首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peaches are highly perishable and deteriorate quickly at ambient temperature. Cold storage is commonly used to prevent fruit decay; however, it affects fruit quality causing physiological disorders collectively termed ‘chilling injury’ (CI). To prevent or ameliorate CI, heat treatment is often applied prior to cold storage. In the present work, metabolic profiling was performed to determine the metabolic dynamics associated with the induction of acquired CI tolerance in response to heat shock. ‘Dixiland’ peach fruits exposed to 39 °C, cold stored, or after a combined treatment of heat and cold, were compared with fruits ripening at 20 °C. Dramatic changes in the levels of compatible solutes such as galactinol and raffinose were observed, while amino acid precursors of the phenylpropanoid pathway were also modified due to the stress treatments, as was the polyamine putrescine. The observed responses towards temperature stress in peaches are composed of both common and specific response mechanisms to heat and cold, but also of more general adaptive responses that confer strategic advantages in adverse conditions such as biotic stresses. The identification of such key metabolites, which prime the fruit to cope with different stress situations, will likely greatly accelerate the design and the improvement of plant breeding programs.  相似文献   

2.
为解决薄皮甜瓜生产中的连作障碍问题,设置薄皮甜瓜单作(MM)、茴香/薄皮甜瓜间作(FM)、分蘖洋葱/薄皮甜瓜间作(TM)、艾草/薄皮甜瓜间作(WM)4个处理,研究不同间作植物对薄皮甜瓜植株株高、茎粗、根系活力和矿质元素(N、P、K、Ca和Mg)含量,以及果实品质和产量的影响,以期筛选出具有间作优势的露地栽培薄皮甜瓜间作作物组合。结果表明: 随着间作栽培时间的延长,3个间作处理的薄皮甜瓜株高均显著高于单作对照;FM和TM处理的茎粗显著高于单作对照,WM处理的茎粗与单作对照差异不显著;在伸蔓期、坐果期和果实膨大期,FM处理的根系活力最高,显著高于单作对照和TM处理。3个间作处理薄皮甜瓜植株矿质元素含量均不同程度高于单作对照,且FM处理的矿质元素含量均较高。FM和TM间作处理单果重与单作对照差异不显著。FM处理果实品质指标不低于单作对照;WM和TM处理的部分果实品质指标(葡萄糖、果糖和蔗糖含量)低于单作对照。综上,小茴香较适合作为薄皮甜瓜的间作植物。  相似文献   

3.
Strawberry (Fragaria × ananassa Duch), a fruit of economic and nutritional importance, is also a model species for fleshy fruits and genomics in Rosaceae. Strawberry fruit quality at different harvest stages is a function of the fruit's metabolite content, which results from physiological changes during fruit growth and ripening. In order to investigate strawberry fruit development, untargeted (GC-MS) and targeted (HPLC) metabolic profiling analyses were conducted. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were employed to explore the non-polar and polar metabolite profiles from fruit samples at seven developmental stages. Different cluster patterns and a broad range of metabolites that exerted influence on cluster formation of metabolite profiles were observed. Significant changes in metabolite levels were found in both fruits turning red and fruits over-ripening in comparison with red-ripening fruits. The levels of free amino acids decreased gradually before the red-ripening stage, but increased significantly in the over-ripening stage. Metabolite correlation and network analysis revealed the interdependencies of individual metabolites and metabolic pathways. Activities of several metabolic pathways, including ester biosynthesis, the tricarboxylic acid cycle, the shikimate pathway, and amino acid metabolism, shifted during fruit growth and ripening. These results not only confirmed published metabolic data but also revealed new insights into strawberry fruit composition and metabolite changes, thus demonstrating the value of metabolomics as a functional genomics tool in characterizing the mechanism of fruit quality formation, a key developmental stage in most economically important fruit crops.  相似文献   

4.
The conversions of incorporated 14C-glucose in fruit flesh and in seeds were investigated at different stages of fruit development. In addition, the biochemical mechanism of sucrose synthesis in fruits of Bai-Lan melon were also studied. The results were summarized as follows: In fruit flesh and in seeds at young fruit stage, more than half of the incorporated 14C was found in the dilute acid hydrolyzable and non-hydrolyzable fractions, both of which represent the structural elements. While in the fruits approaching maturity (42 days old), a relatively small amount of 14C associated with the structural elements was found. The contributions of 14C of fractions hydrolyzed and non-hydrolyzed by dilute acid to the total radioactivity were reduced to 18% and 32%, respectively, in fruit flesh and in seeds. The results of identification of soluable sugar by using paper chromatography indicated that, the 14C was only associated with fructose after infiltrating the young fruit slices with 14C-glucose, but the 14C was predominately incorporated into sucrose at later stage of fruit development. The above results of 14C labeling experiments suggest that the pattern of metabolism is changed with fruit development. The greater part of metabolites is used in synthesis of structural elements which is necessary for growth and related processes at early stage of fruit developrnent. However, as the fruit reaches full size. the demand for carbon used in structural tissue is reduced. At this time, the direction of the enzymatic reactions changed in favor of sucrose synthesis. The activity of sucrose synthesis in young fruits was rather low when various substrates were supplied. It was possible that the enzymes related to sucrose synthesis were absent in young fruits of Bai-Lan melon. The activity of sucrose synthesis in fruits at later stage of development increased by about 5-fold of that at early stage. The higher activity of sucrose synthesis was observed when UDPG+F-6-P were supplied as substrates. It is shown that the sucrose in Bai- Lan melon fruits may be mainly synthesized by sucrose phosphate synthetase catalyzing the reaction between UDPG and F-6-P to yield sucrose-P. The biochemical mechanism of sucrose synthesis in Bai-Lan melon fruits is briefly discussed.  相似文献   

5.
6.
Melon (Cucumis melo L.) is a global crop in terms of economic importance and nutritional quality. The aim of this study was to explore the variability in metabolite and elemental composition of several commercial varieties of melon in various environmental conditions. Volatile and non-volatile metabolites as well as mineral elements were profiled in the flesh of mature fruit, employing a range of complementary analytical technologies. More than 1,000 metabolite signatures and 19 mineral elements were determined. Data analyses revealed variations related to factors such as variety, growing season, contrasting agricultural management practices (greenhouse vs. field with or without fruit thinning) and planting date. Two hundred and ninety-one analytes discriminated two contrasting varieties, one from the var. inodorous group and the other from the var. cantaloupensis group. Two hundred and eighty analytes discriminated a short shelf-life from a mid-shelf-life variety within the var. cantaloupensis group. Three hundred and twenty-seven analytes discriminated two seasons, and two hundred and fifty-two analytes discriminated two contrasting agricultural management practices. The affected compound families greatly depended on the factor studied. The compositional variability of identified or partially identified compounds was used to study metabolite and mineral element co-regulation using correlation networks. The results confirm that metabolome and mineral element profiling are useful diagnostic tools to characterize the quality of fruits cultivated under commercial conditions. They can also provide knowledge on fruit metabolism and the mechanisms of plant response to environmental modifications, thereby paving the way for metabolomics-guided improvement of cultural practices for better fruit quality.  相似文献   

7.
Kenneth Manning 《Planta》1998,205(4):622-631
The ripening of strawberry (Fragaria ananassa Duch.), a non-climacteric fruit, is a complex developmental process that involves many changes in gene expression. To understand how these changes relate to the biochemistry and composition of the fruit the specific genes involved have been examined. A high-quality cDNA library prepared from ripe strawberry fruit was differentially screened for ripening-related clones using cDNA from ripe and white fruits. From 112 up-regulated clones obtained in the primary screen, 66 differentially expressed clones were isolated from the secondary screen. The partial sequences of these cDNAs were compared with database sequences and 26 families of non-redundant clones were identified. Northern analysis confirmed that all of these cDNAs were ripening-enhanced. The expression of many of their corresponding genes was negatively regulated in auxin-treated fruit. These sequences, several of which are novel to fruits, encode proteins involved in key metabolic events including anthocyanin biosynthesis, cell wall degradation, sucrose and lipid metabolism, protein synthesis and degradation, and respiration. These findings are discussed in relation to the role of these genes in determining fruit quality characteristics. Received: 19 January 1998 / Accepted: 5 February 1998  相似文献   

8.
9.
10.
11.
12.
13.

Key message

Agronomical characterization of a RIL population for fruit mineral contents allowed for the identification of QTL controlling these fruit quality traits, flanked by co-dominant markers useful for marker-assisted breeding.

Abstract

Tomato quality is a multi-variant attribute directly depending on fruit chemical composition, which in turn determines the benefits of tomato consumption for human health. Commercially available tomato varieties possess limited variability in fruit quality traits. Wild species, such as Solanum pimpinellifolium, could provide different nutritional advantages and can be used for tomato breeding to improve overall fruit quality. Determining the genetic basis of the inheritance of all the traits that contribute to tomato fruit quality will increase the efficiency of the breeding program necessary to take advantage of the wild species variability. A high-density linkage map has been constructed from a recombinant inbred line (RIL) population derived from a cross between tomato Solanum lycopersicum and the wild-relative species S. pimpinellifolium. The RIL population was evaluated for fruit mineral contents during three consecutive growing seasons. The data obtained allowed for the identification of main QTL and novel epistatic interaction among QTL controlling fruit mineral contents on the basis of a multiple-environment analysis. Most of the QTL were flanked by candidate genes providing valuable information for both tomato breeding for new varieties with novel nutritional properties and the starting point to identify the genes underlying these QTL, which will help to reveal the genetic basis of tomato fruit nutritional properties.
  相似文献   

14.
Sweet melon cultivars contain a low level of organic acids and, therefore, the quality and flavor of sweet melon fruit is determined almost exclusively by fruit sugar content. However, genetic variability for fruit acid levels in the Cucumis melo species exists and sour fruit accessions are characterized by acidic fruit pH of <5, compared to the sweet cultivars that are generally characterized by mature fruit pH values of >6. In this paper, we report results from a mapping population based on recombinant inbred lines (RILs) derived from the cross between the non-sour 'Dulce' variety and the sour PI 414323 accession. Results show that a single major QTL for pH co-localizes with major QTLs for the two predominant organic acids in melon fruit, citric and malic, together with an additional metabolite which we identified as uridine. While the acidic recombinants were characterized by higher citric and malic acid levels, the non-acidic recombinants had a higher uridine content than did the acidic recombinants. Additional minor QTLs for pH, citric acid and malic acid were also identified and for these the increased acidity was unexpectedly contributed by the non-sour parent. To test for co-localization of these QTLs with genes encoding organic acid metabolism and transport, we mapped the genes encoding structural enzymes and proteins involved in organic acid metabolism, transport and vacuolar H+ pumps. None of these genes co-localized with the major pH QTL, indicating that the gene determining melon fruit pH is not one of the candidate genes encoding this primary metabolic pathway. Linked markers were tested in two additional inter-varietal populations and shown to be linked to the pH trait. The presence of the same QTL in such diverse segregating populations suggests that the trait is determined throughout the species by variability in the same gene and is indicative of a major role of the evolution of this gene in determining the important domestication trait of fruit acidity within the species.  相似文献   

15.
A genetic map of melon enriched for fruit traits was constructed, using a recombinant inbred (RI) population developed from a cross between representatives of the two subspecies of Cucumis melo L.: PI 414723 (subspecies agrestis) and ‘Dulce’ (subspecies melo). Phenotyping of 99 RI lines was conducted over three seasons in two locations in Israel and the US. The map includes 668 DNA markers (386 SSRs, 76 SNPs, six INDELs and 200 AFLPs), of which 160 were newly developed from fruit ESTs. These ESTs include candidate genes encoding for enzymes of sugar and carotenoid metabolic pathways that were cloned from melon cDNA or identified through mining of the International Cucurbit Genomics Initiative database (http://www.icugi.org/). The map covers 1,222 cM with an average of 2.672 cM between markers. In addition, a skeleton physical map was initiated and 29 melon BACs harboring fruit ESTs were localized to the 12 linkage groups of the map. Altogether, 44 fruit QTLs were identified: 25 confirming QTLs described using other populations and 19 newly described QTLs. The map includes QTLs for fruit sugar content, particularly sucrose, the major sugar affecting sweetness in melon fruit. Six QTLs interacting in an additive manner account for nearly all the difference in sugar content between the two genotypes. Three QTLs for fruit flesh color and carotenoid content were identified. Interestingly, no clear colocalization of QTLs for either sugar or carotenoid content was observed with over 40 genes encoding for enzymes involved in their metabolism. The RI population described here provides a useful resource for further genomics and metabolomics studies in melon, as well as useful markers for breeding for fruit quality.  相似文献   

16.
17.

Background

The qualitative and quantitative analysis of all low molecular weight metabolites within a biological sample, known as the metabolome, provides powerful insights into their roles in biological systems and processes. The study of all the chemical structures, concentrations, and interactions of the thousands of metabolites is called metabolomics. However present state of the art methods and equipment can only analyse a small portion of the numerous, structurally diverse groups of chemical substances found in biological samples, especially with respect to samples of plant origin with their huge diversity of secondary metabolites. Nevertheless, metabolite profiling and fingerprinting techniques have been applied to the analysis of the strawberry metabolome since their early beginnings.

Aim

The application of metabolomics and metabolite profiling approaches within strawberry research was last reviewed in 2011. Here, we aim to summarize the latest results from research of the strawberry metabolome since its last review with a special emphasis on studies that address specific biological questions.

Key scientific concepts

Analysis of strawberry, and other fruits, requires a plethora of analytical methods and approaches encompassing the analysis of primary and secondary metabolites, as well as capturing and quantifying volatile compounds that are related to aroma as well as fruit development, function and plant-to-plant communication. The success and longevity of metabolite and volatile profiling approaches in fruit breeding relies upon the ability of the approach to uncover biologically meaningful insights. The key concepts that must be addressed and are reviewed include: gene function analysis and genotype comparison, analysis of environmental effects and plant protection, screening for bioactive compounds for food and non-food uses, fruit development and physiology as well as fruit sensorial quality. In future, the results will facilitate fruit breeding due to the identification of metabolic QTLs and candidate genes for fruit quality and consumer preference.
  相似文献   

18.
19.
Improving yield, nutritional value and tolerance to abiotic stress are major targets of current breeding and biotechnological approaches that aim at increasing crop production and ensuring food security. Metabolic engineering of carotenoids, the precursor of vitamin-A and plant hormones that regulate plant growth and response to adverse growth conditions, has been mainly focusing on provitamin A biofortification or the production of high-value carotenoids. Here, we show that the introduction of a single gene of the carotenoid biosynthetic pathway in different tomato cultivars induced profound metabolic alterations in carotenoid, apocarotenoid and phytohormones pathways. Alterations in isoprenoid- (abscisic acid, gibberellins, cytokinins) and non-isoprenoid (auxin and jasmonic acid) derived hormones together with enhanced xanthophyll content influenced biomass partitioning and abiotic stress tolerance (high light, salt, and drought), and it caused an up to 77% fruit yield increase and enhanced fruit's provitamin A content. In addition, metabolic and hormonal changes led to accumulation of key primary metabolites (e.g. osmoprotectants and antiaging agents) contributing with enhanced abiotic stress tolerance and fruit shelf life. Our findings pave the way for developing a new generation of crops that combine high productivity and increased nutritional value with the capability to cope with climate change-related environmental challenges.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号