterone, but not total inconjugated oestrogen, concentrations were closely related to characteristics of the myographic activity during the cycle. Insemination during oestrus and injection of fluprostenol during dioestrus caused a marked and prolonged increase in myometrial electrical activity. Almost any non-specific environmental stimulus, including entry by palpation of the genital tract per rectum and vaginoscopic examination, but these were of brief duration and the normal resting pattern of activity was quickly re-established after completion of the manipulations.  相似文献   

19.
Immunological importance of the second gut segment of carp.   总被引:3,自引:0,他引:3  
Lymphocytes, plasma cells, granulocytes (three to four types), macrophages and monocyte-like cells were ultrastructurally distinguished in the intestinal mucosa of carp. Neutrophilic granulocytes and lymphoid cells were present in and under the epithelium throughout the gut. In contrast to macrophages which dominated in the epithelium of the second segment, basophilic and eosinophilic granulocytes (and their intermediates) were mainly found in the connective tissue of the first segment. Applying monoclonal antibodies against serum immunoglobulin (Ig) in an immunogold technique, only a minority of lymphoid cells appeared to be Ig-immunoreactive at their external membrane, suggesting the presence of many more T than B cells in the intestinal mucosa. Except for cells which resembled immature plasma cells, plasma cells did not show, or hardly showed, Ig at their surface. In contrast with the head kidney, plasma cells with an Ig-immunoreactive cytoplasm were scarce in the intestinal mucosa. As mucosa plasma cells were regularly found with the electron microscope, they possibly contain another class of Ig. Macrophages and monocyte-like cells were also found to be Ig-immunoreactive, suggesting the presence of immune complexes at their external membrane. The immunological significance of B- and T-like lymphocytes next to immune complex-binding and antigen-presenting macrophages in the second gut segment is discussed.  相似文献   

20.
Immunocytochemistry was used to detect the presence of oestrogen and progesterone receptors in the cervices of prepubertal lambs, seasonally anoestrous ewes, cyclic ewes, and pregnant ewes of known gestational stages, to define the roles of gonadal steroids in cervical function. The presence of the immediate early gene product, c-Fos, a marker for cellular activation, was also investigated using immunocytochemistry and in situ hybridization. Oestrogen receptor immunoreactivity was restricted to the endometrium on days 0-3 of the oestrous cycle (day 0 = oestrus). In immature animals, very few scattered nuclei in the endometrium were immunoreactive. Oestrogen receptor immunoreactivity was not apparent in the endometrium during the remainder of the oestrous cycle or in this region in anoestrous animals. In pregnant ewes, oestrogen receptor immunostaining appeared as relatively few isolated nuclei in the connective tissue stroma. Progesterone receptor immunoreactivity was found in the endometrium at days 0-3 of the oestrous cycle and also in the luminal epithelium, the myometrium and the blood vessels. Progesterone receptor immunoreactivity was also found in these regions, with the exception of the endometrium, at all other stages examined. Immunostaining for c-Fos was present in the endometrium at days 0-3 of the oestrous cycle, and some scattered immunopositive nuclei were present in prepubertal animals. c-Fos immunoreactivity was also found in the myometrium and in blood vessels at all other stages examined. Visualization of c-fos gene expression by in situ hybridization showed that it occurred in the luminal epithelium and blood vessels at oestrus, but was restricted to the blood vessels in all other samples examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号