首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the study was to investigate the role of free radicals in the injury induced by a protocol of repeated pliometric (lengthening) contractions to the extensor digitorum longus (EDL) muscle in situ in rats. Previous data have indicated that prior treatment with the antioxidant polyethylene glycol-superoxide dismutase reduced the damage that was apparent at 3 days following this type of exercise. Three hours and 3 days following the protocol, the magnitude of the semiquinone-derived free radical signal observed by electron spin resonance spectroscopy (ESR) was not different for exercised and non-exercised skeletal muscles. A reduction in the protein thiol content of muscle was evident at 3 h, and was still apparent at 3 days. Three hours after the protocol, the total muscle glutathione content and the percentage in the oxidized form were unchanged, but by 3 days the percentage of muscle glutathione present in the oxidized form was elevated. The susceptibility of muscle to lipid peroxidation in vitro was reduced 3 days after the pliometric contractions. These data indicate that oxidation of protein thiols and glutathione may be involved in the secondary damage following pliometric contractions, but provide no evidence that the species involved were derived from mitochondrial semiquinone radicals.  相似文献   

2.
The deficit in force generation is a measure of the magnitude of damage to sarcomeres caused by lengthening contractions of either single fibers or whole muscles. In addition, permeabilized single fibers may suffer breakages. Our goal was to understand the interaction between breakages and force deficits in "young" and "old" permeabilized single fibers from control muscles of young and old rats and "conditioned" fibers from muscles that completed a 6-wk program of in vivo lengthening contractions. Following single lengthening contractions of old-control fibers compared with young-control fibers, the twofold greater force deficits at a 10% strain support the concept of an age-related increase in the susceptibility of fibers to mechanical damage. In addition, the much higher breakage rates for old fibers at all strains tested indicate an increase with aging in the number of fibers at risk of being severely injured during any given stretch. Following the 6-wk program of lengthening contractions, young-conditioned fibers and old-conditioned fibers were not different with respect to force deficit or the frequency of breakages. A potential mechanism for the increased resistance to stretch-induced damage of old-conditioned fibers is that, through intracellular damage and subsequent degeneration and regeneration, weaker sarcomeres were replaced by stronger sarcomeres. These data indicate that, despite the association of high fiber breakage rates and large force deficits with aging, the detrimental characteristics of old fibers were improved by a conditioning program that altered both sarcomeric characteristics as well as the overall structural integrity of the fibers.  相似文献   

3.
Van der Meulen, Jack H., Anne McArdle, Malcolm J. Jackson,and John A. Faulkner. Contraction-induced injury to the extensordigitorum longus muscles of rats: the role of vitamin E. J. Appl. Physiol. 83(3): 817-823, 1997.Three days after a protocol of 225 pliometric (lengthening)contractions was administered to in situ extensor digitorum longusmuscles of rats, the force deficit was 64 ± 7% and the percentageof damaged muscle fibers was 38 ± 5% of the control values. Wethen tested the hypothesis that at 3 h and 3 days after the protocol anelevation in the muscle vitamin E content would decrease the forcedeficit, the percentage of damaged muscle fibers, and the serumactivities of creatine kinase and pyruvate kinase. The 5-8 days ofintravenous injections of -tocopherol increased muscle vitamin Econtent threefold compared with vehicle (ethanol)-treated rats. Despite the difference in vitamin E content, the force deficit and number ofdamaged fibers were not different. After the contractionprotocol, the serum creatine kinase and pyruvate kinase activities ofthe vehicle-treated rats increased fourfold at 3 h and twofold at 3 days, whereas the vitamin E-treated rats showed no change. We concludethat vitamin E treatment did not ameliorate either the induction of theinjury or the more severe secondary injury at 3 days.Despite the absence of evidence for an antioxidant function, the lackof any increase in serum enzyme activities for vitamin E-treated ratsat 3 h and 3 days supported a role for vitamin E in the prevention ofenzyme loss after muscle damage.

  相似文献   

4.
We tested the hypothesis that lengthening contractions and subsequent muscle fiber degeneration and/or regeneration are required to induce exercise-associated protection from lengthening contraction-induced muscle injury. Extensor digitorum longus muscles in anesthetized mice were exposed in situ to repeated lengthening contractions, isometric contractions, or passive stretches. Three days after lengthening contractions, maximum isometric force production was decreased by 55%, and muscle cross sections contained a significant percentage (18%) of injured fibers. Neither isometric contractions nor passive stretches induced a deficit in maximum isometric force or a significant number of injured fibers at 3 days. Two weeks after an initial bout of lengthening contractions, a second identical bout produced a force deficit (19%) and a percentage of injured fibers (5%) that was smaller than those for the initial bout. Isometric contractions and passive stretches also provided protection from lengthening contraction-induced injury 2 wk later (force deficits = 35 and 36%, percentage of injured fibers = 12 and 10%, respectively), although the protection was less than that provided by lengthening contractions. These data indicate that lengthening contractions and fiber degeneration and/or regeneration are not required to induce protection from lengthening contraction-induced injury.  相似文献   

5.
Intramuscular injection of bupivacaine causes complete degeneration of fibers in extensor digitorum longus (EDL) muscles of rats, followed by complete regeneration within 60 days. Previous studies have shown that regenerated EDL muscles are protected from contraction-induced injury 60 days after bupivacaine injection. It is possible that these regenerated muscles have altered length-tension relations because of fiber remodeling. We tested the hypothesis that length-tension relations are different in bupivacaine-injected and noninjected control muscles. EDL and soleus muscles of the right hindlimb of deeply anesthetized rats were injected with bupivacaine and then allowed to recover for 7, 14, 21, or 60 days (7D, 14D, 21D, 60D), and isometric contractile properties were assessed. Muscles of the contralateral limb were not injected and served as control. EDL muscles recovered from bupivacaine injection more rapidly than soleus muscles, with mass restored to control levels at 21D, and isometric tetanic force (P(o)) restored to control at 60D. In contrast, mass and P(o) of injected soleus muscles was not restored to control even at 60D. In 7D EDL muscles, length-tension curves were shifted leftward compared with control, but in 21D and 60D EDL muscles length-tension curves were right shifted significantly (treatment x muscle length: P < 0.001). Although no clear shift in the position of the length-tension curve was observed in regenerating soleus muscles, force production was enhanced on the descending limb of the curve in 60D soleus muscles (treatment x relative muscle length: P < 0.01). The rightward shift in the length-tension curve of EDL muscles 60 days after bupivacaine injection is likely to contribute to the mechanism for their previously observed protection from contraction-induced injury.  相似文献   

6.
Skeletal muscles can be injured by their own contractions, especially when the muscle is stretched during a lengthening contraction. Exposing a muscle to a conditioning protocol of stretches without activation (passive stretches) before lengthening contractions reduces contraction-induced injury. Although passive stretching does not damage muscle fibers, neutrophils are elevated in the muscle after passive stretches. Our purpose was to investigate the relationship between neutrophil accumulation following passive stretches and the protection from subsequent contraction-induced injury provided by the passive stretches. Our hypothesis was that passive stretch conditioning would not provide protection from subsequent lengthening contraction-induced injury under circumstances when the increase in muscle neutrophils in response to the conditioning was prevented. Extensor digitorum longus muscles of mice were conditioned with passive stretches 14 days before exposure to a protocol of damaging lengthening contractions. Mice were either untreated or treated with an antibody (RB6-8C5) that reduced the level of circulating neutrophils by over 95% before administration of passive stretches. Neutrophil levels recovered in treated mice by the time lengthening contractions were performed. Lengthening contractions were also administered to muscles with no prior exposure to passive stretches. Maximum isometric force, number of damaged fibers, and muscle neutrophil concentration were measured 3 days after lengthening contractions. Compared with nonconditioned control muscles, the severity of contraction-induced injury was not reduced by prior passive stretch conditioning when mice were treated with RB6-8C5 before conditioning. We conclude that neutrophils contribute to adaptations that protect muscles from injury.  相似文献   

7.
Summary Intact and denervated extensor digitorum longus (EDL) muscles of 20-day-old inbred Lewis-Wistar rats were labelled with 3H-thymidine. Ninety minutes after the injection of the isotope 4.0% of the nuclei were labelled in the intact (i.e. innervated) and 9.6% in the muscles, denervated 3 days before administration of the isotope. The labelled EDL muscles were grafted into the bed of the previously removed EDL muscles of inbred animals and these isografts were studied 30 days later.In the EDL muscles, regenerated from innervated isografts only occasionally labelled endothelial cells were found whereas in the muscles regenerated from denervated isografts also parenchymal muscle nuclei were regularly labelled. The incidence of labelled nuclei in the regenerated EDL muscles was, however, about 20 times lower than in the donor EDL muscles. The present experiments provide a direct proof of utilization of donor satellite cell nuclei for regeneration in grafted muscle tissue. With respect to the low incidence of labelled nuclei in regenerated EDL muscles, other sources of cells apparently also contribute to the regeneration process.  相似文献   

8.
We describe the expression and distribution patterns of nestin, desmin and vimentin in intact and regenerating muscle spindles of the rat hind limb skeletal muscles. Regeneration was induced by intramuscular isotransplantation of extensor digitorum longus (EDL) or soleus muscles from 15-day-old rats into the EDL muscle of adult female inbred Lewis rats. The host muscles with grafts were excised after 7-, 16-, 21- and 29-day survival and immunohistochemically stained. Nestin expression in intact spindles in host muscles was restricted to Schwann cells of sensory and motor nerves. In transplanted muscles, however, nestin expression was also found in regenerating “spindle fibers”, 7 and 16 days after grafting. From the 21st day onwards, the regenerated spindle fibers were devoid of nestin immunoreactivity. Desmin was detected in spindle fibers at all developmental stages in regenerating as well as in intact spindles. Vimentin was expressed in cells of the outer and inner capsules of all muscle spindles and in newly formed myoblasts and myotubes of regenerating spindles 7 days after grafting. Our results show that the expression pattern of these intermediate filaments in regenerating spindle fibers corresponds to that found in regenerating extrafusal fibers, which supports our earlier suggestion that they resemble small-diameter extrafusal fibers.  相似文献   

9.
The age-related reduction in muscle force cannot be fully explained by the loss of muscle fiber mass or degeneration of myofibers. Our previous study showed that changes in lateral transmission of force could affect the total force transmitted to the tendon. The extracellular matrix (ECM) of skeletal muscle plays an important role in lateral transmission of force. The objective of this study was to define the effects of aging on lateral transmission of force in skeletal muscles, and explore possible underlying mechanisms. In vitro contractile tests were performed on extensor digitorum longus (EDL) muscle of young and old rats with series of tenotomy and myotomy. We concluded that lateral transmission of force was impaired in the old rats, and this deficit could be partly due to increased thickness of the ECM induced by aging.  相似文献   

10.
In this study we have shown that the skeletal muscle fibres from adult (older than 26 weeks) mdx mice have gross structural deformities. We have characterized the onset and age dependence of this feature in mdx mice. The three dimensional structure of these deformities has been visualized in isolated fibres and the orientation of these deformities was determined within the muscle by confocal laser scanning microscopy. We have also shown that the occurrence of morphologically abnormal fibres is greater in muscles with longer fibres (extensor digitorum longus (EDL) and soleus, 6-7.3 mm long), than in muscles with shorter fibres (flexor digitorum brevis (FDB), 0.3-0.4 mm long). A population of post-degenerative fibres, with both central and peripheral nuclei coexistent along the length of the fibre, has also been identified in the muscles studied. We showed that a mild protocol of lengthening (eccentric) contractions (the muscle was stretched by 12% during a tetanic contraction) caused a major reduction in the maximal tetanic force subsequently produced by mdx EDL muscle. In contrast, maximal tetanic force production in normal soleus, normal EDL and mdx soleus muscles was not altered by this protocol. We suggest that the deformed fast glycolytic fibres which are found in adult mdx EDL but not in adult mdx soleus muscles are the population of fibres damaged by the lengthening protocol.  相似文献   

11.
The purposes of this study were 1) to determine the extent to which endurance training reduces the functional deficit induced by lengthening contractions in the soleus (Sol) muscle and 2) to determine whether young and old rats training at a comparable relative exercise intensity would demonstrate a similar protective effect from lengthening-contraction-induced injury. Young (3-mo-old) and old (23-mo-old) male Fischer 344 rats were randomly assigned to either a control or exercise training group [young control (YC), old control (OC), young trained (YT), old trained (OT)]. Exercise training consisted of 10 wk of treadmill running (15% grade, 45 min/day, and 5 days/wk) such that by the end of training the young and old rats were exercising at 27 and 15 m/min, respectively. After training, contractile properties of the Sol muscle were measured in vitro at 26 degrees C. The percent decrease in maximal isometric specific force (P(o)) was determined after a series of 20 lengthening contractions (20% strain from optimal muscle length, 1 contraction every 5 s). After the lengthening-contraction protocol, Sol muscle P(o) was decreased by approximately 26% (19.6 vs. 14.6 N/cm(2)) and 28% (14.8 vs. 9.6 N/cm(2)) in the YC and OC rats, respectively. After exercise training, the reduction in P(o) was significantly (P < 0.05) attenuated to a similar degree ( approximately 13%) in both YT rats (18.7 vs. 16.2 N/cm(2)) and OT rats (15.8 vs. 13.7 N/cm(2)). It is concluded that exercise training attenuates the force deficit after repeated lengthening contractions to a comparable extent in young and old rats training at a similar exercise intensity.  相似文献   

12.
There is growing interest in hyperbaric oxygen (HBO) as an adjunctive treatment for muscle injuries. This experiment tested the hypothesis that periodic inhalation of HBO hastens the functional recovery and myofiber regeneration of skeletal muscle after myotoxic injury. Injection of the rat extensor digitorum longus (EDL) muscle with bupivacaine hydrochloride causes muscle degeneration. After injection, rats breathed air with or without periodic HBO [100% O(2) at either 2 or 3 atmospheres absolute (ATA)]. In vitro maximum isometric tetanic force of injured EDL muscles and regenerating myofiber size were unchanged between 2 ATA HBO-treated and untreated rats at 14 days postinjury but were approximately 11 and approximately 19% greater, respectively, in HBO-treated rats at 25 days postinjury. Maximum isometric tetanic force of injured muscles was approximately 27% greater, and regenerating myofibers were approximately 41% larger, in 3 ATA HBO-treated rats compared with untreated rats at 14 days postinjury. These findings demonstrate that periodic HBO inhalation increases maximum force-producing capacity and enhances myofiber growth in regenerating skeletal muscle after myotoxic injury with greater effect at 3 than at 2 ATA.  相似文献   

13.
Whole 3 g extensor digitorum longus (EDL) muscles of cats were autotransplanted. The EDL muscles were either transplanted without denervation prior to transplantation (normal transplants) or denervated 3 to 4 weeks prior to transplantation (pre-denervated transplants). A few peripheral skeletal muscle fibers survived transplantation but most fibers degenerated and then regenerated as the transplant became revascularized. Both normal and pre-denervated muscles regenerated successfully and by 50 days after transplantation fibers which had reinnervated showed high and low myofibrillar ATPase activity. Compared to controls, the smaller mean fiber cross-sectional area of the transplants was due to the large number of small fibers, but some fibers in the transplant were larger than any fibers observed in the controls. Transplants regained 57 percent of the muscle mass of the controls. Contraction and half relaxation times of transplanted muscles were slower than controls, but peak isometric tetanus tension per cm2 of muscle was nearly normal. Fifty to 170 days after transplantation, muscles showed low oxidative capacity and fatigued rapidly.  相似文献   

14.
In the present study we measured, for the first time, the isometric specific force (SF, force normalized to cross sectional area) generated by single intact fibers from fast- (extensor digitorum longus, EDL) and slow-twitch (soleus) muscles from young adult (2–6), middle-aged (12–14) and old (20–24 month-old) mice. SF has also been measured in single intact flexor digitorum brevis fibers from young mice. Muscle fibers have been classified into fast- or slow-twitch based on the contraction kinetics. Maximum SF recorded in EDL and soleus fibers from young and middle-aged mice did not differ significantly. A significant age-dependent decline in maximum SF was recorded in EDL and soleus fibers from young or middle-aged to old mice. The SF was 377 ± 18, 417 ± 20 and 279 ± 18 kPa for EDL fibers from young, middle-aged and old mice, respectively and 397 ± 17, 405 ± 24 and 320 ± 33 kPa for soleus fibers from age-matched mice, respectively. The frequency needed to elicit maximum force in EDL and soleus fibers from middle-aged to old mice did not differ significantly. In conclusion, the specific force developed by both fast and slow-twitch single intact muscle fibers declines with aging and more significantly in the former. Received: 14 July 2000/Revised: 7 September 2000  相似文献   

15.
Beta(2)-adrenoceptor agonists such as fenoterol are anabolic in skeletal muscle, and because they promote hypertrophy and improve force-producing capacity, they have potential application for enhancing muscle repair after injury. No previous studies have measured the beta(2)-adrenoceptor population in regenerating skeletal muscle or determined whether fenoterol can improve functional recovery in regenerating muscle after myotoxic injury. In the present study, the extensor digitorum longus (EDL) muscle of the right hindlimb of deeply anesthetized rats was injected with bupivacaine hydrochloride, which caused complete degeneration of all muscle fibers. The EDL muscle of the left hindlimb served as the uninjured control. Rats received either fenoterol (1.4 mg x kg(-1) x day(-1)) or an equal volume of saline for 2, 7, 14, or 21 days. Radioligand binding assays identified a approximately 3.5-fold increase in beta(2)-adrenoceptor density in regenerating muscle at 2 days postinjury. Isometric contractile properties of rat EDL muscles were measured in vitro. At 14 and 21 days postinjury, maximum force production (P(o)) of injured muscles from fenoterol-treated rats was 19 and 18% greater than from saline-treated rats, respectively, indicating more rapid restoration of function after injury. The increase in P(o) in fenoterol-treated rats was due to increases in muscle mass, fiber cross-sectional area, and protein content. These findings suggest a physiological role for beta(2)-adrenoceptor-mediated mechanisms in muscle regeneration and show clearly that fenoterol hastens recovery after injury, indicating its potential therapeutic application.  相似文献   

16.
[Na]i, [K]i and wet weight of the extensor digitrum longus (EDL) and soleus (SOL) muscles of 9- and 52-week-old rats were measured for 7 days after sectioning of the sciatic nerve. The changes in wet weight of the EDL and SOL muscles of rats over 52 weeks and those of morbid state rats were also measured. There was no significant difference in wet weights between the EDL and SOL muscles in infant rats, but the EDL muscle became much heavier than the SOL muscle with aging. The decrease in rate of growth of wet weight of the EDL and SOL muscles caused by denervation, was greater in young rats than in mature rats. In addition, the rate of decrease was greater in the SOL muscles than in the EDL muscles in both young and mature rats. The [Na]i increased while [K]i was decreased by denervation, and the net Na+ increase and the net K+ loss were greater in young rats than in mature rats. The changing rate was more remarkable in the EDL muscles than in the SOL muscles throughout the aging process. During DOCA treatment over 4 weeks, the decrease of muscle wet weight was greater in the EDL muscles. The mechanisms which serve to maintain normal muscle wet weight in the SOL muscle after denervation or treatment with DOCA, were discussed.  相似文献   

17.
We demonstrated that the susceptibility of skeletal muscle to injury from lengthening contractions in the dystrophin-deficient mdx mouse is directly linked with the extent of fiber branching within the muscles and that both parameters increase as the mdx animal ages. We subjected isolated extensor digitorum longus muscles to a lengthening contraction protocol of 15% strain and measured the resulting drop in force production (force deficit). We also examined the morphology of individual muscle fibers. In mdx mice 1–2 mo of age, 17% of muscle fibers were branched, and the force deficit of 7% was not significantly different from that of age-matched littermate controls. In mdx mice 6–7 mo of age, 89% of muscle fibers were branched, and the force deficit of 58% was significantly higher than the 25% force deficit of age-matched littermate controls. These data demonstrated an association between the extent of branching and the greater vulnerability to contraction-induced injury in the older fast-twitch dystrophic muscle. Our findings demonstrate that fiber branching may play a role in the pathogenesis of muscular dystrophy in mdx mice, and this could affect the interpretation of previous studies involving lengthening contractions in this animal. skeletal muscle; mdx mouse; lengthening contraction; Duchenne muscular dystrophy  相似文献   

18.
The limited ability of damaged muscle to regenerate after gross injuries is a major clinical problem. To date, there is no effective therapeutic treatment for muscle injuries. In the present study, we have examined the ability of crude and fractionated human skeletal muscle extracts to promote myogenic cell proliferation and differentiation. It was found that the crude muscle extract could significantly stimulate BrdU incorporation in C2C12 myogenic cell line. In addition, the extract also promoted myogenic cell alignment and fusion. Using electrophoresis techniques, in conjunction with in vitro refolding technique, a protein with molecular weight of approximately 40 kDa was identified that could produce the same effects as the crude muscle exdtract. We also tested the ability of semipurified (30-50 kDa) muscle extract to promote muscle repair in adult rats. Surgical intervention was used to induce muscle damage in the tibialis anterior. The semipurified muscle extract (fraction H) was injected subcutaneously over the tibialis anterior for a period of 5 days. It was found that the damaged muscle fibers were replaced by newly regenerated muscle fibers. These newly regenerated fibers originated from the fusion of differentiated satellite cells as revealed by BrdU-labeling analysis. In contrast, the injury site of muscles treated with BSA control protein contained mainly fibroblasts.  相似文献   

19.
Skeletal muscle fatigue in vitro is temperature dependent   总被引:2,自引:0,他引:2  
Our purpose was to determine the effect of temperature on the fatigability of isolated soleus and extensor digitorum longus (EDL) muscles from rats during repeated isometric contractions. Muscles (70-90 mg) were studied at 20-40 degrees C in vitro. Fatigability was defined with respect to both the time and number of stimuli required to reach 50% of the force (P) developed at the onset of the fatigue test. Fatigue was studied during stimulation protocols of variable [force approximately 70% of maximum force (Po)] and constant frequency (28 Hz). Results for soleus and EDL muscles were qualitatively similar, but fatigue times were longer for soleus than for EDL muscles. During the variable-frequency protocol, development of approximately 70% of Po required an increase in stimulation frequency as temperature increased. During stimulation at these frequencies, fatigue time shortened as temperature increased. For both fatigue protocols, the relationship between temperature and the number of stimuli required to reach fatigue followed a bell-shaped curve, with maximum values at 25-30 degrees C. The temperature optimum for maximizing the number of isometric contractions to reach fatigue reflects direct effects of temperature on muscle function.  相似文献   

20.
Our aim was to study how mouse skeletal muscle membranes are altered by eccentric and isometric contractions. A fluorescent dialkyl carbocyanine dye (DiOC18(3)) was used to label muscle membranes, and the membranes accessible to the dye were observed by confocal laser scanning microscopy. Experiments were done on normal mouse soleus muscles and soleus muscles injured by 20 eccentric or 20 isometric contractions. Longitudinal optical sections of control muscle fibers revealed DiOC18(3) staining of the plasmalemma and regularly spaced transverse bands corresponding in location to the T-tubular system. Transverse optical sections showed an extensive reticular network with the DiOC18(3) staining. Injured muscle fibers showed distinctively different staining patterns in both longitudinal and transverse optical sections. Longitudinal optical sections of the injured fibers revealed staining in a longitudinally-oriented pattern. No correlations were found between the abnormal DiOC18(3) staining and the reductions in maximal isometric tetanic force or release of lactate dehydrogenase (P0.32). Additionally, no difference in the extent of abnormal staining was found between muscles performing eccentric contractions and those performing the less damaging isometric contractions. However, many fibers in muscles injured by eccentric contractions showed swollen regions with marked loss of membrane integrity and an elevated free cytosolic calcium concentration as observed in Fluo-3 images. In conclusion, a loss of cell membrane integrity results from contractile activity, enabling DiOC18(3) staining of internal membranes. The resulting staining pattern is striking and fibers with damaged cell membranes are easily distinguished from uninjured ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号