首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because light conditions in the forest understory are highly heterogeneous, photosynthetic acclimation to spatially variable irradiance within a crown is important for crown‐level carbon assimilation. The effect of variation in irradiance within the crown on leaf nitrogen content and photosynthetic rate was examined for pinnate compound leaves in saplings of Cedrela sinensis, a pioneer deciduous tree. Five shading treatments, in which 0, 25, 50, 75 and 100% of leaves were shaded, were established by artificial heavy shading using shade screen umbrellas with 25% transmittance. Although the nitrogen content of leaves was constant regardless of shading treatment, ribulose 1·5‐bisphosphate carboxylase/oxygenase (Rubisco) content and light‐saturated photosynthetic capacity were lower in shade leaves within partially shaded crowns than within fully shaded crowns. Shade leaves within partially shaded crowns contained higher amount of amino acids. Most shade leaves died in partially shaded crowns, whereas more than half of shade leaves survived in totally shaded crowns. Assumptions on photosynthetic acclimation to local light conditions cannot explain why shade leaves have different photosynthetic capacities and survival rates in between partially and totally shaded crowns. Irradiance heterogeneity within the crown causes a distinct variation in photosynthetic activity between sun and shaded leaves within the crown.  相似文献   

2.
We investigated the morphological and physiological acclimation of leaves grown within a canopy of Japanese oak tree (Quercus mongolica var. crispula) in terms of the susceptibility to photoinhibition under various growth light conditions. The maximum rates of photosynthesis (P(max) ) and electron transport (ETR(max) ) were higher in mature leaves grown under stronger light with higher area-based leaf nitrogen (N) content closely associated with higher leaf mass per area. The net photosynthetic (P(n) ) and electron transport (ETR) rates corresponding to the daily peak photosynthetic photon flux density (PPFD(max) ) during leaf maturation were almost comparable to P(max) and ETR(max) , respectively. Conversely, P(n) and ETR at the daily average PPFD (PPFD(avg) ) were substantially low in shade-grown leaves when compared with P(max) and ETR(max) . The susceptibility to photoinhibition at PPFD(max) , i.e. at sunflecks for the shade-grown leaves, was assessed by the rate of excess energy production. Although sun leaves showed higher rates of electron transport and thermal energy dissipation than shade leaves under PPFD(max) conditions, the rate of excess energy production was almost constant across shade to sun leaves. The shade leaves of the Japanese oak grown within a crown were suggested to adjust their N investment to maintain higher photosynthetic capacities compared with those required to maximize the net carbon gain, which may facilitate the dissipation of the excessive light energy of sunflecks to circumvent photoinhibition in cooperation with thermal energy dissipation.  相似文献   

3.
Mathematical models of light attenuation and canopy photosynthesis suggest that crop photosynthesis increases by more uniform vertical irradiance within crops. This would result when a larger proportion of total irradiance is applied within canopies (interlighting) instead of from above (top lighting). These irradiance profiles can be generated by Light Emitting Diodes (LEDs). We investigated the effects of interlighting with LEDs on light interception, on vertical gradients of leaf photosynthetic characteristics and on crop production and development of a greenhouse‐grown Cucumis sativus‘Samona’ crop and analysed the interaction between them. Plants were grown in a greenhouse under low natural irradiance (winter) with supplemental irradiance of 221 µmol photosynthetic photon flux m?2 s?1 (20 h per day). In the interlighting treatment, LEDs (80% Red, 20% Blue) supplied 38% of the supplemental irradiance within the canopy with 62% as top lighting by High‐Pressure Sodium (HPS)‐lamps. The control was 100% top lighting (HPS lamps). We measured horizontal and vertical light extinction as well as leaf photosynthetic characteristics at different leaf layers, and determined total plant production. Leaf mass per area and dry mass allocation to leaves were significantly greater but leaf appearance rate and plant length were smaller in the interlighting treatment. Although leaf photosynthetic characteristics were significantly increased in the lower leaf layers, interlighting did not increase total biomass or fruit production, partly because of a significantly reduced vertical and horizontal light interception caused by extreme leaf curling, likely because of the LED‐light spectrum used, and partly because of the relatively low irradiances from above.  相似文献   

4.
《Journal of plant physiology》2014,171(18):1774-1781
Medicago sativa L. (alfalfa) can exhibit photosynthetic down-regulation when grown in greenhouse conditions under elevated atmospheric CO2. This forage legume can establish a double symbiosis with nitrogen fixing bacteria and arbuscular mycorrhizal fungi (AMF), which may increase the carbon sink effect of roots. Our aim was to assess whether the association of alfalfa with AMF can avoid, diminish or delay the photosynthetic acclimation observed in previous studies performed with nodulated plants. The results, however, showed that mycorrhizal (M) alfalfa at the end of their vegetative period had lower carbon (C) discrimination than non-mycorrhizal (NM) controls, indicating photosynthetic acclimation under ECO2 in plants associated with AMF. Decreased C discrimination was due to the acclimation of conductance, since the amount of Rubisco and the expression of genes codifying both large and small subunits of Rubisco were similar or slightly higher in M than in NM plants. Moreover, M alfalfa accumulated a greater amount of soluble sugars in leaves than NM plants, thus favoring a down-regulation effect on photosynthetic rates. The enhanced contents of sugars in leaves coincided with a reduced percentage of arbuscules in roots, suggesting decreased sink of carbohydrates from shoots to roots in M plants. The shorter life cycle of alfalfa associated with AMF in comparison with the NM controls may also be related to the accelerated photosynthetic acclimation in M plants. Further research is needed to clarify to what extent this behavior could be extrapolated to alfalfa cultivated in the field and subjected to periodic cutting of shoots under climatic change scenarios.  相似文献   

5.
The photosynthesis of ryegrass leaves grown in a simulated sward   总被引:2,自引:0,他引:2  
Plants were taken from simulated swards of perennial ryegrass (Lolium perenne) grown in a controlled environment and the rates of photosynthesis of the youngest fully expanded leaves, and the second and third youngest leaves on the same tillers were measured. The youngest leaves had the highest rates and the third the lowest, with the second leaves intermediate. The rate of photosynthesis in bright light of successive youngest expanded leaves decreased as the swards increased in leaf area, but did not when plants were grown so that the main stem was not shaded. When plants were grown at different densities and the photosynthetic rates of leaves of a particular ontogenetic rank were measured, it was found that leaves on plants from higher densities had lower rates of photosynthesis. Also leaves on plants grown in bright light had higher photosynthetic rates than those on plants grown in dim light. It is concluded that the decline in the photosynthetic capacity of successive leaves in a rapidly growing simulated sward is due to the intense shading to which they are subjected during their expansion.  相似文献   

6.
The acclimation responses of walnut leaf photosynthesis to the irradiance microclimate were investigated by characterizing the photosynthetic properties of the leaves sampled on young trees (Juglans nigraxregia) grown in simulated sun and shade environments, and within a mature walnut tree crown (Juglans regia) in the field. In the young trees, the CO(2) compensation point in the absence of mitochondrial respiration (Gamma*), which probes the CO(2) versus O(2) specificity of Rubisco, was not significantly different in sun and shade leaves. The maximal net assimilation rates and stomatal and mesophyll conductances to CO(2) transfer were markedly lower in shade than in sun leaves. Dark respiration rates were also lower in shade leaves. However, the percentage inhibition of respiration by light during photosynthesis was similar in both sun and shade leaves. The extent of the changes in photosynthetic capacity and mesophyll conductance between sun and shade leaves under simulated conditions was similar to that observed between sun and shade leaves collected within the mature tree crown. Moreover, mesophyll conductance was strongly correlated with maximal net assimilation and the relationships were not significantly different between the two experiments, despite marked differences in leaf anatomy. These results suggest that photosynthetic capacity is a valuable parameter for modelling within-canopies variations of mesophyll conductance due to leaf acclimation to light.  相似文献   

7.
Vertical farming using light-emitting diode offers potential for the early production phase (few weeks) of young ornamental plants. However, once transferred to the greenhouse, the photosynthetic acclimation of these young plants might depend on this initial light regime. To obtain insight about this acclimatization, Chrysanthemum (sun species) and Spathiphyllum (shade species) were preconditioned in growth chambers for 4 weeks under four light qualities: blue (B), red (R), red/blue (RB, 60% R) and white (W) at 100 μmol m−2 s−1. Monochromatic light (R and B) limited leaf development of both species, which resulted in a lower leaf mass per area when compared to multispectral light (RB for Chrysanthemum, RB and W for Spathiphyllum). R-developed leaves had a lower photosynthetic efficiency in both species. After the light quality pretreatment, plants were transferred to the greenhouse with high-intensity natural light conditions. On the first day of transfer, R and B preconditioned leaves of both species had an inhibited photosynthesis. After 1 week in natural light condition, rapid light curve parameters of Chrysanthemum leaves that developed under B acclimated to sunlight had a similar level than RB-developed leaves unlike R-leaves. Spathiphyllum leaves showed a decrease in maximum electron transport rate and this was most pronounced for the R pretreatment. After 1 month, R-preconditioned Chrysanthemum had the lowest dry mass, while no effects on the dry weight of Spathiphyllum with respect to the pretreatments were observed. Light quality during preconditioning affected the leaf ability to acclimate to natural high light intensities in greenhouse environment.  相似文献   

8.
The impact of light intensity on shade-induced leaf senescence   总被引:2,自引:0,他引:2  
Plants often have to cope with altered light conditions, which in leaves induce various physiological responses ranging from photosynthetic acclimation to leaf senescence. However, our knowledge of the regulatory pathways by which shade and darkness induce leaf senescence remains incomplete. To determine to what extent reduced light intensities regulate the induction of leaf senescence, we performed a functional comparison between Arabidopsis leaves subjected to a range of shading treatments. Individually covered leaves, which remained attached to the plant, were compared with respect to chlorophyll, protein, histology, expression of senescence-associated genes, capacity for photosynthesis and respiration, and light compensation point (LCP). Mild shading induced photosynthetic acclimation and resource partitioning, which, together with a decreased respiration, lowered the LCP. Leaf senescence was induced only under strong shade, coinciding with a negative carbon balance and independent of the red/far-red ratio. Interestingly, while senescence was significantly delayed at very low light compared with darkness, phytochrome A mutant plants showed enhanced chlorophyll degradation under all shading treatments except complete darkness. Taken together, our results suggest that the induction of leaf senescence during shading depends on the efficiency of carbon fixation, which in turn appears to be modulated via light receptors such as phytochrome A.  相似文献   

9.
As the partial pressure of CO2 (pCO2) in the atmosphere rises, photorespiratory loss of carbon in C3 photosynthesis will diminish and the net efficiency of light-limited photosynthetic carbon uptake should rise. We tested this expectation for Indiana strawberry (Duchesnea indica) growing on a Maryland forest floor. Open-top chambers were used to elevate the pCO2 of a forest floor habitat to 67 Pa and were paired with control chambers providing an ambient pCO2 of 38 Pa. After 3.5 years, D. indica leaves grown and measured in the elevated pCO2 showed a significantly greater maximum quantum efficiency of net photosynthesis (by 22%) and a lower light compensation point (by 42%) than leaves grown and measured in the control chambers. The quantum efficiency to minimize photorespiration, measured in 1% O2, was the same for controls and plants grown at elevated pCO2. This showed that the maximum efficiency of light-energy transduction into assimilated carbon was not altered by acclimation and that the increase in light-limited photosynthesis at elevated pCO2 was simply a function of the decrease in photorespiration. Acclimation did decrease the ribulose-1,5-bisphosphate carboxylase/oxygenase and light-harvesting chlorophyll protein content of the leaf by more than 30%. These changes were associated with a decreased capacity for light-saturated, but not light-limited, photosynthesis. Even so, leaves of D. indica grown and measured at elevated pCO2 showed greater light-saturated photosynthetic rates than leaves grown and measured at the current atmospheric pCO2. In situ measurements under natural forest floor lighting showed large increases in leaf photosynthesis at elevated pCO2, relative to controls, in both summer and fall. The increase in efficiency of light-limited photosynthesis with elevated pCO2 allowed positive net photosynthetic carbon uptake on days and at locations on the forest floor that light fluxes were insufficient for positive net photosynthesis in the current atmospheric pCO2.  相似文献   

10.
A study was conducted, using rapid time course of chlorophyll (Chl) fluorescence parameters, and light-response curves of Chl fluorescence parameters, to determine the induction requirements and response of photosystem II (PSII) photochemistry and non-photochemical reactions after changes in irradiance in greenhouse mulberry plants. The induction of PSII photochemistry rapidly approached to steady state after leaves were treated from darkness to low irradiance (LI). When irradiance of leaves changed from darkness to high irradiance (HI), a biphasic induction was observed. A slight photoinhibition occurred in the leaves exposed to sunlight coming to the greenhouse, whereas a chronic photoinhibition occurred in the leaves fully exposed to sunlight outside the greenhouse. The chronic photoinhibition was demonstrated by sustained reduction of maximal quantum yield of PSII photochemistry (Fv/Fm). Moreover, the leaves of mulberry plants in greenhouse were sensitive to abrupt changes in irradiance and the sensitivity of leaves suffered in a short-term (1h) high light treatment was reduced, based on the changes in photosynthetic quantum conversion. These results demonstrated an inducible response of photosynthetic quantum conversion to changes in irradiance in mulberry.  相似文献   

11.
Photosynthetic responses to light variation in rainforest species   总被引:1,自引:0,他引:1  
Summary The dependence of net carbon gain during lightflecks (artificial sunflecks) on leaf induction state, lightfleck duration, lightfleck photosynthetic photon flux density (PFD), and the previous light environment were investigated in A. macrorrhiza and T. australis, two Australian rainforest species. The photosynthetic efficiency during lightflecks was also investigated by comparing observed values of carbon gain with predicted values based on steady-state CO2 assimilation rates. In both species, carbon gain and photosynthetic efficiency increased during a series of five 30-or 60-s lightflecks that followed a long period of low light; efficiency was linearly related to leaf induction state.In fully-induced leaves of both species, efficiency decreased and carbon gain increased with lightfleck duration. Low-light grown A. macrorrhiza had greater efficiency than predicted based on steady-state rates (above 100%) for lightflecks less than 40 s long, whereas leaves grown in high light had efficiencies exceeding 100% only during 5-s lightflecks. The efficiency of leaves of T. australis ranged from 58% for 40-s lightflecks to 96% for 5-s lightflecks.In low-light grown leaves of A. macrorrhiza, photosynthetic responses to lightflecks below 120 mol m-2 s-1 were not affected significantly by the previous light level. However, during lightflecks at 530 mol m-2 s-1, net carbon gain and photosynthetic efficiency of leaves previously exposed to low light levels were significantly reduced relative to those of leaves previously exposed to 120 and 530 mol m-2 s-1.These results indicate that, in shade-tolerant species, net carbon gain during sunflecks can be enhanced over values predicted from steady-state CO2 assimilation rates. The degree of enhancement, if any, will depend on sunfleck duration, previous light environment, and sunfleck PFD. In forest understory environments, the temporal pattern of light distribution may have far greater consequences for leaf carbon gain than the total integrated PFD.Supported by National Science Foundation Grant BSR 8217071 and USDA Grant 85-CRCR-1-1620  相似文献   

12.
Abstract. Leaf area expansion, photosynthetic carbon dioxide uptake and leaf dry mass accumulation were compared for expanding leaves of well-watered soybean ( Glycine max [L.] Merr.) plants, mildly dehydrated plants and well-watered plants treated with abscisic acid (ABA). Both ABA treatment and dehydration reduced area expansion in the light and over a 24 h period without decreasing the photosynthetic rates of expanding leaves. Dry mass accumulation during the light was less in ABA-treated and water-stressed leaves than in control leaves, with no differences among treatments in leaf mass per unit of area. ABA treatment and water stress both increased export of carbon from expanding leaves in the light. ABA applied near the end of the light period also increased export of carbon during the following dark period. However, it is unlikely that decreased availability of photosynthate caused slow expansion in the ABA and dehydration treatments, because expansion rates were not slowed in plants kept in dim light, even though photosynthetic rates and dry mass accumulation rates were greatly reduced. The data suggest that ABA may mediate the effects of mild dehydration on leaf area expansion and partitioning of photosynthate.  相似文献   

13.
Kouki Hikosaka 《Planta》1996,198(1):144-150
Effects of leaf age, nitrogen nutrition and photon flux density (PFD) on the organization of the photosynthetic apparatus in leaves were investigated in a vine, Ipomoea tricolor Cav., which was grown horizontally so as to avoid mutual shading of leaves. The plants were grown hydroponically at two nitrate levels under two growth light treatments. For one group of the plants, leaves were exposed to full sunlight. For another group, respective leaves were artificially shaded in a manner that simulated changes in the light gradient with the development of an erect herbaceous canopy: old leaves were placed under progressively shadier conditions with growth of the plants (canopy-type shading). In all the treatments, chlorophyll (Chl) content gradually decreased with leaf age. Photosystem I (PSI) per Chl was constant, independent of leaf age, nitrogen nutrition and/or PFD. Photosystem II (PSII) and cytochrome / per Chl, and Chl a/b ratio were independent of leaf age and/or nitrogen nutrition but decreased with the decrease in growth PFD. Ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39, RuBPCase) per Chl steeply decreased with decrease in PFD. When leaves grown at the same PFD were compared, RuBPCase/Chl was lower in the plants grown under lower nitrogen availability and also decreased with leaf age in the plants grown without shading. These decreases were attributed to the curvilinear relationship between RuBPCase and Chl in leaves grown at full sunlight, that was independent of nitrogen availability and leaf age. From these results, it is concluded that the composition of the photosynthetic apparatus is independent of leaf age but changes depending on the light environment and total amount of photosynthetic components of the leaf.Abbreviations Chl chlorophyll - cyt f cytochrome f - PFD photon flux density - RuBPCase ribulose-1,5-bisphosphate carboxylase The author thanks Drs. K. Sonoike, Y. Kashino, K. Okada, H. Hatanaka, Y. Suzuki and A. Aoyama for technical advise. The author also thanks Drs. I. Terashima, A. Makino (Tohoku University, Sendai, Japan), Dr. J.R. Evans (Research School of Biological Sciences, Australian National University, Canberra) and Prof. A. Watanabe for valuable suggestions.  相似文献   

14.
We examined the effects of geminivirus infection on fitness components and on photosynthetic properties of the host plant, Eupatorium makinoi, grown at two irradiance levels in a natural-light greenhouse. Under the low-light condition (13% full sunlight), more than a half of the infected plants died during the 9-mo experiment, while most of uninfected plants survived. Growth rate was also lowered by infection. At high light (50% full sunlight), by contrast, virus infection did not cause mortality despite slight decrease in growth rate. Flowering occurred only at high light, and reproductive outputs of the plants were markedly reduced by the infection. Infected leaves had distinct yellow variegations and, when compared with uninfected leaves, they showed (1) comparable light-saturated photosynthetic rate per unit area, but (2) lower initial slope of light-response curve of photosynthesis on an incident irradiance basis. The lower initial slope was mainly due to reduction of light-harvesting chlorophyll-protein complexes in the variegated parts. Since the differences in plant performance, depending both on infection and on growth irradiance, were largely explained by the differences in growth rate and/or plant size, the reduced photosynthetic production in the infected plants would be a major factor explaining the inferior performance of the host plants.  相似文献   

15.
An experiment was carried out to study whether low-light-induced damage to the photosynthetic system in leaves of cotton (Gossypium hirsutum cv. Deltapine) which are below the compensation point in the canopy can be arrested and reversed by increased illumination. In addition it was intended to find out whether the photosynthetic system in leaves of shade plants show a greater resistance to low-light-induced damage than leaves of plants from more exposed habitats. The plants were grown at high density, and increased illumination to the shade leaves in the canopy was achieved by thinning the stand. Thinning was carried out at two stages and its effects on the decline in the photosynthetic capacity of the 4th leaf were followed. An early thinning was carried out shortly after the 4th leaf dropped below the compensation point and a late thinning 2 weeks later. Comparison was also made between the low-light-induced damage to the photosynthetic capacity of the 4th leaf in plants grown under two light regimes during the progressive increase in self-shading of the 4th leaf within the canopy. It was observed that both types of thinning arrested the low-light-induced damage to the photosynthetic system in shade leaves. The decline in photosynthetic capacity of the 4th leaf was stopped after both early and late thinning. The dry weight of the shoot system in the early and late thinned plants was not significantly different. It was double that of the control plants. The plants thinned early did not have higher shoot weight than the late thinned plants since there was a rapid shedding of flowers and fruits after early thinning. The 4th leaf in the early thinned plants showed a 30% increase in chlorophyll content and dry weight per unit leaf area. It is suggested that shedding of flowers and fruits, and increases in chlorophyll and dry weight per unit leaf area in the early thinned plants were caused by a change in the hormonal balance of the plants. The photosynthetic system in leaves of shade plants showed a greater resistance to damage by low light intensity than the photosynthetic system in leaves of plants grown at higher light intensities.  相似文献   

16.
The long-term response of leaf photosynthesis to rising CO2 concentrations [CO2] depends on biochemical and morphological feedbacks. Additionally, responses to elevated [CO2] might depend on the nutrient availability and the light environment, affecting the net carbon uptake of a forest stand. After 6 yr of exposure to free-air CO2 enrichment (EUROFACE) during two rotation cycles (with fertilization during the second cycle), profiles of light, leaf characteristics and photosynthetic parameters were measured in the closed canopy of a poplar (Populus) short-rotation coppice. Net photosynthetic rate (A(growth)) was 49% higher in poplars grown in elevated [CO2], independently of the canopy position. Jmax significantly increased (15%), whereas leaf carboxylation capacity (Vcmax), leaf nitrogen (N(a)) and chlorophyll (Chl(a)) were unaffected in elevated [CO2]. Leaf mass per unit area (LMA) increased in the upper canopy. Fertilization created more leaves in the top of the crown. These results suggest that the photosynthetic stimulation by elevated [CO2] in a closed-canopy poplar coppice might be sustained in the long term. The absence of any down-regulation, given a sufficient sink capacity and nutrient availability, provides more carbon for growth and storage in this bioenergy plantation.  相似文献   

17.
W Tu  Y Li  Y Zhang  L Zhang  H Liu  C Liu  C Yang 《Journal of plant physiology》2012,169(15):1463-1470
Berteroa incana (B. incana), a spring ephemeral species of Brassicaceae, possesses very high photosynthetic capacities at high irradiances. Exploring the mechanism of the high light use efficiency of B. incana under strong light conditions may help to explore mechanisms of plants' survival strategies. Therefore, the photosynthetic characteristics of B. incana grown under three different light intensities (field conditions (field): 200-1500μmolphotonsm(-2)s(-1); greenhouse high light (HL) conditons: 600μmolphotonsm(-2)s(-1); and greenhouse low light (LL) conditions: 100μmolphotonsm(-2)s(-1)) were investigated and compared with those of the model plant Arabidopsis thaliana (A. thaliana). Our results revealed that B. incana behaved differently in adjusting its photosynthetic activities under both HL and LL conditions compared with what A. thaliana did under the same conditions, suggesting that the potential of photosynthetic capacity of B. incana might be enhanced under strong light conditions. Under LL conditions, B. incana reached its maximum photosynthetic activity at a much higher light intensity than A. thaliana did, although their maximum photochemical efficiency of photosystem II (PSII) (F(v)/F(m)) was almost the same. When grown under HL conditions, B. incana showed much higher photosynthetic capacity than A. thaliana. A detailed analysis of the OJIP transient kinetics of B. incana under HL and LL conditions revealed that HL-grown B. incana possessed not only a high ability in regulating photosystem stoichiometry that ensured high linear electron transport, but also an enhanced availability of oxidized plastoquinone (PQ) pool which reduced non-photochemical quenching (NPQ), especially its slow components qT and qI, and increased the photochemical efficiency, which in turn, increased the electron transport. We suggest that the high ability in regulating photosystem stoichiometry and the high level of the availability of oxidized PQ pool in B. incana under strong light conditions play important roles in its ability to retain higher photosynthetic capacity under extreme environmental conditions.  相似文献   

18.
Abstract Seeds of Picea abies were germinated and grown in either darkness or constant light. The chlorophyll content and photosynthetic carbon dioxide uptake of developing seedlings of different ages was determined. Ten-day-old dark grown seedlings showed an instant ability for photosynthetic carbon dioxide uptake and also formed further chlorophyll most rapidly upon subsequent illumination. These activities progressively diminished when the dark growth period was extended. Light grown seedlings reached a maximum chlorophyll level after 15 days growth, and this preceded maximal photosynthetic development.  相似文献   

19.
Mixed forests comprising multiple tree species with contrasting crown architectures, leaf phenologies, and photosynthetic activity, tend to have high ecosystem productivity. We propose that in such forests, differentiation among coexisting species in their spatial and temporal strategies for light interception, results in complementary use of light. Spatial differentiation among coexisting tree species occurs as a result of adaptation of crown architecture and shoot/leaf morphology to the spatially variable light conditions of the canopy, sub-canopy, and understory. Temporal differentiation occurs as a result of variation in leaf phenology and photosynthetic activity. The arrangement of leaves in both space and time is an important aspect of plant strategies for light interception and determines photosynthetic carbon gain of the plant canopy. For example, at the shoot level, morphological and phenological differentiation between long and short shoots reflects their respective shoot functions, indicating that spatial and temporal strategies for light interception are linked. Complementary use of light is a consequence of the spatiotemporal differentiation in light interception among coexisting species. Because coexisting species may show differentiation in strategies for resource acquisition (functional diversification) or convergence with respect to some limiting resource (functional convergence), the relative importance of various crown functions and their contribution to growth and survival of individuals need to be evaluated quantitatively and compared among coexisting species.  相似文献   

20.
Chen Y  Xu DQ 《The New phytologist》2006,169(4):789-798
Plants often regulate the amount and size of light-harvesting antenna (LHCII) to maximize photosynthesis at low light and avoid photodamage at high light. Gas exchange, 77 K chlorophyll fluorescence, photosystem II (PSII) electron transport as well as LHCII protein were measured in leaves irradiated at different light intensities. After irradiance transition from saturating to limiting one leaf photosynthetic rate in some species such as soybean and rice declined first to a low level, then increased slowly to a stable value (V pattern), while in other species such as wheat and pumpkin it dropped immediately to a stable value (L pattern). Saturating pre-irradiation led to significant declines of both 77 K fluorescence parameter F685/F735 and light-limited PSII electron transport rate in soybean but not in wheat leaves, indicating that some LHCIIs dissociate from PSII in soybean but not in wheat leaves. The L pattern of LHCII-decreased rice mutant and the V pattern of its wild type demonstrate that the V pattern is linked to dissociation/reassociation of some LHCIIs from/to PSII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号