共查询到20条相似文献,搜索用时 15 毫秒
1.
M Z Ilic C J Handley H C Robinson M T Mok 《Archives of biochemistry and biophysics》1992,294(1):115-122
Characterization of aggrecan core protein peptides appearing in the medium of adult articular cartilage maintained in tissue culture showed that eight major peptides could be detected. The two largest peptides had the same N-terminal sequence as bovine aggrecan core protein and probably represent partly degraded aggrecan lost to the medium in the form of the proteoglycan aggregate. The three next smallest peptides were all shown to have another N-terminal sequence which corresponded to a sequence in the interglobular domain starting at alanine residue 393 of the human aggrecan core protein (K. Doege et al., 1991, J. Biol. Chem. 266, 894-902). Two other peptides were isolated and shown to have two different N-terminal amino sequences corresponding to sequences in the chondroitin sulfate attachment domain 2 of the core protein starting at alanine residue 1839 and leucine residue 1939 of human aggrecan. This suggests that the catabolism of aggrecan by adult articular cartilage occurs by the proteolytic cleavage of the core protein of this proteoglycan at three separate sites. Examination of the amino acid sequences around each of these cleavage sites showed a similar pattern TEGE decreases ARGS, TAQE decreases AGEG, and VSQE decreases LGQR, suggesting that a single proteinase may be involved in the catabolism of aggrecan. Analysis of synovial fluids and serum of age-matched animals revealed the presence of aggrecan core protein peptides corresponding in size to those detected in vitro, thus indicating the cleavage observed in explant culture is the same as that which occurs in vivo. 相似文献
2.
3.
《Reproductive biology》2020,20(3):357-364
Methamidophos (MET) is a pesticide that has toxic properties, including effects on fertility. This study aimed to assess the joint action of treatment time and exposure to methamidophos on the male reproductive system. MET was orally administered to adult male Swiss mice at a dose of 0.004 mg.kg−1 for 15 and 50 consecutive days. The following parameters were evaluated: weight of reproductive organs, spermatogenesis, sperm and Sertoli cell count, daily sperm production and sperm transit time. Short-term exposure to methamidophos induced a decrease in epididymal weight. The frequency of stages V–VI of spermatogenesis increased and the frequency of stage IX decreased. In the epididymis, sperm transit time (caput/corpus) was reduced and the relative sperm number (cauda) increased. Long-term exposure induced an increase in the frequencies of stages I–IV and V-VI and decreased the stages VII-VIII and IX. The number of Sertoli cells with evident nucleoli was reduced in both exposures. These results confirm the reproductive toxicity of MET. 相似文献
4.
Hedlund H Hedbom E Heineg rd D Mengarelli-Widholm S Reinholt FP Svensson O 《The Journal of biological chemistry》1999,274(9):5777-5781
Aggrecan, the predominant large proteoglycan of cartilage, is a multidomain macromolecule with each domain contributing specific functional properties. One of the domains contains the majority of the keratan sulfate (KS) chain substituents and a protein segment with a proline-rich hexapeptide repeat sequence. The function of this domain is unknown but the primary structure suggests a potential for binding to collagen fibrils. We have examined binding of aggrecan fragments encompassing the KS-rich region in a solid-phase assay. A moderate affinity (apparent Kd = 1.1 microM) for isolated collagen II, as well as collagen I, was demonstrated. Enzymatic digestion of the KS chains did not alter the capacity of the peptide to bind to collagen, whereas cleavage of the protein core abolished the interaction. The distribution of the aggrecan KS-rich region in bovine tarsometatarsal joint cartilage was investigated using immunoelectron microscopy. Immunoreactivity was relatively low in the superficial zone and higher in the intermediate and deep zones of the uncalcified cartilage. Within the pericellular and territorial matrix compartments the epitopes representing the aggrecan KS-rich region were detected preferentially near or at collagen fibrils. Along the fibrils, epitope reactivity was non-randomly distributed, showing preference for the gap region within the D-period. Our data suggest that collagen fibrils interact with the KS-rich regions of several aggrecan monomers aligned within a proteoglycan aggregate. The fibril could therefore serve as a backbone in at least some of the aggrecan complexes. 相似文献
5.
The addition of proteinase inhibitors (1 mM phenylmethylsulfonyl fluoride, 10 mM N-ethylmaleimide, 0.25 mM benzamidine hydrochloride, 6.25 mM EDTA, 12.5 mM 6-aminohexanoic acid and 2 mM iodoacetic acid) to explant cultures of adult bovine articular cartilage inhibits proteoglycan synthesis as well as the loss of the macromolecule from the tissue. Those proteoglycans lost to the medium of explant cultures treated with proteinase inhibitors were either aggregates or monomers with functional hyaluronic acid-binding regions, whereas proteoglycans lost from metabolically active tissue also included a population of monomers that were unable to aggregate with hyaluronate. Analysis of the core protein from proteoglycans lost into the medium of inhibitor-treated cultures showed the same size distribution as the core proteins of proteoglycans present in the extracellular matrix of metabolically active cultures. The core proteins of proteoglycans appearing in the medium of metabolically active cultures showed that proteolytic cleavage of these macromolecules occurred as a result of their loss from the tissue. Explant cultures of articular cartilage maintained in medium with proteinase inhibitors were used to investigate the passive loss of proteoglycan from the tissue. The rate of passive loss of proteoglycan from the tissue was dependent on surface area, but no difference in the proportion of proteoglycan aggregate to monomer appearing in the medium was observed. Furthermore, proteoglycans were lost at the same rate from the articular and cut surfaces of cartilage. Proteoglycan aggregates and monomer were lost from articular cartilage over a period of time, which indicates that proteoglycans are free to move through the extracellular matrix of cartilage. The movement of proteoglycans out of the tissue was shown to be temperature dependent, but was different from the change of the viscosity of water with temperature, which indicates that the loss of proteoglycan was not solely due to diffusion. The activation energy for the loss of proteoglycans from articular cartilage was found to be similar to the binding energies for electrostatic and hydrogen bonds. 相似文献
6.
Although post-traumatic osteoarthritis accounts for a significant proportion of all osteoarthritis, the understanding of both biological and mechanical phenomena that lead to cartilage degeneration in the years to decades after trauma is still lacking. In this study, we evaluate how cartilage lubrication is altered after a sub-critical impact (i.e., an impact to the cartilage surface that produces surface cracking but not full thickness fissuring). Through utilizing a Stribeck-like framework, the elastoviscous transition, we evaluated changes to both the innate boundary lubricating ability of cartilage after impact and also the effectiveness of high viscosity lubricants to lower friction after impact. Increases in boundary friction coincided with changes in lubricin localization after impact. However, larger increases in friction coefficient were observed in mixed-mode lubrication which can be predicted by increases in surface roughness due to cartilage fissuring. The data here reveal distinct mechanisms of cartilage lubrication that can fail after traumatic impact and may explain a key mechanical phenomenon that predisposes cartilage to development of osteoarthritis after injury. 相似文献
7.
In the study of aggrecan fragmentation several methods to extract and purify aggrecan from cartilage and synovial fluid (SF) are used. This work compares and evaluates the effectiveness for purification of aggrecan of the most commonly used methods by the ratio of sulfated glycosaminoglycan (sGAG) to protein and by fragment analysis by Western blot. A novel method for purification of aggrecan fragments from SF by boiling (Boiled SF) is also presented.Of the sGAG extracted from cartilage by guanidinium, 66% was recovered by associative–dissociative cesium chloride density gradient centrifugation (A1D1–D3) with a 9 times higher ratio of sGAG to protein in the A1D1 fraction. Although less enriched in aggrecan, the Western blot aggrecan pattern of the guanidinium extracted sample resembled that of the combined patterns of the A1D1, A1D2 and A1D3 fractions.The recoveries of sGAG from SF purified by anion chromatography and Alcian blue precipitation were around 50%, while the recoveries were over 80% in the associative or dissociative density gradient fractions (A1 and D1) and Boiled SF. The purification compared to neat SF ranged from 9 times in boiled SF to 1800–1900 times in Alcian blue and D1 samples. To obtain reliable results when analyzing synovial fluid aggrecan fragments by Western blot, purification was necessary. The immuno-pattern of anion chromatography purified SF resembled the patterns of A1 and D1, while the pattern of Boiled SF resembled the D1 sample.This work suggests that aggrecan fragments extracted from cartilage by guanidinium need no further purification to be analyzed by Western blot, whereas aggrecan fragments in SF are best analyzed in the A1 and D1 fractions or in the Boiled SF sample. 相似文献
8.
J. J. Parkkinen T. P. Häkkinen S. Savolainen C. Wang R. Tammi U. M. Ågren M. J. Lammi J. Arokoski H. J. Helminen M. I. Tammi 《Histochemistry and cell biology》1996,105(3):187-194
The proportion of total tissue hyaluronan involved in interactions with aggrecan and link protein was estimated from extracts of canine knee articular cartilages using a biotinylated hyaluronan binding region-link protein complex (bHABC) of proteoglycan aggregate as a probe in an ELISA-like assay. Microscopic sections were stained with bHABC to reveal free hyaluronan in various sites and zones of the cartilages. Articular cartilage, cut into 20 m-thick sections, was extracted with 4 M guanidinium chloride (GuCl). Aliquots of the extract (after removing GuCl) were assayed for hyaluronan, before and after papain digestion. The GuCl extraction residues were analyzed after solubilization by papain. It was found that 47–51% of total hyaluronan remained in the GuCl extraction residue, in contrast to the 8–15% of total proteoglycans. Analysis of the extract revealed that 24–50% of its hyaluronan was directly detecable with the probe, while 50–76% became available only after protease digestion. The extracellular matrix in cartilage sections was stained with the bHABC probe only in the superficial zone and the periphery of the articular surfaces, both sites known to have a relatively low proteoglycan concentration. Trypsin pretreatment of the sections enhanced the staining of the intermediate and deep zones, presumably by removing the steric obstruction caused by the chondroitin sulfate binding region of aggrecans. Enhanced matrix staining in these zones was also obtained by a limited digestion with chondroitinase ABC. The results indicate that a part of cartilage hyaluronan is free from endogenous binding proteins, such as aggrecan and link protein, but that the chondroitin sulfate-rich region of aggrecan inhibits its probing in intact tissue sections. Therefore, hyaluronan staining was more intense in cartilage areas with lower aggrecan content. A large proportion of hyaluronan resists GuCl extraction, even from 20-m-thick tissue sections. 相似文献
9.
Highly sulfated glycosaminoglycans inhibit aggrecanase degradation of aggrecan by bovine articular cartilage explant cultures. 总被引:3,自引:0,他引:3
The catabolism of 35S-labeled aggrecan and loss of tissue glycosaminoglycans was investigated using bovine articular cartilage explant cultures maintained in medium containing 10(-6) M retinoic acid or 40 ng/ml recombinant human interleukin-1alpha (rHuIL-1alpha) and varying concentrations (1-1000 microg/ml) of sulfated glycosaminoglycans (heparin, heparan sulfate, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate) and calcium pentosan polysulfate (10 microg/ml). In addition, the effect of the sulfated glycosaminoglycans and calcium pentosan polysulfate on the degradation of aggrecan by soluble aggrecanase activity present in conditioned medium was investigated. The degradation of 35S-labeled aggrecan and reduction in tissue levels of aggrecan by articular cartilage explant cultures stimulated with retinoic acid or rHuIL-1alpha was inhibited by heparin and heparan sulfate in a dose-dependent manner and by calcium pentosan polysulfate. In contrast, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate did not inhibit the degradation of 35S-labeled aggrecan nor suppress the reduction in tissue levels of aggrecan by explant cultures of articular cartilage. Heparin, heparan sulfate and calcium pentosan polysulfate did not adversely affect chondrocyte metabolism as measured by lactate production, incorporation of [35S]-sulfate or [3H]-serine into macromolecules by articular cartilage explant cultures. Furthermore, heparin, heparan sulfate and calcium pentosan polysulfate inhibited the proteolytic degradation of aggrecan by soluble aggrecanase activity. These results suggest that highly sulfated glycosaminoglycans have the potential to influence aggrecan catabolism in articular cartilage and this effect occurs in part through direct inhibition of aggrecanase activity. 相似文献
10.
Mitani H Takahashi I Onodera K Bae JW Sato T Takahashi N Sasano Y Igarashi K Mitani H 《Histochemistry and cell biology》2006,126(3):371-380
A disintegrin and metalloproteinase with thrombospondin motif (adamalysin–thrombospondins, ADAMTS) degrades aggrecan, one of the major extracellular matrix (ECM) components in cartilage. Mandibular condylar cartilage differs from primary cartilage, such as articular and growth plate cartilage, in its metabolism of ECM, proliferation, and differentiation. Mandibular condylar cartilage acts as both articular and growth plate cartilage in the growing period, while it remains as articular cartilage after growth. We hypothesized that functional and ECM differences between condylar and primary cartilages give rise to differences in gene expression patterns and levels of aggrecan and ADAMTS-1, -4, and -5 during growth and aging. We employed in situ hybridization and semiquantitative RT-PCR to identify mRNA expression for these molecules in condylar cartilage and primary cartilages during growth and aging. All of the ADAMTSs presented characteristic, age-dependent expression patterns and levels among the cartilages tested in this study. ADAMTS-5 mainly contributed to ECM metabolism in growth plate and condylar cartilage during growth. ADAMTS-1 and ADAMTS-4 may be involved in ECM turn over in articular cartilage. The results of the present study reveal that ECM metabolism and expression of related proteolytic enzymes in primary and secondary cartilages may be differentially regulated during growth and aging. 相似文献
11.
We studied the structure and dynamics of porcine laryngeal aggrecan in solution using a range of noninvasive techniques: dynamic light scattering (DLS), small-angle neutron scattering (SANS), video particle tracking (VPT) microrheology, and diffusing wave spectroscopy (DWS). The data are analyzed within the framework of a combined static and dynamic scaling model, and evidence is found for reptation of the comb backbones with unentangled side-chain dynamics. Small-angle neutron scattering indicated standard polyelectrolyte scaling of the mesh size (xi) with concentration (c) in semidilute solutions for the whole aggrecan aggregate, xi = Ac(-0.47+/-0.04), with the prefactor (A) implying there is on average 60 nm between the aggrecan subunits along the backbone. VPT demonstrated large exponents for the power law dependence of the intrinsic viscosity (eta) on the polymer concentration in the semidilute concentration regime, eta approximately c(alpha); with alpha equal to 2.04 +/- 0.06 and 1.95 +/- 0.08 for the assembled and disassembled aggrecan aggregates, respectively. DWS at high frequencies (10(4)-10(5) Hz) gave evidence for internal Rouse modes of the aggrecan monomers, independent of the degree of self-assembly of the molecules. 相似文献
12.
Tadashi Yasuda Elena Tchetina Kunitaka Ohsawa Peter J Roughley William Wu Aisha Mousa Mirela Ionescu Isabelle Pidoux A Robin Poole 《Matrix biology》2006,25(7):419-429
The objective of this study was to determine whether a fragment(s) of type II collagen can induce cartilage degradation. Fragments generated by cyanogen bromide (CB) cleavage of purified bovine type II collagen were separated by HPLC. These fragments together with selected overlapping synthetic peptides were first analysed for their capacity to induce cleavage of type II collagen by collagenases in chondrocyte and explant cultures of healthy adult bovine articular cartilage. Collagen cleavage was measured by immunoassay and degradation of proteoglycan (mainly aggrecan) was determined by analysis of cleavage products of core protein by Western blotting. Gene expression of matrix metalloproteinases MMP-13 and MMP-1 was measured using Real-time PCR. Induction of denaturation of type II collagen in situ in cartilage matrix with exposure of the CB domain was identified with a polyclonal and monoclonal antibodies that only react with this domain in denatured but not native type II collagen. As well as the mixture of CB fragments and peptide CB12, a single synthetic peptide CB12-II (residues 195-218), but not synthetic peptide CB12-IV (residues 231-254), potently and consistently induced in explant cultures at 10 microM and 25 microM, in a time, cell and dose dependent manner, collagenase-induced cleavage of type II collagen accompanied by upregulation of MMP-13 expression but not MMP-1. In isolated chondrocyte cultures CB12-II induced very limited upregulation of MMP-13 as well as MMP-1 expression. Although this was accompanied by concomitant induction of cleavage of type II collagen by collagenases, this was not associated by aggrecan cleavage. Peptide CB12-IV, which had no effect on collagen cleavage, clearly induced aggrecanase specific cleavage of the core protein of this proteoglycan. Thus these events involving matrix molecule cleavage can importantly occur independently of each other, contrary to popular belief. Denaturation of type II collagen with exposure of the CB12-II domain was also shown to be much increased in osteoarthritic human cartilage compared to non-arthritic cartilage. These observations reveal that peptides of type II collagen, to which there is increased exposure in osteoarthritic cartilage, can when present in sufficient concentration induce cleavage of type II collagen (CB12-II) and aggrecan (CB12-IV) accompanied by increased expression of collagenases. Such increased concentrations of denatured collagen are present in adult and osteoarthritic cartilages and the exposure of chondrocytes to the sequences they encode, either in soluble or more likely insoluble form, may therefore play a role in the excessive resorption of matrix molecules that is seen in arthritis and development. 相似文献
13.
The enzymatic processes underlying the degradation of aggrecan in cartilage and the corresponding changes in the biomechanical properties of the tissue are an important part of the pathophysiology of osteoarthritis. Recent studies have demonstrated that the hexosamines glucosamine (GlcN) and mannosamine (ManN) can inhibit aggrecanase-mediated cleavage of aggrecan in IL-1-treated cartilage cultures. The term aggrecanase describes two or more members of the ADAMTS family of metalloproteinases whose glutamyl endopeptidase activity is known to be responsible for much of the aggrecan degradation seen in human arthritides. In this study we examined the effect of ManN and GlcN on aggrecanase-mediated degradation of aggrecan induced by IL-1alpha and the corresponding tissue mechanical properties in newborn bovine articular cartilage. After 6 days of culture in 10 ng/ml IL-1 plus ManN, mechanical testing of explants in confined compression demonstrated that ManN inhibited the IL-1alpha-induced degradation in tissue equilibrium modulus, dynamic stiffness, streaming potential, and hydraulic permeability, in a dose-dependent fashion, with peak inhibition ( approximately 75-100% inhibition) reached by a concentration of 1.35 mM. Aggrecan from explants cultured in IL-1 was found by Western analysis to be almost entirely processed down to the G1-NITEGE(373) end product. Addition of ManN or GlcN was found to produce 75-90% inhibition of this cleavage, but the proportion of aggrecan remaining in the tissue which was cleaved at aggrecanase sites in the chondroitin sulfate (CS)-rich region (Glu(1501) and Glu(1687)) was higher than with IL-1 alone. This result suggests that the preservation of mechanical properties by hexosamines in explants is primarily due to inhibition of cleavage at the Glu(373) site in the interglobular domain. While the precise mechanism by which hexosamines function in this system is unclear, the present analysis suggests that the mechanical properties examined may be predominantly a function of electrostatic repulsion due to the charged CS chains in the tightly packed repetitive sequences of the CS-1 region. 相似文献
14.
《Cryobiology》2020
High concentrations of cryoprotective agents (CPA) are required during articular cartilage cryopreservation but these CPAs can be toxic to chondrocytes. Reactive oxygen species have been linked to cell death due to oxidative stress. Addition of antioxidants has shown beneficial effects on chondrocyte survival and functions after cryopreservation. The objectives of this study were to investigate (1) oxidative stress experienced by chondrocytes and (2) the effect of antioxidants on cellular reactive oxygen species production during articular cartilage exposure to high concentrations of CPAs. Porcine cartilage dowels were exposed to a multi-CPA solution supplemented with either 0.1 mg/mL chondroitin sulfate or 2000 μM ascorbic acid, at 4 °C for 180 min (N = 7). Reactive oxygen species production was measured with 5 μM dihydroethidium, a fluorescent probe that targets reactive oxygen species. The cell viability was quantified with a dual cell membrane integrity stain containing 6.25 μM Syto 13 + 9 μM propidium iodide using confocal microscopy. Supplementation of CPA solutions with chondroitin sulfate or ascorbic acid resulted in significantly lower dihydroethidium counts (p < 0.01), and a lower decrease in the percentage of viable cells (p < 0.01) compared to the CPA-treated group without additives. These results indicated that reactive oxygen species production is induced when articular cartilage is exposed to high CPA concentrations, and correlated with the amount of dead cells. Both chondroitin sulfate and ascorbic acid treatments significantly reduced reactive oxygen species production and improved chondrocyte viability when articular cartilage was exposed to high concentrations of CPAs. 相似文献
15.
The objective of this study was to assess mechano-biological response of articular cartilage when subjected to a single impact stress. Mature bovine cartilage explants were impacted with peak stresses ranging from 10 to 60 MPa at a stress rate of 350 MPa/s. Water loss, matrix axial deformation, dynamic impact modulus (DIM), and cell viability were measured immediately after impaction. The water loss through the articular surface (AS) was small and ranged from 1% to 6% with increasing peak stress. The corresponding axial strains ranged from 2.5% to 25%, respectively, while the DIM was 455.9 +/- 111.9 MPa. Chondrocyte death started at the articular surface and increased in depth to a maximum of 6% (70 microns) of the cartilage thickness at the highest stress. We found that the volumetric (axial) strain was more than twice the amount of water loss at the highest peak stress. Furthermore, specimens impacted such that the interstitial water was forced through the deep zone (DZ) had less water loss, a higher DIM, and no cell death. These findings appear to be due to matrix compaction in the superficial region causing higher compressive strains to occur at the surface rather than in the deeper zones. 相似文献
16.
The sulphydryl containing anti-rheumatic drug D-penicillamine mildly inhibited proteoglycan synthesis in cartilage explant cultures by a mechanism not dependent upon H2O2 generation. More importantly, this drug alleviated the suppression of PG synthesis mediated by 10(-4) M H2O2 in a dose-dependent manner at concentrations of reduced drug similar to those plasma levels reported in vivo. The ability of D-penicillamine to reverse this effect was due solely to a reaction which resulted in scavenging of medium H2O2 and was not due to the "repair" of cellular lesions caused by prior exposure to H2O2. 相似文献
17.
《The Histochemical journal》1996,28(2):99-107
Summary The ability of Safranin O, added to fixation and decalcification solutions, to prevent the escape of glycosaminoglycans (GAGs)
from small cartilage tissue blocks during histological processing of cartilage has been studied. GAGs in the fixatives and
decalcifying solutions used and those remaining in the 1 mm3 cubes of cartilage were assayed biochemically. The quantity of GAGs remaining in the cartilage cubes were determined from
Safranin O-stained sectins using videomicroscopy or microspectrophotometry.
A quantity (10.6%) of GAGs were lost during a conventional 4% buffered formaldehyde fixation (48 h) and a subsequent decalcification
in 10% EDTA (12 days) at 4°C. Rougly one-quarter of the total GAG loss occurred during the 48 h fixation, and three-quarters
during the 12c days of decalcification. Inclusion of 4% formaldehyde in the decalcification fluid decreased the loss of GAGs
to 6.2%. The presence of 0.5% Safranin O in the fixative reduced this loss to 3.4%. When 0.5% Safranin O was included in the
fixative and 4% formaldehyde in the decalcification solution, Safranin O staining of the histological sections increased on
average by 13.5%. After fixation in the presence of 0.5% Safranin O, there was no difference in the staining intensities when
decalcification was carried out in the presence of either Safranin O or formaldehyde, or both. It took 24 h for Safranin O
to penetrate into the deep zone of articular cartilage, warranting a fixation period of at least this long. In conclusion,
the addition of Safranin O to the fixative and either Safranin O or formaldehyde in the following decalcification fluid, markedly
reduces the loss of GAGs from small articular cartilage explants during histological processing. However, for immunohistochemical
studies, Safranin O cannot be included in the processing solutions, because it may interfere. 相似文献
18.
Zhou Z Liu J Song Z McClain CJ Kang YJ 《Experimental biology and medicine (Maywood, N.J.)》2008,233(5):540-548
Hepatocyte apoptosis has been documented in both clinical and experimental alcoholic liver disease. This study was undertaken to examine the effect of dietary zinc supplementation on hepatic apoptosis in mice subjected to a long-term ethanol exposure. Male adult 129S6 mice fed an ethanol-containing liquid diet for 6 months developed hepatitis, as indicated by neutrophil infiltration and elevation of hepatic keratinocyte chemoattractant (KC) and monocyte chemoattractant protein-1 (MCP-1) levels. Apoptotic cell death was detected in ethanol-exposed mice by a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and was confirmed by the increased activities of caspase-3 and -8. Zinc supplementation attenuated alcoholic hepatitis and reduced the number of TUNEL-positive cells in association with inhibition of caspase activities. Ethanol exposure caused oxidative stress, as indicated by reactive oxygen species accumulation, mitochondrial glutathione depletion, and decreased metallothionein levels in the liver, which were suppressed by zinc supplementation. The mRNA levels of tumor necrosis factor (TNF)-alpha, TNF-R1, FasL, Fas, Fas-associated factor-1, and caspase-3 in the liver were upregulated by ethanol exposure, which were attenuated by zinc supplementation. Zinc supplementation also prevented ethanol-elevated serum and hepatic TNF-alpha levels and TNF-R1 and Fas proteins in the liver. In conclusion, zinc supplementation prevented hepatocyte apoptosis in mice subjected to long-term ethanol exposure, and the action of zinc is likely through suppression of oxidative stress and death receptor-mediated pathways. 相似文献
19.
Jiaji Yue Shanzi Jin Shizhong Gu Rui Sun Qingwei Liang 《Journal of cellular physiology》2019,234(12):23190-23201
The significant cytopathological changes of osteoarthritis are chondrocyte hypertrophy, proteoglycan loss, extracellular matrix (ECM) calcification, and terminally, the replacement of cartilage by bone. Meanwhile, magnesium ion (Mg2+), as the second most abundant divalent cation in the human body, has been proved to inhibit the ECM calcification of hBMSCs (human bone marrow stromal cells), hVSMCs (Human vascular smooth muscle cells), and TDSCs (tendon-derived stem cells) in vitro studies. The ATDC5 cell line, which holds chondrocyte characteristics, was used in this study as an in vitro subject. We found that Mg2+ can efficiently suppress the ECM calcification and downregulate both hypertrophy and matrix metalloproteinase-related genes. Meanwhile, Mg2+ inhibits the formation of autophagy by inhibiting Erk phosphorylation signaling and lowers the expression of LC3, and eventually effectively reduces the formation of ECM calcification in vitro. In this study, we also used destabilization of the medial meniscus (DMM)-induced osteoarthritis (OA) animal model to further confirm the protective effect of Mg2+ on articular cartilage. Compared with the control group (saline-injected), continuous intra-articular magnesium chloride (MgCl2) injection can significantly alleviate the severity of cartilage calcification in OA animal model. Immunofluorescence staining also revealed that saline-injected DMM group had a higher positive rate of LC3 expression in cartilage chondrocytes, compared with MgCl2-injected DMM group. In general, Mg2+ can significantly downregulate the hypertrophic gene Runx2, MMP13, and Col10α1, upregulate the chondrogenic genes Sox9 and Col1α1, inhibit the Erk phosphorylation signaling, reduce the expression of autophagy protein LC3, and effectively inhibit the ECM calcification of ATDC5. In vivo study also proved that intra-articular injection of Mg2+ protected knee cartilage by inhibiting the autophagy formation. 相似文献
20.
The effect of age on the incorporation of newly synthesized aggrecan into the extracellular matrix of human articular cartilage was investigated. This property was measured in a pulse-chase explant culture system by determining the distribution of radiolabeled molecules ([(35)S]sulfate-labeled) between a nondissociating extract (phosphate-buffered saline), which extracts mainly nonaggregated macromolecules, and a dissociating extract (4 M GnHCl) containing mainly aggrecan that was complexed in situ with hyaluronan. The rate of incorporation of aggrecan into aggregates was much slower in mature cartilage than in tissue obtained from younger individuals. Furthermore, autoradiography showed that in mature cartilage, newly synthesized aggrecan is not transported from the pericellular environment within the first 18 h of chase culture, whereas in immature cartilage, it moves into the intercellular space during the same period, i.e. aggrecan is processed in the extracellular space very differently in young and adult articular cartilage. Experiments were also performed to show that the interaction of link protein with newly synthesized aggrecan depends on the maturity of the G(1) domain of aggrecan. This investigation has shown that the extracellular aggregation of aggrecan in adult human articular cartilage involves a number of intermediate structures. These have not been identified in the very young cartilage obtained from laboratory animals or in porcine and bovine articular cartilage obtained from the abattoir. 相似文献