首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UDP-N-acetylglucosamine:glycoprotein N-acetylglucosamine-1-phosphotransferase (GlcNAc-phosphotransferase) from the soil amoeba Acanthamoeba castellanii has been purified over 100,000-fold by means of wheat germ agglutinin-Sepharose affinity chromatography, DEAE-cellulose chromatography, concanavalin A-Sepharose affinity chromatography, orange A-agarose dye chromatography, and gel filtration on Superose 6. The most purified enzyme has an estimated specific activity of at least 5 mumol of GlcNAc-phosphate transferred/min/mg of protein using alpha-methylmannoside as acceptor. The molecular weight of the native enzyme is approximately 250,000, as determined by gel filtration and glycerol gradients in H2O and D2O. A protein with an apparent M(r) of 97,000 in small scale preparations and its putative proteolytic fragment of 43,000 in large scale preparations co-purifies with the enzyme activity. This protein is covalently modified with GlcNAc-[32P]phosphate when the enzyme preparation is incubated with [beta-32P]UDP-GlcNAc in the absence of an acceptor substrate. The labeling of the 97(43)-kDa protein requires active enzyme and is completely inhibited by the addition of the acceptor substrate alpha-methylmannoside. The GlcNAc-[32P]phosphate transferred to the protein is not bound to serine, threonine, tyrosine, or mannose residues. The 97(43)-kDa protein with covalently bound GlcNAc-P does not serve as a kinetically competent enzyme-substrate intermediate. However, preincubation of GlcNAc-phosphotransferase with UDP-GlcNAc does result in a decrease in the Vmax of the enzyme in subsequent assays. Taken together, these data are consistent with the 97(43)-kDa protein being a subunit of GlcNAc-phosphotransferase.  相似文献   

2.
A novel bovine spleen phosphoinositide-specific phospholipase C (PLC) has been identified with respect to immunoreactivity with four independent antibodies against each of the PLC isoenzymes, and purified to near homogeneity by sequential column chromatography. Spleen contains three of the isoenzymes: two different gamma-types [gamma 1 and gamma 2, originally named as PLC-gamma [Rhee, Suh, Ryu & Lee (1989) Science 244, 546-550] and PLC-IV [Emori, Homma, Sorimachi, Kawasaki, Nakanishi, Suzuki & Takenawa (1989) J. Biol. Chem. 264, 21885-21890] respectively] and delta-type of the enzyme, but PLC-gamma 1 is separated from the PLC-gamma 2 pool by the first DEAE-cellulose column chromatography. Subsequently, PLC-delta is dissociated on the third heparin-Sepharose column chromatography. The purified enzyme has a molecular mass of 145 kDa on SDS/polyacrylamide-gel electrophoresis and a specific activity of 12.8 mumol/min per mg with phosphatidylinositol 4,5-bisphosphate as substrate. This enzyme activity is dependent on Ca2+ for hydrolysis of all these phosphoinositides. None of the other phospholipids examined could be its substrate at any concentration of Ca2+. The optimal pH of the enzyme is slightly acidic (pH 5.0-6.5).  相似文献   

3.
alpha 1-Adrenergic receptors from a cultured smooth muscle cell line (DDT1 MF-2) have been solubilized with digitonin and purified to apparent homogeneity by sequential chromatography on a biospecific affinity support (Sepharose-A55453 (4-amino-6,7-dimethoxy-2-[4-[5-(4-amino-3-phenyl) pentanoyl]-1-piperazinyl]-quinazoline), an alpha 1 receptor-selective antagonist), a wheat germ agglutinin-agarose gel, and a high performance steric exclusion liquid chromatography column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of iodinated purified receptor preparations reveals a peptide with an apparent Mr = 80,000 that co-migrates with the peptide labeled by the specific alpha 1-adrenergic receptor photoaffinity probe 4-amino-6,7-dimethoxy-2-[4-[5-(4-azido-3-[125I]iodophenyl)pentanoyl] -1-piperazinyl] quinazoline. The specific activity (approximately 13,600 pmol of ligand binding/mg of protein) of purified receptor preparations is consistent with that expected for a pure peptide of Mr = 80,000 containing a single ligand binding site. Overall yields approximate 14% of initial crude particulate binding. The purified receptor preparations bind agonist and antagonist ligands with appropriate alpha 1-adrenergic specificity, stereoselectivity, and affinity. Peptide maps of the pure alpha 1-adrenergic receptor and the pure human platelet alpha 2-adrenergic receptor (Regan, J.W., Nakata, H., DeMarinis, R.M., Caron, M.G., and Lefkowitz, R.J. (1986) J. Biol. Chem. 261, 3894-3900) using several different proteases suggest that these two receptors show little if any structural homology.  相似文献   

4.
Human uterine cervix possesses a high 12-lipoxygenase activity; this enzyme has been isolated in a purified form from the squamous epithelial region of human cervix and its major properties have been investigated. Enzyme activity was present in all subcellular fractions obtained by centrifugation; the highest specific activity was associated with the microsome fraction (160,000 X g pellet). Purification of the enzyme was achieved by acetone precipitation, ion exchange chromatography on CM-cellulose and affinity chromatography on linoleyl-aminoethyl-Sepharose. The product from the incubation of sodium [1-14C]arachidonate with crude enzyme extracts co-chromatographed with authentic 12-hydroxyeicosatetraenoic acid, but the purified enzyme gave a product that behaved like the 12-hydroperoxy derivative. The enzyme had optimum activity at pH 6.5, a Km of 15 microM for arachidonic acid and was stimulated by ATP and Ca2+. Enzyme activity was inhibited by esculetin, nordihydroguaiaretic acid, eicosatetraynoic acid, detergents at concentrations greater than 0.1% (w/v) and preincubation of substrate with GSH and GSH peroxidase. The occurrence of a high 12-lipoxygenase activity is discussed in relation to the specific physiological functions of this tissue.  相似文献   

5.
Purification of the muscarinic acetylcholine receptor from porcine brain   总被引:6,自引:0,他引:6  
The muscarinic acetylcholine receptor of porcine cerebrum has been purified to apparent homogeneity by affinity chromatography, with conjugated 3-(2'-aminobenzhydryloxy)tropane (ABT) as described previously (Haga, K., and Haga, T. (1983) J. Biol. Chem. 258, 13575-13579). In a single step purification using 900 ml of digitonin/cholate-solubilized preparations and 300 ml of the ABT-agarose gel, we obtained, in a yield of 10-15%, more than 250 pmol of muscarinic receptors which bind [3H]N-methylscopolamine with a specific activity of 1,000-5,000 pmol/mg of protein (1,000-5,000-fold purification). The muscarinic receptors eluted from the ABT-agarose gel with 0.1 mM atropine were adsorbed to hydroxylapatite and then recovered as a concentrated solution. Muscarinic receptors were further purified by rechromatography with the same gel or by gel permeation high pressure liquid chromatography. The amino acid composition of the purified receptor was determined, and the specific activity of the purified preparation was estimated to be 13,100 pmol/mg of protein on the basis of amino acid composition. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified receptors with or without radioiodination revealed a single, major band with an apparent Mr of 70,000 either by silver staining or radioautogram. The major band corresponded to the band which specifically bound [3H]propylbenzylcholine mustard (irreversible muscarinic ligand). The purified receptor showed essentially the same specificity for muscarinic ligands as unpurified receptors.  相似文献   

6.
The plastidic class I and cytosolic class II aldolases of Euglena gracilis have been purified to apparent homogeneity. In autotrophically grown cells, up to 81% of the total activity is due to class I activity, whereas in heterotrophically grown cells, it is only 7%. The class I aldolase has been purified to a specific activity of 20 units/mg protein by anion-exchange chromatography, affinity chromatography, and gel filtration. The native enzyme (molecular mass 160 kD) consisted of four identical subunits of 40 kD. The class II aldolase was purified to a specific activity of 21 units/mg by (NH4)2SO4 fractionation, anion-exchange chromatography, chromatography on hydroxylapatite, and gel filtration. The native enzyme (molecular mass 80 kD) consisted of two identical subunits of 38 kD. The Km (fructose-1,6-bisphosphate) values were 12 [mu]M for the class I enzyme and 175 [mu]M for the class II enzyme. The class II aldolase was inhibited by 1 mM ethylenediaminetetraacetate (EDTA), 0.8 mM cysteine, 0.5 mM Zn2+, or 0.5 mM Cu2+. Na+, K+, Rb+, and NH4+ (but not Li+ or Cs+) enhanced the activity up to 7-fold. After inactivation by EDTA, the activity could be partially restored by Mn2+, Cu2+, or Co2+. A subclassification of class II aldolases is proposed based on (a) activation/inhibition by Cys and (b) activation or not by divalent ions.  相似文献   

7.
The (Ca2+-Mg2+)-ATPase from human erythrocyte membranes has been solubilized in Triton X-100 and purified on a calmodulin affinity chromatography column in the presence of phosphatidylserine, to limit the inactivation of the enzyme. The enzyme was purified at least 150 times when compared with the original ghosts and showed a specific activity of 3.8 mumol.mg-1.min-1. In sodium dodecyl sulfate-polyacrylamide gels, a single major band was visible at a position corresponding to a molecular weight of about 125,000; a minor band (11% of the total protein) was present at a position corresponding to Mr = 205,000. Upon incubation of the purified preparation with [32P]ATP, both bands were phosphorylated in proportion to their mass, suggesting that both were active forms of purified ATPase.  相似文献   

8.
We have studied putative nicotinic acetylcholine receptors in the optic lobe of the newborn chick, using 125I-labeled alpha-bungarotoxin, a specific blocker of acetylcholine receptors in the neuromuscular junction, and [3H]acetylcholine, a ligand which in the presence of atropine selectively labels binding sites of nicotinic character in rat brain cortex (Schwartz et al., 1982). [3H]Acetylcholine binds reversibly to a single class of high affinity binding sites (KD = 2.2 X 10(-8) M) which occur at a tissue concentration of 5.7 pmol/g. A large fraction (approximately 60%) of these binding sites is solubilized by Triton X-100, sodium cholate, or the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Solubilization increases the affinity for acetylcholine and several nicotinic drugs from 1.5- to 7-fold. The acetylcholine-binding macromolecule resembles the receptor for alpha-bungarotoxin present in the same tissue with respect to subcellular distribution, hydrodynamic properties, lectin binding, and agonist affinity rank order. It differs from the toxin receptor in affinity for nicotinic antagonists, sensitivity to thermal inactivation, and regional distribution. The solubilized [3H]acetylcholine binding activity is separated from the toxin receptor by incubation with agarose-linked acetylcholine, by affinity chromatography on immobilized Naja naja siamensis alpha-toxin, and by precipitation with a monoclonal antibody to chick optic lobe toxin receptor.  相似文献   

9.
Bromo[1-14C]acetyl-CoA has been prepared from CoASH and the N-hydroxysuccinimide ester of bromo[1-14C]acetic acid, and unlabeled bromoacetyl-CoA by reaction of CoASH with bromoacetyl bromide. The products were purified by high-pressure liquid chromatography. Purified bromoacetyl-CoA was characterized, and found to be a potent alkylating agent with a substantial stability in aqueous solution: it decomposed at 30 degrees C and pH 6.6 and 8.0 with halftimes of 3.3 and 2.5 h, respectively. The major breakdown products were CoASH and CoAS X CO X CH2 X SCoA. Bromo[1-14C]acetyl-CoA has been used to affinity label the acetyl-CoA binding site of 3-hydroxy-3-methylglutaryl-CoA synthase from ox liver. It was found to irreversibly inhibit the enzyme activity and bind covalently with a stoichiometry for complete inhibition of about 0.8 mol/mol enzyme dimer.  相似文献   

10.
A xyloglucan-specific endo-1,4-[beta]-glucanase was isolated from the apoplast fraction of auxin-treated pea (Pisum sativum) stems, in which both the rate of stem elongation and the amount of xyloglucan solubilized were high. The enzyme was purified to apparent homogeneity by sequential cation-exchange chromatographies, affinity chromatography, and gel filtration. The purified enzyme gave a single protein band on sodium dodecyi sulfate-polyacrylamide gel electrophoresis, and the molecular size was determined to be 77 kD by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 70 kD by gel filtration. The isoelectric point was about 8.1. The enzyme specifically cleaved the 1,4-[beta]-glucosyl linkages of the xyloglucan backbone to yield mainly nona- and heptasaccharides but did not hydrolyze carboxymethylcellulose, swollen cellulose, and (1->3, 1->4)-[beta]-glucan. By hydrolysis, the average molecular size of xyloglucan was decreased from 50 to 20 kD with new reducing chain ends in the lower molecular size fractions. This suggests that the enzyme has endo-1,4-[beta]-glucanase activity against xyloglucan. In conclusion, a xyloglucan-specific endo-1,4-[beta]-glucanase with an activity that differs from the activities of cellulase and xyloglucan endotransglycosylase has been isolated from elongating pea stems.  相似文献   

11.
A UDP-N-acetylgalactosamine:ganglioside GM3 beta-N-acetylgalactosaminyltransferase which catalyzes the conversion of ganglioside GM3 to GM2 has been purified over 6300-fold from a Triton X-100 extract of rat liver particulate fractions by hydrophobic chromatography and affinity chromatography on GM3-acid-Sepharose. The purified enzyme has two identical subunits of 64,000 daltons. The enzyme has a pH optimum of pH 6.7-6.9 and requires divalent cations such as Mn2+ and Ni2+. In studies on substrate specificity GM3 containing N-acetylneuraminic acid (GM3(NeuAc] and GM3 containing N-glycolylneuraminic acid were both good acceptors for the purified enzyme. The plots of the activity of transferase as a function of GM3(NeuAc) showed sigmoidal relationships. The oligosaccharide of GM3, sialyllactose, was also a good acceptor, which indicates that the preferred acceptor substrate has the possible structure NeuAc alpha 2- or NeuGc alpha 2-3 Gal beta 1-4Glc-OR.  相似文献   

12.
The alpha 1-adrenergic receptor has been solubilized in active form from rat hepatic membranes with the nonionic detergent, digitonin, and purified by affinity and gel filtration chromatography to homogeneity with a specific activity of 14,400 pmol/mg of protein. The affinity chromatographic steps of the purification procedure were achieved by the use of a newly synthesized analog (2-[4(2-succinoyl)piperazin-1-yl]-4-amino-6,7-dimethoxyquinazoline, CP-57,609) of the highly selective alpha 1-adrenergic antagonist, prazosin, immobilized via an amide linkage to agarose. The resulting purified receptor bound [3H]prazosin and a variety of adrenergic agents with the specificity, stereoselectivity, and affinities equivalent to those observed with membrane-bound and solubilized receptor preparations. The purified receptor.digitonin complex had a Stokes radius of 49 A and a sedimentation coefficient (s20w) of 7.1, as determined by AcA-34 gel filtration chromatography and sucrose gradient density centrifugation, respectively. Based on these hydrodynamic parameters, the calculated molecular weight of the receptor.digitonin complex was estimated at 147,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis following the final purification step revealed a single band of protein at 59,000 daltons from which [3H]prazosin binding activity could be recovered after renaturation of the receptor protein. These findings indicate that the protein purified from rat hepatic membranes is the hormone binding component of the alpha 1-adrenergic receptor and that the receptor molecule most likely contains more than one Mr = 59,000 subunit.  相似文献   

13.
Complete purification of the pseudorabies virus protein kinase   总被引:2,自引:0,他引:2  
The recently described pseudorabies virus protein kinase has been purified from infected hamster fibroblasts by a combination of anion-exchange, hydrophobic-interaction and affinity chromatography. The purification resulted in enzyme with a specific activity in excess of 1,000 nmol phosphate mg-1 min-1 in relatively high yield. Gel electrophoresis of the purified enzyme under denaturing conditions revealed a single stained band at a position of migration corresponding to a Mr 38,000. Incubation of the purified enzyme with [gamma-32P]ATP in the absence of added substrate resulted in incorporation of 32P into this protein band, consistent with the 38-kDa protein being a protein kinase with a capacity for autophosphorylation. The phosphorylated form of the protein has an isoelectric point of approximately 4.9. Gel permeation chromatography of the purified enzyme indicated a native Mr 70,000, suggesting that the protein kinase has a homodimeric structure.  相似文献   

14.
Martin MN  Saftner RA 《Plant physiology》1995,108(3):1241-1249
1-Aminocyclopropane-1-carboxylic acid (ACC) can be oxidized to ethylene or diverted to the conjugate 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) by an ACC N-malonyltransferase. We developed a facile assay for the ACC N-malonyltransferase that resolved [14C]MACC from [14C]ACC by thin-layer chromatography and detected and quantified them using a radioisotope-imaging system. Using this assay, we showed that ACC N-malonyltransferase activity has developmental and tissue-specific patterns of expression in tomato (Lycopersicon esculentum) fruit. In the pericarp, activity was elevated for several days postanthesis, subsequently declined to a basal level, increased 3-fold at the onset of ripening, and again declined in overripe fruit. In the seed, activity increased throughout embryogenesis, maturation, and desiccation. Treatment of fruit with ethylene increased activity 50- to 100-fold in the pericarp. ACC N-malonyltransferase was purified 22,000-fold to a specific activity of 22,000 nmol min-1 mg-1 protein using ammonium sulfate precipitation, DyeMatrex Green A affinity, anion-exchange, Cibacron Blue 3GA affinity, hydrophobic interaction, and molecular filtration chromatography. Native and sodium dodecyl sulfate-denatured enzyme showed molecular masses of 38 kD, indicating that the enzyme exists as a monomer. The enzyme exhibited a Km for ACC of 500 [mu]M, was not inhibited by D- or L-amino acids, and did not conjugate [alpha]-aminoisobutyric acid or L-amino acids.  相似文献   

15.
The enzyme which catalyzes the transfer of galactose from UDP-galactose to lactosylceramide (LacCer) was obtained in a 32,000-fold purified and apparently homogeneous form from rat liver by a procedure involving affinity chromatography on UDP-hexanolamine-Sepharose and LacCer-Sepharose. The enzyme is composed of two nonidentical subunits whose apparent molecular weights are 65,000 and 22,000. Methylation and hydrolysis of the product formed by incubation of the enzyme with UDP-galactose and [3H]LacCer yielded 2,3,6-tri-O-methyl-[3H]galactose, indicating that a galactose residue was introduced to position C-4 of the terminal galactose of the LacCer. The product also specifically reacted with monoclonal antibody directed to globotriaosylceramide (Gal alpha 1-4Gal beta 1-4Glc beta 1-1Cer). This indicates that the purified enzyme is exclusively alpha 1-4-galactosyltransferase. Studies on substrate specificity indicate that the purified enzyme is highly specific for the synthesis of GbOse3Cer and is clearly distinct from the enzymes responsible for the formation of iGbOse3Cer (Gal alpha 1-3Gal beta 1-4Glc-Cer) and blood group-B substance, which possess alpha 1-3 galactosidic linkages at the nonreducing termini. The enzyme is also distinct from the alpha 1-4-galactosyltransferase which catalyzes the formation of galabiaosylceramide (Gal alpha 1-4Gal beta 1-1Cer) and IV4Gal-nLacOse4 (P1 antigen). These studies represent the first report of the properties of a highly purified alpha-galactosyltransferase catalyzing the transfer of sugar residues to glycolipids.  相似文献   

16.
Solubilization and partial purification of GABAB receptor from bovine brain   总被引:1,自引:0,他引:1  
gamma-Aminobutyric acid (GABA)B receptor has been solubilized and partially purified by an affinity column chromatography. GABAB receptor was solubilized by 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) in the presence of asolectin. The solubilized GABAB receptor was adsorbed on baclofen-coupled epoxy-activated Sepharose 6B. The affinity matrix adsorbed 80% of the solubilized [3H]GABA binding activity to GABAB receptor, and approximately 75% of the adsorbed activity could be eluted with 1 M KC1. GABAB receptor binding in the fraction eluted from affinity column was displaced by GABA, baclofen and 2-hydroxy saclofen in a dose-dependent manner. Furthermore, the purified GABAB receptor showed approximately 2800-fold purification as compared with the original solubilized fraction and possessed the specific binding activity of 17.68 p mol/mg of protein. This binding consisted of a single binding site with a dissociation constant of 64.4 nM. The present results indicate that affinity column chromatographic procedures using baclofen-coupled epoxy-activated Sepharose 6B are suitable for the partial purification of GABAB receptor from cerebral tissues.  相似文献   

17.
Purification of A1 adenosine receptor from rat brain membranes   总被引:1,自引:0,他引:1  
The A1 adenosine receptor from rat brain membranes has been purified about 50,000-fold to apparent homogeneity by sequential use of affinity chromatography on immobilized xanthine amine congener-agarose, hydroxylapatite chromatography, and reaffinity chromatography. The overall yield starting from the membranes was approximately 4%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified preparation gave a broad single band of an apparent molecular weight of 34,000 either by silver staining or autoradiogram after radioiodination. The purified receptor bound approximately 24 nmol of 8-cyclopentyl-1,3-[3H]dipropylxanthine/mg of protein with a dissociation constant of 1.4 nM. This maximum specific binding value is consistent with the expected theoretical specific activity (29.4 nmol/mg) for a protein with a molecular mass of 34,000 daltons if it is assumed that there is one ligand-binding site/receptor molecule. Affinity-labeling experiments using [3H]p-phenylenediisothiocyanate-xanthine amine congener showed that the Mr = 34,000 protein band contained the ligand-binding sites. The purified receptor gave a typical A1 adenosine receptor pharmacological specificity similar to that of unpurified receptor preparations.  相似文献   

18.
Human placental sialidase: further purification and characterization   总被引:2,自引:0,他引:2  
An acid sialidase [EC 3.2.1.18] has been purified from human placenta by means of successive procedures including extraction, Con A-Sepharose adsorption, ammonium sulfate precipitation, activation, p-aminophenyl thio-beta-D-galactoside-CH-Sepharose (PATG-Sepharose) affinity chromatography and high-performance liquid chromatography on a Shim pack Diol 300 column. The purified enzyme liberated sialic acid residues from sialooligosaccharides, sialoglycoproteins, and gangliosides. In particular, gangliosides GM3, GD1a, and GD1b were hydrolyzed much faster than alpha (2-3) and alpha (2-6)sialyllactoses, and sialoglycoproteins by the enzyme. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified enzyme gave five protein bands with molecular weight of 78,000 (78K), 64,000 (64K), 46,000 (46K), 30,000 (30K), and 20,000 (20K). Rabbit antisera were raised against 78K and 46K proteins, and the two antibodies were specifically reactive with the respective component on immunoblot analysis. Both anti-78K protein and anti-46K protein antisera could precipitate sialidase activity. It is likely that the 78K protein and 46K protein are sub-components which are essential for sialidase activity.  相似文献   

19.
Periodate-oxidized tRNA(Phe) (tRNA(oxPhe)) behaves as a specific affinity label of tetrameric Escherichia coli phenylalanyl-tRNA synthetase (PheRS). Reaction of the alpha 2 beta 2 enzyme with tRNA(oxPhe) results in the loss of tRNAPhe aminoacylation activity with covalent attachment of 2 mol of tRNA dialdehyde/mol of enzyme, in agreement with the stoichiometry of tRNA binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the PheRS-[14C]tRNA(oxPhe) covalent complex indicates that the large (alpha, Mr 87K) subunit of the enzyme interacts with the 3'-adenosine of tRNA(oxPhe). The [14C]tRNA-labeled chymotryptic peptides of PheRS were purified by both gel filtration and reverse-phase high-performance liquid chromatography. The radioactivity was almost equally distributed among three peptides: Met-Lys[Ado]-Phe, Ala-Asp-Lys[Ado]-Leu, and Lys-Ile-Lys[Ado]-Ala. These sequences correspond to residues 1-3, 59-62, and 104-107, respectively, in the N-terminal region of the 795 amino acid sequence of the alpha subunit. It is noticeable that the labeled peptide Ala-Asp-Lys-Leu is adjacent to residues 63-66 (Arg-Val-Thr-Lys). The latter sequence was just predicted to resemble the proposed consensus tRNA CCA binding region Lys-Met-Ser-Lys-Ser, as deduced from previous affinity labeling studies on E. coli methionyl- and tyrosyl-tRNA synthetases [Hountondji, C., Dessen, P., & Blanquet, S. (1986) Biochimie 68, 1071-1078].  相似文献   

20.
1. Lipoprotein lipase was purified from pig myocardium by a two-step purification procedure involving (a) the formation of an enzyme-substrate complex and (b) affinity chromatography on Sepharose which contained covalently linked heparin. The purified enzyme gave in sodium dodecyl sulphate-polyacrylamide-gel electrophoresis one main band with an apparent molecular weight of 73 000. The enzyme, which was purified 70 000-fold, had a specific activity of 860 mumol of unesterified fatty acid liberated/h per mg of protein. 2. The purified enzyme hydrolysed [14C]triolein emulsions in the absence of added cofactors but its activity was increased fivefold by adding normal human serum. Of the low-density lipoprotein apoproteins only apolipoprotein CII could be substituted for serum in activating the enzyme. This lipase had maximum activity at 0.05-0.15 M-NaCl. Heparin increased the activity of the purified enzyme twofold at low concentrations, but high concentrations inhibited. The triglyceride lipase of pig myocardium thus resembles lipoprotein lipase purified from adipose tissue and from plasma, but is clearly different from pig hepatic triglyceride lipase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号