共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mucus hypersecretion is a prominent manifestation in patients with chronic inflammatory airway diseases and contributes to their morbidity and mortality by plugging airways and causing recurrent infections. Human neutrophil elastase (HNE) exists in high concentrations (1-20 microM) in airway secretions of these patients and induces overproduction of MUC5AC mucin, a major component of airway mucus. Previous studies showed that HNE induces MUC5AC mucin production involving reactive oxygen species (ROS) generation and TGF-alpha-dependent epidermal growth factor receptor (EGFR) activation in human airway epithelial cells. However, the molecular mechanisms involved in these responses are not defined. TNF-alpha-converting enzyme (TACE) cleaves pro-TGF-alpha into soluble TGF-alpha and can be activated by ROS. We hypothesize that HNE activates TACE via ROS generation, resulting in cleavage of pro-TGF-alpha, EGFR activation, and MUC5AC mucin expression in airway epithelial cells. Here we show that in human airway epithelial cells HNE increases TGF-alpha release, EGFR phosphorylation, and MUC5AC mucin expression, effects that were attenuated by TACE inhibitor TAPI-1 and by specific knockdown of TACE expression with small interfering RNA, implicating TACE in HNE-induced responses. These responses to HNE were also reduced by pretreatment with ROS scavengers, implicating ROS. Furthermore, we show that HNE causes protein kinase C (PKC) activation and translocation from cytosol to plasma membrane; blockade of this effect by PKC inhibitors reduced HNE-induced ROS generation and other responses, implicating PKC. We conclude that HNE induces MUC5AC mucin expression via a cascade involving PKC-ROS-TACE in human airway epithelial cells. 相似文献
3.
Mucous hypersecretion is an important feature of obstructive airway diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis. Multiple stimuli induce mucin production via activation of an epidermal growth factor receptor (EGFR) cascade, but the mechanisms that exaggerate mucin production in obstructive airway diseases remain unknown. In this study, we show that binding of CCL20, a G protein-coupled receptor (GPCR) ligand that is upregulated in the airways of subjects with obstructive airway diseases, to its unique GPCR CCR6 induces MUC5AC mucin production in human airway epithelial (NCI-H292) cells via metalloprotease TNF-α-converting enzyme (TACE)-dependent EGFR activation. We also show that EGFR activation by its potent ligand TGF-α induces reactivation of EGFR via binding of endogenously produced CCL20 to its receptor CCR6 in NCI-H292 cells but not in normal human bronchial epithelial (NHBE) cells, exaggerating mucin production in the NCI-H292 cells. In NCI-H292 cells, TGF-α stimulation induced two phases of EGFR phosphorylation (EGFR-P). The second EGFR-P was TACE-dependent and was responsible for most of the total mucin induced by TGF-α. Binding of endogenously produced CCL20 to CCR6 increased the second EGFR-P and subsequent mucin production induced by TGF-α. In NHBE cells, TGF-α-induced EGFR activation did not lead to significant CCL20 production or to EGFR rephosphorylation, and less mucin was produced. We conclude that NCI-H292 cells but not NHBE cells produce CCL20 in response to EGFR activation, which leads to a second phase of EGFR-P and subsequent exaggerated mucin production. These findings have potentially important therapeutic implications in obstructive airway diseases. 相似文献
4.
Mucin 5AC (MUC5AC) hypersecretion induces airway narrowing in patients with asthma, which leads to breathing problems. We investigated the regulation of MUC5AC secretion by extracellular matrix (ECM) proteins in human primary airway epithelial cells from patients with asthma. The addition of type IV collagen to three-dimensional cultured human primary airway epithelial cells, which mimics the airway surface, reduced MUC5AC secretion in the medium, while the addition of laminin increased MUC5AC secretion. Furthermore, the addition of fibronectin did not affect MUC5AC secretion. In particular, the repeated addition of a low concentration of type IV collagen demonstrated a cumulative effect on the reduction in MUC5AC secretion. Human primary cells incubated with type IV collagen showed downregulated extracellular signal-regulated kinase (ERK) activity, which induced MUC5AC hypersecretion but did not affect Akt activity. These results suggest that the addition of type IV collagen to the apical surface of primary cells downregulates MUC5AC secretion and has a cumulative effect on MUC5AC secretion which might be effected via the ERK signaling pathway. 相似文献
5.
Chunyi Liu Qi Li Xiangdong Zhou Victor P. Kolosov Juliy M. Perelman 《Experimental cell research》2013
Mucus overproduction is an important feature in patients with chronic inflammatory airway diseases. However, the regulatory mechanisms that mediate excessive mucin production remain elusive. Recently, the level of YKL-40, a chitinase-like protein, has been found to be significantly increased in chronic inflammatory airway diseases and has been shown to be associated with the severity of these diseases. In this study, we sought to explore the effect of YKL-40 on mucin5AC (MUC5AC) production in chronic inflammatory airway diseases and the potential signaling pathways involved in this process. We found that elevated YKL-40 levels increased the mRNA and protein expression of MUC5AC in a dose- and time-dependent manner, in association with the phosphorylation of extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB), reflecting their activation. These responses were significantly suppressed by the knockdown of protease-activating receptor 2 (PAR2) with specific small interfering RNA or the inhibitors of ERK and NF-κB. YKL-40-induced MUC5AC overproduction was also effectively attenuated by the inhibitor of focal adhesion kinase (FAK). Taken together, these results imply that YKL-40 can stimulate excessive MUC5AC production through PAR2- and FAK-mediated mechanisms. 相似文献
6.
Shao MX Nakanaga T Nadel JA 《American journal of physiology. Lung cellular and molecular physiology》2004,287(2):L420-L427
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death in the U.S. Because cigarette smoking is so importantly implicated in the pathogenesis of COPD and because mucus hypersecretion plays such an important role in COPD, understanding of the mechanisms of smoking-induced mucus hypersecretion could lead to new therapies for COPD. Cigarette smoke causes mucin overproduction via EGF receptor (EGFR) in airway epithelial cells, but the cellular mechanism remains unknown. Airway epithelial cells contain EGFR proligands on their surfaces, which can be cleaved by metalloprotease and subsequently bind to EGFR resulting in mucin production. We hypothesize that TNF-alpha-converting enzyme (TACE) is activated by cigarette smoke, resulting in increased shedding of EGFR proligand, leading to EGFR phosphorylation and mucin induction in human airway epithelial (NCI-H292) cells. Here we show that cigarette smoke increases MUC5AC production in NCI-H292 cells, an effect that is prevented by an EGFR-neutralizing antibody and by specific knockdown of transforming growth factor-alpha (TGF-alpha) using small interfering RNA (siRNA) for TGF-alpha, implicating TGF-alpha-dependent EGFR activation in the responses. Cigarette smoke increases TGF-alpha shedding, EGFR phosphorylation, and mucin production, which are prevented by metalloprotease inhibitors (GM-6001 and TNF-alpha protease inhibitor-1) and by specific knockdown of TACE with TACE siRNA, implicating TACE in smoking-induced responses. Furthermore, pretreatment with antioxidants prevents smoking-induced TGF-alpha shedding and mucin production, suggesting that reactive oxygen species is involved in TACE activation. These results implicate TACE in smoking-induced mucin overproduction via the TACE-proligand-EGFR signal pathway in NCI-H292 cells. 相似文献
7.
Kim S Schein AJ Nadel JA 《American journal of physiology. Lung cellular and molecular physiology》2005,289(6):L1049-L1060
In previous work, we showed that epidermal growth factor receptor (EGFR) activation causes mucin expression in airway epithelium in vivo and in human NCI-H292 airway epithelial cells and normal human bronchial epithelial (NHBE) cells in vitro. Here we show that the cell surface adhesion molecule, E-cadherin, promotes EGFR-mediated mucin production in NCI-H292 cells in a cell density- and cell cycle-dependent fashion. The addition of the EGFR ligand, transforming growth factor (TGF)-alpha, increased MUC5AC protein expression markedly in dense, but not in sparse, cultures. MUC5AC-positive cells in dense cultures contained 2 N DNA content and did not incorporate bromodeoxyuridine, suggesting that they develop via cell differentiation and that a surface molecule involved in cell-cell contact is important for EGFR-mediated mucin production. In support of this hypothesis, in dense cultures of NCI-H292 cells and in NHBE cells at air-liquid interface, blockade of E-cadherin-mediated cell-cell contacts decreased EGFR-dependent mucin production. E-cadherin blockade also increased EGFR-dependent cell proliferation and TGF-alpha-induced EGFR tyrosine phosphorylation in dense cultures of NCI-H292 cells, suggesting that E-cadherin promotes EGFR-dependent mucin production and inhibits EGFR-dependent cell proliferation via modulation of EGFR phosphotyrosine levels. Furthermore, in dense cultures, E-cadherin blockade decreased the rate of EGFR tyrosine dephosphorylation, implicating an E-cadherin-dependent protein tyrosine phosphatase in EGFR dephosphorylation. Thus E-cadherin promotes EGFR-mediated cell differentiation and MUC5AC production, and our results suggest that this occurs via a pathway involving protein tyrosine phosphatase-dependent EGFR dephosphorylation. 相似文献
8.
9.
Morinaga Y Yanagihara K Araki N Migiyama Y Nagaoka K Harada Y Yamada K Hasegawa H Nishino T Izumikawa K Kakeya H Yamamoto Y Kohno S Kamihira S 《Canadian journal of microbiology》2012,58(2):151-157
The airway epithelium is the initial barrier against airborne pathogens, and it plays many roles in host airway defense. Legionella pneumophila is an intracellular pathogen that causes rapidly advancing pneumonia and is sometimes life-threatening. Here, we evaluated the role of the airway epithelial cells in the defense against L.?pneumophila by examining mucus production in vitro. The production of MUC5AC, a major mucin protein, was not induced by formalin- or ultraviolet-killed L.?pneumophila, but it was induced by live L.?pneumophila. Similarly, nuclear factor-kappaB (NF-κB) was activated only by live L.?pneumophila. Inhibitors of ERK and JNK, but not p38, dose-dependently inhibited the induction of MUC5AC by live L.?pneumophila. Inhibition of intracellular invasion by cytochalasin D did not affect MUC5AC production. Taken together, the results suggest that live L.?pneumophila induces MUC5AC production via the ERK-JNK and NF-κB pathways without internalization of bacteria and that the airway epithelium produces mucin as part of the immune response against L.?pneumophila. 相似文献
10.
11.
12.
Akira Kanoh Hideyuki Takeuchi Kentaro Kato Michihiko Waki Katsuaki Usami Tatsuro Irimura 《Biochimica et Biophysica Acta (BBA)/General Subjects》2008
Mucus hypersecretion occurs as a consequence of the Th2 immune response in epithelia, yet it was not previously known whether the degree of O-glycosylation was modulated under such conditions. A colonic carcinoma cell line LS174T was used to assess the effect of interleukin (IL)-4 on the mRNA levels of eight pp-GalNAc-Ts. A three- to four-fold increase in pp-GalNAc-T1, T4, and T7 levels was observed. Lysates of untreated or IL-4-treated cells were examined for their ability to transfer GalNAc residues onto a peptide corresponding to the tandem repeat portion of human MUC2. The number of incorporated GalNAc residues was greater after incubation with lysates of IL-4-treated cells than with lysates of untreated cells. Mucin-like large glycoproteins secreted by IL-4-treated cells had higher binding capacity to PNA and VVA-B4 than those secreted by untreated cells. The results indicated that IL-4-treated LS174T cells are able to produce mucins with a higher degree of O-glycosylation than untreated counterparts. 相似文献
13.
Yan F Li W Jono H Li Q Zhang S Li JD Shen H 《Biochemical and biophysical research communications》2008,366(2):513-519
Mucin overproduction is a hallmark of chronic inflammatory airway diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis. Excessive production of mucin leads to airway mucus obstruction and contributes to morbidity and mortality in these diseases. The molecular mechanisms underlying mucin overproduction, however, still remain largely unknown. Here, we report that the bacterium P. aeruginosa, an important human respiratory pathogen causing cystic fibrosis, utilizes reactive oxygen species (ROS) to up-regulate MUC5AC mucin expression. Pseudomonas aeruginosa lipopolysaccharide (PA-LPS) induces production of ROS through protein kinase C (PKC)-NADPH oxidase signaling pathway in human epithelial cells. Subsequently, ROS generation by PA-LPS releases transforming growth factor-α (TGF-α), which in turn, leads to up-regulate MUC5AC expression. These findings may bring new insights into the molecular pathogenesis of P. aeruginosa infections and lead to novel therapeutic intervention for inhibiting mucin overproduction in patients with P. aeruginosa infections. 相似文献
14.
Xizi Du Yu Yang Ming Yang Lin Yuan Leyuan Wang Mengping Wu Kai Zhou Wenkai Li Yang Xiang Xiangping Qu Huijun Liu Xiaoqun Qin Chi Liu 《International journal of biological sciences》2022,18(1):349
Respiratory syncytial virus (RSV) infection is the main cause of bronchiolitis in children. Excessive mucus secretion is one of the primary symbols in RSV related lower respiratory tract infections (RSV-related LRTI), which is closely associated with the occurrence and development of asthma in later life. Integrin β4 (ITGB4) is down-regulated in the airway epithelial cells (AECs) of asthma patients which plays a critical role in the pathogenesis of asthma. However, whether ITGB4 is involved in the pathological processes of RSV infection remains unclear. In this study, we found that decreased expression of ITGB4 was negatively correlated with the level of MUC5AC in childhood AECs following RSV infection. Moreover, ITGB4 deficiency led to mucus hypersecretion and MUC5AC overexpression in the small airway of RSV-infected mice. MUC5AC expression was upregulated by ITGB4 in HBE cells through EGFR, ERK and c-Jun pathways. EGFR inhibitors treatment inhibited mucus hypersecretion and MUC5AC overexpression in ITGB4-deficient mice after RSV infection. Together, these results demonstrated that epithelial ITGB4 deficiency induces mucus hypersecretion by upregulating the expression of MUC5AC through EGFR/ERK/c-Jun pathway, which further associated with RSV-related LRTI. 相似文献
15.
Song KS Lee WJ Chung KC Koo JS Yang EJ Choi JY Yoon JH 《The Journal of biological chemistry》2003,278(26):23243-23250
Mucin hypersecretion is commonly observed in many inflammatory diseases of the respiratory tract. MUC5AC is generally recognized to be a major airway mucin because MUC5AC is highly expressed in the goblet cells of human airway epithelium. Moreover, it is regulated by various inflammatory cytokines. However, the mechanisms by which the interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha induce MUC5AC gene expression in normal nasal epithelial cells, and the signal molecules involved, especially in the downstream signaling of mitogen-activated protein (MAP) kinases, remain unclear. Here we show that pharmacologic or genetic inhibition of either ERK or p38 MAP kinase pathway abolished IL-1beta- and TNF-alpha-induced MUC5AC gene expression in normal human nasal epithelial cells. Our results also indicate that the activation of mitogen- and stress-activated protein kinase 1 (MSK1) and cAMP-response element-binding protein and cAMP-response element signaling cascades via ERK and p38 MAP kinases are crucial aspects of the intracellular mechanisms that mediate MUC5AC gene expression. Taken together, these studies give additional insights into the molecular mechanism of IL-1beta- and TNF-alpha-induced MUC5AC gene expression and enhance our understanding on mucin hypersecretion during inflammation. 相似文献
16.
Oguma T Asano K Tomomatsu K Kodama M Fukunaga K Shiomi T Ohmori N Ueda S Takihara T Shiraishi Y Sayama K Kagawa S Natori Y Lilly CM Satoh K Makimura K Ishizaka A 《Journal of immunology (Baltimore, Md. : 1950)》2011,187(2):999-1005
Allergic bronchopulmonary mycosis, characterized by excessive mucus secretion, airflow limitation, bronchiectasis, and peripheral blood eosinophilia, is predominantly caused by a fungal pathogen, Aspergillus fumigatus. Using DNA microarray analysis of NCI-H292 cells, a human bronchial epithelial cell line, stimulated with fungal extracts from A. fumigatus, Alternaria alternata, or Penicillium notatum, we identified a mucin-related MUC5AC as one of the genes, the expression of which was selectively induced by A. fumigatus. Quantitative RT-PCR, ELISA, and histochemical analyses confirmed an induction of mucin and MUC5AC expression by A. fumigatus extracts or the culture supernatant of live microorganisms in NCI-H292 cells and primary cultures of airway epithelial cells. The expression of MUC5AC induced by A. fumigatus extracts diminished in the presence of neutralizing Abs or of inhibitors of the epidermal growth factor receptor or its ligand, TGF-α. We also found that A. fumigatus extracts activated the TNF-α-converting enzyme (TACE), critical for the cleavage of membrane-bound pro-TGF-α, and its inhibition with low-molecular weight inhibitors or small interfering RNA suppressed the expression of MUC5AC. The protease activity of A. fumigatus extracts was greater than that of other fungal extracts, and treatment with a serine protease inhibitor, but not with a cysteine protease inhibitor, eliminated its ability to activate TACE or induce the expression of MUC5AC mRNA in NCI-H292. In conclusion, the prominent serine protease activity of A. fumigatus, which caused the overproduction of mucus by the bronchial epithelium via the activation of the TACE/TGF-α/epidermal growth factor receptor pathway, may be a pathogenetic mechanism of allergic bronchopulmonary mycosis. 相似文献
17.
Kanoh A Takeuchi H Kato K Waki M Usami K Irimura T 《Biochimica et biophysica acta》2008,1780(3):577-584
Mucus hypersecretion occurs as a consequence of the Th2 immune response in epithelia, yet it was not previously known whether the degree of O-glycosylation was modulated under such conditions. A colonic carcinoma cell line LS174T was used to assess the effect of interleukin (IL)-4 on the mRNA levels of eight pp-GalNAc-Ts. A three- to four-fold increase in pp-GalNAc-T1, T4, and T7 levels was observed. Lysates of untreated or IL-4-treated cells were examined for their ability to transfer GalNAc residues onto a peptide corresponding to the tandem repeat portion of human MUC2. The number of incorporated GalNAc residues was greater after incubation with lysates of IL-4-treated cells than with lysates of untreated cells. Mucin-like large glycoproteins secreted by IL-4-treated cells had higher binding capacity to PNA and VVA-B(4) than those secreted by untreated cells. The results indicated that IL-4-treated LS174T cells are able to produce mucins with a higher degree of O-glycosylation than untreated counterparts. 相似文献
18.
19.
20.
Capsaicin, a type of alkaloid and the pungent component of chili peppers, is used as a therapeutic drug against allergic rhinitis and also as an index of bronchial hypersensitivity. Capsaicin receptor (TRPV1) expression has been identified in non-neuronal cells as well as neuronal cells. In our previous study, both TRPV1 protein and its gene expression on nasal epithelial cells were confirmed by immunohistochemistry and RT-PCR, respectively. In order to clarify whether or not TRPV1 acts as a functional receptor, we examined the effects of capsaicin on the production of IL-6 from primary cultured human airway epithelial cells at both protein and mRNA levels. Human nasal epithelial cells (HNECs) and normal human bronchial/tracheal epithelial cells (NHBE cells) were stimulated with increasing concentrations of capsaicin and/or pretreatment with capsazepine (TRPV1 antagonist) at 37 degrees C. The supernatant and total RNA were collected at 0, 4, 12, 24 and 48 h after treatment. IL-6 concentration and the IL-6 mRNA level were evaluated by ELISA and real-time PCR, respectively. Capsaicin (10 nM-10 muM) induced production of IL-6 from HNECs and NHBE cells and this effect was inhibited by pretreatment with capsazepine. Our findings suggest that topical application of capsaicin to the airway induces IL-6 production from respiratory epithelial cells via activation of TRPV1. 相似文献