首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 333 毫秒
1.
Spectrin is a major component of a membrane-associated cytoskeleton involved in the maintenance of membrane structural integrity and the generation of functionally distinct membrane protein domains. Here, we show that a homolog of erythrocyte beta-spectrin (beta I sigma*) co- localizes with markers of the Golgi complex in a variety of cell types, and that microinjected beta-spectrin codistributes with elements of the Golgi complex. Significantly, we show a dynamic relationship between beta-spectrin and the structural and functional organization of the Golgi complex. Disruption of both Golgi structure and function, either in mitotic cells or following addition of brefeldin A, is accompanied by loss of beta-spectrin from Golgi membranes and dispersal in the cytoplasm. In contrast, perturbation of Golgi structure without a loss of function, by the addition of nocodazole, results in retention of beta-spectrin with the dispersed Golgi elements. These results indicate that the association of beta-spectrin with Golgi membranes is coupled to Golgi organization and function.  相似文献   

2.
《The Journal of cell biology》1993,120(6):1321-1335
In the present study we have dissected the transport pathways between the ER and the Golgi complex using a recently introduced (Kuismanen, E., J. Jantti, V. Makiranta, and M. Sariola. 1992. J. Cell Sci. 102:505- 513) inhibition of transport by caffeine at 20 degrees C. Recovery of the Golgi complex from brefeldin A (BFA) treatment was inhibited by caffeine at reduced temperature (20 degrees C) suggesting that caffeine inhibits the membrane traffic between the ER and the Golgi complex. Caffeine at 20 degrees C did not inhibit the BFA-induced retrograde movement of the Golgi membranes. Further, incubation of the cells in 10 mM caffeine at 20 degrees C had profound effects on the distribution and the organization of the pre-Golgi and the Golgi stack membranes. Caffeine treatment at 20 degrees C resulted in a selective and reversible translocation of the pre- and cis-Golgi marker protein (p58) to the periphery of the cell. This caffeine-induced effect on the Golgi complex was different from that induced by BFA, since mannosidase II, a Golgi stack marker, remained perinuclearly located and the Golgi stack coat protein, beta-COP, was not detached from Golgi membranes in the presence of 10 mM caffeine at 20 degrees C. Electron microscopic analysis showed that, in the presence of caffeine at 20 degrees C, the morphology of the Golgi stack was altered and accumulation of numerous small vesicles in the Golgi region was observed. The results in the present study suggest that caffeine at reduced temperature (20 degrees C) reveals a functional interface between the pre-Golgi and the Golgi stack.  相似文献   

3.
Cyclic AMP (cAMP)-dependent protein kinase A (PKA) is part of the set of signaling proteins that are stably associated to the cytosolic surface of Golgi membranes in mammalian cells. In principle, Golgi-associated PKA could participate in either signal transduction events and/or the coordination of Golgi transport activities. Here, we show data indicating that although Golgi-associated PKA is activated fast and efficiently during cell stimulation by an extracellular ligand it does not contribute significantly to cAMP signal transmission to the nucleus. Instead, most of the PKA catalytic subunits C α derived from the Golgi complex remain localized in the perinuclear cytoplasm where they induce changes in Golgi structural organization. Thus, in stimulated cells the Golgi complex appears collapsed, showing increased colocalization of previously segregated markers and exhibiting merging of different proximal cisternae within a single stack. In contrast, the trans -Golgi network remains as a separate compartment. Consequently, the rate of protein transport is increased whereas glycan processing is not severely affected. This remodeling process requires the presence of PKA activity associated to the Golgi membranes. Together these data indicate that Golgi-associated PKA activity is involved in the adaptation of Golgi dynamic organization to extracellular signaling events.  相似文献   

4.
The Golgi complex in mammalian cells is composed of polarized stacks of flattened cisternal membranes. Stacks are connected by tubules forming a reticular network of membranes closely associated with the microtubule-organizing center. While the Golgi structure is important for the efficient processing of secretory cargo, the organization of the mammalian Golgi complex may indicate potential functions in addition to the processing and sorting of cargo. Similar to the endoplasmic reticulum stress response pathway, the Golgi complex may initiate signaling pathways to alleviate stress, and if irreparable, trigger apoptosis. Here, we review recent experimental evidence suggesting that the elaborate structure of the Golgi complex in mammalian cells may have evolved to sense and transduce stress signals.  相似文献   

5.
How organelle identity is established and maintained, and how organelles divide and partition between daughter cells, are central questions of organelle biology. For the membrane-bound organelles of the secretory and endocytic pathways [including the endoplasmic reticulum (ER), Golgi complex, lysosomes, and endosomes], answering these questions has proved difficult because these organelles undergo continuous exchange of material. As a result, many "resident" proteins are not localized to a single site, organelle boundaries overlap, and when interorganellar membrane flow is interrupted, organelle structure is altered. The existence and identity of these organelles, therefore, appears to be a product of the dynamic processes of membrane trafficking and sorting. This is particularly true for the Golgi complex, which resides and functions at the crossroads of the secretory pathway. The Golgi receives newly synthesized proteins from the ER, covalently modifies them, and then distributes them to various final destinations within the cell. In addition, the Golgi recycles selected components back to the ER. These activities result from the Golgi's distinctive membranes, which are organized as polarized stacks (cis to trans) of flattened cisternae surrounded by tubules and vesicles. Golgi membranes are highly dynamic despite their characteristic organization and morphology, undergoing rapid disassembly and reassembly during mitosis and in response to perturbations in membrane trafficking pathways. How Golgi membranes fragment and disperse under these conditions is only beginning to be clarified, but is central to understanding the mechanism(s) underlying Golgi identity and biogenesis. Recent work, discussed in this review, suggests that membrane recycling pathways operating between the Golgi and ER play an indispensable role in Golgi maintenance and biogenesis, with the Golgi dispersing and reforming through the intermediary of the ER both in mitosis and in interphase when membrane cycling pathways are disrupted.  相似文献   

6.
Membrane motility is a fundamental characteristic of all eukaryotic cells. One of the best-known examples is that of the mammalian Golgi apparatus, where constant inward movement of Golgi membranes results in its characteristic position near the centrosome. While it is clear that the minus-end-directed motor dynein is required for this process, the mechanism and regulation of dynein recruitment to Golgi membranes remains unknown. Here, we show that the Golgi protein golgin160 recruits dynein to Golgi membranes. This recruitment confers centripetal motility to membranes and is regulated by the GTPase Arf1. Further, during cell division, motor association with membranes is regulated by the dissociation of the receptor-motor complex from membranes. These results identify a cell-cycle-regulated membrane receptor for a molecular motor and?suggest a mechanistic basis for achieving the dramatic changes in organelle positioning seen during cell division.  相似文献   

7.
The mammalian Golgi apparatus is organized in the form of a ribbon‐like structure positioned near the centrosome. Despite its multimodular organization, the Golgi complex is characterized by a prominent structural plasticity, which is crucial during essential physiological processes, such as the G2 phase of the cell cycle, during which the Golgi ribbon must be “unlinked” into isolated stacks to allow progression into mitosis. Here we show that the Golgi‐associated protein GRASP65, which is well known for its role in Golgi stacking and ribbon formation, is also required for the organization of the microtubule cytoskeleton. GRASP65 is not involved in microtubule nucleation or anchoring. Instead, it is required for the stabilization of newly nucleated microtubules, leading to their acetylation and clustering of Golgi stacks. Ribbon formation and microtubule stabilization are both regulated by JNK/ERK‐mediated phosphorylation of S274 of GRASP65, suggesting that this protein can coordinate the Golgi structure with microtubule organization. In agreement with an important role, tubulin acetylation is strongly reduced during the G2 phase of the cell cycle, allowing the separation of the Golgi stacks. Thus, our data reveal a fundamental role of GRASP65 in the integration of different stimuli to modulate Golgi structure and microtubule organization during cell division.  相似文献   

8.
Stable subsets of microtubules (MTs) are often enriched in detyrosinated alpha-tubulin. Recently it has been found that the Golgi apparatus is associated with a subset of relatively stable MTs and that detyrosinated MTs colocalize spatially and temporally with the Golgi apparatus in several cell lines. To determine whether the Golgi apparatus actively stabilizes associated MTs and thus allows their time-dependent detyrosination, we have used the drug brefeldin A (BFA) to disrupt the Golgi apparatus and have monitored changes in the Golgi apparatus and MT populations using simultaneous immunofluorescence and fluorescent lectin microscopy. We found that although BFA caused the Golgi apparatus to completely redistribute to the endoplasmic reticulum (ER), the detyrosinated MTs were not disrupted and remained in a juxtanuclear region. By Western blot analysis we found that even after 6 h of continuous exposure of cells to BFA, there was no detectable reduction in the level of detyrosinated alpha-tubulin. Simultaneous treatment with nocodazole and BFA led to a complete disruption of all MTs and normal Golgi structure/organization. Upon removal of nocodazole in the continued presence of BFA, we found that the detyrosinated MTs reformed in a compact juxtanuclear location in the absence of an intact Golgi complex. Finally, we found that the detyrosinated MTs colocalized precisely with a BFA-resistant structure that binds to the lectin, wheat germ agglutinin. We conclude that the juxtanuclear detyrosinated MTs are not actively stabilized by association with BFA-sensitive Golgi membranes. However, another closely associated structure which binds wheat germ agglutinin may serve to stabilize the juxtanuclear MTs. Alternatively, the MT organizing center (MTOC) and/or MT-associated proteins (MAPs) may organize and stabilize the juxtanuclear detyrosinated MTs.  相似文献   

9.
The Golgi apparatus lies at the heart of the secretory pathway where it receives, modifies and sorts protein cargo to the proper intracellular or extracellular location. Although this secretory function is highly conserved throughout the eukaryotic kingdom, the structure of the Golgi complex is arranged very differently among species. In particular, Golgi membranes in vertebrate cells are integrated into a single compact entity termed the Golgi ribbon that is normally localized in the perinuclear area and in close vicinity to the centrosomes. This organization poses a challenge for cell division when the single Golgi ribbon needs to be partitioned into the two daughter cells. To ensure faithful inheritance in the progeny, the Golgi ribbon is divided in three consecutive steps in mitosis, namely disassembly, partitioning and reassembly. However, the structure of the Golgi ribbon is only present in higher animals and Golgi disassembly during mitosis is not ubiquitous in all organisms. Therefore, there must be unique reasons to build up the Golgi in this particular conformation and to preserve it over generations. In this review, we first highlight the diversity of the Golgi architecture in different organisms and revisit the concept of the Golgi ribbon. Following on, we discuss why the ribbon is needed and how it forms in vertebrate cells. Lastly, we conclude with likely purposes of mitotic ribbon disassembly and further propose mechanisms by which it regulates mitosis.  相似文献   

10.
Actin dynamics and membrane trafficking influence cell commitment to programmed cell death through largely undefined mechanisms. To investigate how actin and recycling endosome (RE) trafficking can engage death signaling, we studied the death program induced by the adenovirus early region 4 open reading frame 4 (E4orf4) protein as a model. We found that in the early stages of E4orf4 expression, Src-family kinases (SFKs), Cdc42, and actin perturbed the organization of the endocytic recycling compartment and promoted the transport of REs to the Golgi apparatus, while inhibiting recycling of protein cargos to the plasma membrane. The resulting changes in Golgi membrane dynamics that relied on actin-regulated Rab11a membrane trafficking triggered scattering of Golgi membranes and contributed to the progression of cell death. A similar mobilization of RE traffic mediated by SFKs, Cdc42 and Rab11a also contributed to Golgi fragmentation and to cell death progression in response to staurosporine, in a caspase-independent manner. Collectively, these novel findings suggest that diversion of RE trafficking to the Golgi complex through a pathway involving SFKs, Cdc42, and Rab11a plays a general role in death signaling by mediating regulated changes in Golgi dynamics.  相似文献   

11.
Linstedt AD 《Cell》2004,118(3):271-272
Ríos et al. (2004) report in this issue that the Golgi protein GMAP-210 is sufficient to confer pericentrosomal positioning and recruits gamma-tubulin and associated microtubule-nucleating ring complex proteins to Golgi membranes. The results raise the possibility that short microtubules emanate from the Golgi to mediate its organization and positioning.  相似文献   

12.
Sphingolipids are abundant constituents of neuronal membranes that have been implicated in intracellular signaling, neurite outgrowth and differentiation. Differential localization and trafficking of lipids to membrane domains contribute to the specialized functions. In non-neuronal cultured cell lines, plasma membrane short-chain sphingomyelin and glucosylceramide are recycled via endosomes or sorted to degradative compartments. However, depending on cell type and lipid membrane composition, short-chain glucosylceramide can also be diverted to the Golgi complex. Here, we show that NBD-labeled glucosylceramide and sphingomyelin are transported from the plasma membrane to the Golgi complex in cultured rat hippocampal neurons irrespective of the stage of neuronal differentiation. Golgi complex localization was confirmed by colocalization and Golgi disruption studies, and importantly did not result from conversion of NBD-glucosylceramide or NBD-sphingomyelin to NBD-ceramide. Double-labeling experiments with transferrin or wheat-germ agglutinin showed that NBD-sphingolipids are first internalized to early/recycling endosomes, and subsequently transported to the Golgi complex. The internalization of these two sphingolipid analogs was energy and temperature dependent, and their intracellular transport was insensitive to the NBD fluorescence quencher sodium dithionite. These results indicate that vesicles mediate the transport of internalized NBD-glucosylceramide and NBD-sphingomyelin to the Golgi complex.  相似文献   

13.
The structure and synthesis of the saccharide chains of Golgimembrane glycoproteins in suspension-cultured rice (Oryza sativaL.) cells were studied. Peanut lectin (PNA) and Ulex europaeuslectin-I (UEA-I) have high affinity for typical O-linked saccharidechains and both recognized the saccharide chains of rice Golgimembrane glycoproteins. These glycoproteins were also sensitiveto alkali and to O-glycanase. These results indicate that theGolgi membrane glycoproteins have O-linked saccharide chains.Brefeldin A, a specific inhibitor of Golgi-mediated secretion,induced morphological changes in Golgi complexes and preventedthe synthesis of the saccharide chains of the membrane glycoproteinsthat could be recognized by PNA and UEA-I. These glycoproteinswere typically localized in all compartments of the Golgi complex.Monensin can arrest the transport of secretory proteins frommedial to trans Golgi compartments but did not affect the formationand localization of the Golgi membrane glycoproteins. Tunicamycin,an inhibitor of the synthesis of N-linked saccharide chains,did not inhibit the synthesis of the saccharide chains of theseGolgi membrane glycoproteins. These results strongly suggestthat the synthesis of O-linked saccharide chains of Golgi membraneglycoproteins is initiated in the cis Golgi compartment. (Received September 24, 1992; Accepted June 4, 1993)  相似文献   

14.
The role of GRASP55 in Golgi fragmentation and entry of cells into mitosis   总被引:1,自引:0,他引:1  
GRASP55 is a Golgi-associated protein, but its function at the Golgi remains unclear. Addition of full-length GRASP55, GRASP55-specific peptides, or an anti-GRASP55 antibody inhibited Golgi fragmentation by mitotic extracts in vitro, and entry of cells into mitosis. Phospho-peptide mapping of full-length GRASP55 revealed that threonine 225 and 249 were mitotically phosphorylated. Wild-type peptides containing T225 and T249 inhibited Golgi fragmentation and entry of cells into mitosis. Mutant peptides containing T225E and T249E, in contrast, did not affect Golgi fragmentation and entry into mitosis. These findings reveal a role of GRASP55 in events leading to Golgi fragmentation and the subsequent entry of cell into mitosis. Surprisingly, however, under our experimental conditions, >85% knockdown of GRASP55 did not affect the overall organization of Golgi organization in terms of cisternal stacking and lateral connections between stacks. Based on our findings we suggest that phosphorylation of GRASP55 at T225/T249 releases a bound component, which is phosphorylated and necessary for Golgi fragmentation. Thus, GRASP55 has no role in the organization of Golgi membranes per se, but it controls their fragmentation by regulating the release of a partner, which requires a G2-specific phosphorylation at T225/T249.  相似文献   

15.
The protein Mon2 is distantly related to the guanine nucleotide exchange factors (GEFs) that activate Arf1 on Golgi membranes. However, unlike these "large" Arf GEFs, Mon2 lacks the Sec7 domain that catalyzes nucleotide exchange on Arf1. Here we report that yeast Mon2 shares extensive homology with the noncatalytic parts of both the BIG and Golgi brefeldin A resistance factor subfamilies of Arf GEFs and is located to the trans-Golgi. Moreover, we find that Mon2 forms a complex with Dop1, a large cytoplasmic protein conserved in evolution from humans to protozoa. Deletion of Mon2 results in mislocalization of Dop1 from the Golgi and defects in cycling between endosomes and the Golgi. However, unlike Mon2, Dop1 is essential for yeast viability. A conditional allele of Dop1 shows that loss of Dop1 activity not only affects endosome to Golgi transport but also causes a severe perturbation of the organization of the endoplasmic reticulum. Thus, it appears that Dop1 plays a widespread role in membrane organization, and Mon2 acts as a scaffold to recruit the Golgi-localized pool of Dop1.  相似文献   

16.
We noted previously that certain aminoglycoside antibiotics inhibit the binding of coatomer to Golgi membranes in vitro. The inhibition is mediated in part by two primary amino groups present at the 1 and 3 positions of the 2-deoxystreptamine moiety of the antibiotics. These two amines appear to mimic the epsilon-amino groups present in the two lysine residues of the KKXX motif that is known to bind coatomer. Here we report the effects of 1, 3-cyclohexanebis(methylamine) (CBM) on secretion in vivo, a compound chosen for study because it contains primary amino groups that resemble those in 2-deoxystreptamine and it should penetrate lipid bilayers more readily than antibiotics. CBM inhibited coatomer binding to Golgi membranes in vitro and in vivo and inhibited secretion by intact cells. Despite depressed binding of coatomer in vivo, the Golgi complex retained its characteristic perinuclear location in the presence of CBM and did not fuse with the endoplasmic reticulum (ER). Transport from the ER to the Golgi was also not blocked by CBM. These data suggest that a full complement of coat protein I (COPI) on membranes is not critical for maintenance of Golgi integrity or for traffic from the ER to the Golgi but is necessary for transport through the Golgi to the plasma membrane.  相似文献   

17.
The tyrosine kinase Src is present on the Golgi membranes. Its role, however, in the overall function and organization of the Golgi apparatus is unclear. We have found that in a cell line called SYF, which lacks the three ubiquitous Src-like kinases (Src, Yes, and Fyn), the organization of the Golgi apparatus is perturbed. The Golgi apparatus is composed of collapsed stacks and bloated cisternae in these cells. Expression of an activated form of Src relocated the KDEL receptor (KDEL-R) from the Golgi apparatus to the endoplasmic reticulum. Other Golgi-specific marker proteins were not affected under these conditions. Because of the specific effect of Src on the location of KDEL-R, we tested whether protein transport between ER and the Golgi apparatus involves Src. Transport of Pseudomonas exotoxin, which is transported to the ER by binding to the KDEL-R is accelerated by inhibition or genetic ablation of Src. Protein transport from ER to the Golgi apparatus however, is unaffected by Src deletion or inhibition. We propose that Src has an appreciable role in the organization of the Golgi apparatus, which may be linked to its involvement in protein transport from the Golgi apparatus to the endoplasmic reticulum.  相似文献   

18.
Background information. Acid‐secreting gastric parietal cells are polarized epithelial cells that harbour highly abundant and specialized, H+, K+ ATPase‐containing, tubulovesicular membranes in the apical cytoplasm. The Golgi apparatus has been implicated in the biogenesis of the tubulovesicular membranes; however, an unanswered question is how a typical Golgi organization could regulate normal membrane transport within the membrane‐dense cytoplasm of parietal cells. Results. Here, we demonstrate that the Golgi apparatus of parietal cells is not the typical juxta‐nuclear ribbon of stacks, but rather individual Golgi units are scattered throughout the cytoplasm. The Golgi membrane structures labelled with markers of both cis‐ and trans‐Golgi membrane, indicating the presence of intact Golgi stacks. The parietal cell Golgi stacks were closely aligned with the microtubule network and were shown to participate in both anterograde and retrograde transport pathways. Dispersed Golgi stacks were also observed in parietal cells from H+, K+ ATPase‐deficient mice that lack tubulovesicular membranes. Conclusions. These results indicate that the unusual organization of individual Golgi stacks dispersed throughout the cytoplasm of these terminally differentiated cells is likely to be a developmentally regulated event.  相似文献   

19.
This report provides information on the morphology of rat intestinal epithelial cells during fat absorption. In addition, the role of protein metabolism in this process has been evaluated by blocking its synthesis with puromycin and studying the fine structure of mucosal cells from rats at various times after fat intubation. The results indicate that SER-derived vesicles, containing fat droplets, migrate from the apical cytoplasm of the absorptive cell and fuse with saccules or vacuoles of the Golgi complex. Arguments are made that the Golgi complex is important in completing chylomicron formation and in providing appropriate enveloping membranes for the chylomicron. Such membranes may be necessary for Golgi vacuoles to fuse with the lateral cell membranes and release chylomicra. Puromycin treatment causes the absorptive cell to accumulate increased quantities of lipid that are devoid of membrane during fat absorption. In addition, puromycin-treated cells contain much less RER and Golgi membranes are strikingly decreased in number. In this paper we discuss the consequences of these abnormalities and suggest that continued protein synthesis by the RER is required in order to generate Golgi membranes. If such membranes are absent the cell's ability to discarge chylomicra is impaired and lipid accumulates.  相似文献   

20.
The Golgi assembly pattern varies among cell types. In fibroblast cells, the Golgi apparatus concentrates around the centrosome that radiates microtubules; whereas in epithelial cells, whose microtubules are mainly noncentrosomal, the Golgi apparatus accumulates around the nucleus independently of centrosome. Little is known about the mechanisms behind such cell type-specific Golgi and microtubule organization. Here, we show that the microtubule minus-end binding protein Nezha/CAMSAP3 (calmodulin-regulated spectrin-associated protein 3) plays a role in translocation of Golgi vesicles in epithelial cells. This function of CAMSAP3 is supported by CG-NAP (centrosome and Golgi localized PKN-associated protein) through their binding. Depletion of either one of these proteins similarly induces fragmentation of Golgi membranes. Furthermore, we find that stathmin-dependent microtubule dynamics is graded along the radial axis of cells with highest activity at the perinuclear region, and inhibition of this gradient disrupts perinuclear distribution of the Golgi apparatus. We propose that the assembly of the Golgi apparatus in epithelial cells is induced by a multi-step process, which includes CAMSAP3-dependent Golgi vesicle clustering and graded microtubule dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号