首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S. typhimurium become resistant to killing by hydrogen peroxide and other oxidants when pretreated with nonlethal levels of hydrogen peroxide. During adaptation to hydrogen peroxide, 30 proteins are induced. Nine are constitutively overexpressed in dominant hydrogen peroxide-resistant oxyR mutants. Mutant oxyR1 is resistant to a variety of oxidizing agents and overexpresses at least five enzyme activities involved in defenses against oxidative damage. Deletions of oxyR are recessive and uninducible by hydrogen peroxide for the nine proteins overexpressed in oxyR1, demonstrating that oxyR is a positive regulatory element. The oxyR1 mutant is also more resistant than the wild-type parent to killing by heat, and it constitutively overexpresses three heat-shock proteins. The oxyR regulatory network is a previously uncharacterized global regulatory system in enteric bacteria.  相似文献   

2.
Dichlorobenzidine can be peroxidatively activated in Salmonella typhimurium Ames tester strains. Mutagenicity is observed when an S. typhimurium strain which is sensitive to frame-shift mutagens is incubated with dichlorobenzidine and hydrogen peroxide. In this paper, we show that the bacterial enzyme, hydroperoxidase I, is responsible for much of this activation. We constructed isogenic tester strains which lack hydroperoxidase I or II, due to Tn10 insertions in the structural genes encoding these proteins. Hydrogen peroxide-dependent mutagenicity of dichlorobenzidine was measured in each strain. A tester strain lacking hydroperoxidase I activity was much less sensitive than was the parent strain. When hydroperoxidase I activity was restored in this strain, via a plasmid-borne copy of the gene encoding the Escherichia coli protein, sensitivity to peroxide-dependent dichlorobenzidine mutagenicity was enhanced.  相似文献   

3.
4.
The plant pathogen Ralstonia solanacearum, which causes bacterial wilt disease, is exposed to reactive oxygen species (ROS) during tomato infection and expresses diverse oxidative stress response (OSR) genes during midstage disease on tomato. The R. solanacearum genome predicts that the bacterium produces multiple and redundant ROS-scavenging enzymes but only one known oxidative stress response regulator, OxyR. An R. solanacearum oxyR mutant had no detectable catalase activity, did not grow in the presence of 250 μM hydrogen peroxide, and grew poorly in the oxidative environment of solid rich media. This phenotype was rescued by the addition of exogenous catalase, suggesting that oxyR is essential for the hydrogen peroxide stress response. Unexpectedly, the oxyR mutant strain grew better than the wild type in the presence of the superoxide generator paraquat. Gene expression studies indicated that katE, kaG, ahpC1, grxC, and oxyR itself were each differentially expressed in the oxyR mutant background and in response to hydrogen peroxide, suggesting that oxyR is necessary for hydrogen peroxide-inducible gene expression. Additional OSR genes were differentially regulated in response to hydrogen peroxide alone. The virulence of the oxyR mutant strain was significantly reduced in both tomato and tobacco host plants, demonstrating that R. solanacearum is exposed to inhibitory concentrations of ROS in planta and that OxyR-mediated responses to ROS during plant pathogenesis are important for R. solanacearum host adaptation and virulence.  相似文献   

5.
Studies on the mutagenic activity of ascorbic acid in vitro and in vivo   总被引:2,自引:0,他引:2  
In vitro data are presented to show that ascorbic acid does not have intrinsic mutagenicity towards strain TA100 of S. typhimurium if deionized water is used to prepare the incubation medium. The addition of Cu2+ ions to the bacterial medium that contains ascorbic acid, or the use of tap water and ascorbic acid alone, causes a mutagenic and cytotoxic response that is blocked by EDTA. Additional in vitro data demonstrate that hydrogen peroxide is mutagenic to S. typhimurium strain TA100 and it is suggested that ascorbic acid may be mutagenic and cytotoxic through the generation of hydrogen peroxide. In vivo studies using a sensitive intrahepatic host-mediated mutagenicity assay indicate that ascorbic acid is not genotoxic in guinea pigs even when the dietary intake of vitamin C is above the level required for tissue saturation (5000 mg/kg body weight/day).  相似文献   

6.
The lethal and mutagenic effects of hydrogen peroxide were studied in exponentially growing cultures of Salmonella typhimurium strain TA102. Exposure of the cultures to non-lethal levels of sodium sulfide significantly increased the lethality and mutagenicity of hydrogen peroxide. The catalase activity was decreased in cells exposed to sodium sulfide, but there were no changes in the cellular levels of superoxide dismutase, glutathione reductase, or NADPH-dependent alkyl hydroperoxide reductase. Hydrogen peroxide-induced mutagenesis and killing of S. typhimurium strain TA102 in the presence of sulfide may in part be explained by an inactivation of catalase by sulfide.  相似文献   

7.
Salmonella typhimurium TA4107/pSK1002 strain was used to measure the SOS response induced by peroxynitrite. The parent strain TA4107 (oxydelta1[oxydelta(oxyR argH)1]) is sensitive to oxidative stress and the plasmid of pSK1002 carries a fused gene umuC'-'lacZ, in which umu and lacZ genes are involved in the induction of mutagenesis and beta-galactosidase activity, respectively. Therefore, the level of SOS response was monitored via beta-galactosidase activity. A bolus addition of authentic peroxynitrite (0.3-0.6 mM) increased about eight times the enzyme activity. In N-morpholino sydnonimine (SIN-1), which produces peroxynitrite from superoxide and nitric oxide generated through hydrolysis, addition of over 1mM SIN-1 induced four-five-fold activity. The SIN-1-induced SOS response was scarcely influenced by superoxide dismutase (SOD), catalase or a combination of both, removing the possibility of induction by superoxide, hydrogen peroxide and hydroxyl radical. Two types of peroxynitrite scavengers, mannitol (type I) and glutathione (type II), decreased the response. Mannitol showed a constant inhibition (70%) at a concentration up to 20 mM, exhibiting kinetics that are zero-order in mannitol and first-order in peroxynitrite. On the other hand, glutathione sharply reduced the response dependent on concentration up to 2 mM (90%), indicating second-order kinetics, first-order in both glutathione and peroxynitrite. Dihydrorhodamine (DHR)123, which traps peroxynitrite in a molar ratio of 1:1, efficiently inhibited the SOS response. These effects suggest that peroxynitrite, generated gradually from SIN-1, penetrates through the cell membrane, damages the DNA and induces the SOS response. This strain can thus, be used in screening of antioxidants against peroxynitrite-induced DNA damage in cells.  相似文献   

8.
Natulan R (MIH, procarbazine) was tested for its ability to induce prophage lambda in Escherichia coli GY5027. E. coli Gy4015 served as indicator strain. A weak phage-inducing effect was observed at concentrations from 2 to 12 mg/plate in presence of S9 prepared from rats. This effect was found not to be due to the formation of hydrogen peroxide. It was confirmed that, even at the same high concentrations, no mutagenic effect can be detected with the Ames test in strains TA98 and TA100 of S. typhimurium. However, a toxic effect was observed in presence of S9 in S. typhimurium.  相似文献   

9.
Ginseng has been reported to exhibit antioxidant and antimutagenic activity. The present study was undertaken with a view to confirm whether the antioxidant activity of Ginseng is responsible for its antimutagenic action. The concentrated root extract of Panax ginseng (Ginseng extract I) and its lyophilized powder (Ginseng extract II) obtained from two different manufacturing houses, were tested against mutagenesis using the well-standardized Ames microsomal test system. The extracts exhibited antimutagenic effect against hydrogen peroxide induced mutagenesis in TA100 strain, and against mutagenesis produced by 4-nitroquinoline-N-oxide in both TA98 and TA100 strains of Salmonella typhimurium. Both the extracts failed to show any antimutagenic potential against tert-butyl hydroperoxide (an oxidative mutagen) in TA102 strain, a strain highly sensitive to active oxygen species. The extracts also indicated a weak antioxidant activity in a series of in vitro test systems viz., 1,1-diphenyl picryl hydrazyl (DPPH) assay, hydrogen peroxide scavenging and superoxide anion scavenging. The results indicate that the protective effects shown by ginseng extract(s) against 4-nitroquinoline-n-oxide and hydrogen peroxide induced mutagenesis in TA98 and TA100 could mainly be due to its property to initiate and promote DNA repair rather than free radical scavenging action.  相似文献   

10.
The ahp genes encoding the two proteins (F52a and C22) that make up an alkyl hydroperoxide reductase were mapped and cloned from Salmonella typhimurium and Escherichia coli. Two classes of oxidant-resistant ahp mutants which overexpress the two proteins were isolated. ahp-1 was isolated in a wild-type background and is dependent on oxyR, a positive regulator of defenses against oxidative stress. ahp-2 was isolated in an oxyR deletion background and is oxyR independent. Transposons linked to ahp-1 and ahp-2 or inserted in ahp mapped the genes to 13 min on the S. typhimurium chromosome, 59% linked to ent. Deletions of ahp obtained in both S. typhimurium and E. coli resulted in hypersensitivity to killing by cumene hydroperoxide (an alkyl hydroperoxide) and elimination of the proteins F52a and C22 from two-dimensional gels and immunoblots. ahp clones isolated from both S. typhimurium and E. coli complemented the cumene hydroperoxide sensitivity of the ahp deletion strains and restored expression of the F52a and C22 proteins. A cis-acting element required for oxyR-dependent, rpoH-independent heat shock induction of the F52a protein was present at the S. typhimurium but not the E. coli ahp locus.  相似文献   

11.
Escherichia coli has two O6-methylguanine DNA methyltransferases that repair alkylation damage in DNA and are encoded by the ada and ogt genes. The ada gene of E. coli also regulates the adaptive response to alkylation damage. The closely related species Salmonella typhimurium possesses methyltransferase activities but does not exhibit an adaptive response conferring detectable resistance to mutagenic methylating agents. We have previously cloned the ada-like gene of S. typhimurium (adaST) and constructed an adaST-deletion derivative of S. typhimurium TA1535. Unexpectedly, the sensitivity of the resulting strain to the mutagenic action of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was similar to that of the parent strain. In this study, we have cloned and sequenced the ogt-like gene of S. typhimurium (ogtST) and characterized ogtST-deletion derivatives of TA1535. The ogtST mutant was more sensitive than the parent strain to the mutagenicity of MNNG and other simple alkylating agents with longer alkyl groups (ethyl, propyl, and butyl). The adaST-ogtST double mutant had a level of hypersensitivity to these agents similar to that of the ogtST single mutant. The ogtST and the adaST-ogtST mutants also displayed a two to three times higher spontaneous mutation frequency than the parent strain and the adaST mutant. These results indicate that the OgtST protein, but not the AdaST protein, plays a major role in protecting S. typhimurium from the mutagenic action of endogenous as well as exogenous alkylating agents.  相似文献   

12.
N-(2,3-Epoxy-propyl)-phthalimide (EPP) was tested for genetic activity in the Salmonella/microsome mutagenicity test. Concentration-dependent mutagenicity was demonstrated in S. typhimurium strains TA1535, TA1537 and TA100 with and without rat S9. It was inactive in strain TA1538, and active without rat S9 in TA98 at the high dose. EPP induced 6-thioguanine-resistant mutants of Chinese hamster ovary cells in the absence of an exogenous activating system. EPP produced dose-dependent enhancement of SA7 virus transformation of primary hamster-embryo cells, and transformed secondary hamster-embryo cells in a non-dose-related fashion. At a dose of 5 g/kg p.o. or i.m., EPP was inactive in the host-mediated assay using C57Bl/6XC3H mice and S. typhimurium strain TA1535. Murine testicular DNA synthesis was not inhibited by oral administration of EPP at 1000 mg/kg.  相似文献   

13.
The OxyR regulon   总被引:1,自引:0,他引:1  
  相似文献   

14.
2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) is a potent mutagen and carcinogen present in heated foodstuffs. The covalent binding of MeIQx to calf thymus DNA and calf liver RNA with microsomal activation was demonstrated. A major metabolite which exerts a direct mutagenic effect on S. typhimurium TA98 was found by HPLC analysis after incubation of MeIQx with rat liver microsomal fraction. The metabolite was identified as 2-hydroxyamino-3,8-dimethylimidazo[4,5-f]quinoxaline (N-OH-MeIQx). Synthetic N-OH-MeIQx was found to bind non-enzymatically to DNA and RNA at neutral pH even at 0 degrees C. Addition of acetic anhydride increased the binding of N-OH-MeIQx to DNA 10 times. These results suggest that MeIQx is metabolized to N-OH-MeIQx by microsomal cytochrome P-450 and further activated to an acetylated form that binds efficiently to nucleic acids in rat liver. Preferential modification of polyguanylic acid suggests that guanine residues of DNA are mainly modified with MeIQx. Synthetic N-OH-MeIQx exerted direct mutagenic activity on S. typhimurium TA98 inducing 150,000 rev/micrograms. Pentachlorophenol (PCP) caused a dose-dependent inhibition of this mutagenic effect, but 2,6-dichloro-4-nitrophenol (DCNP) did not. Thus the acetyltransferase of S. typhimurium seems to be important for the high mutagenicity of MeIQx after its microsomal activation.  相似文献   

15.
The synthesis of manganese-superoxide dismutase in response to hydrogen peroxide and to paraquat was examined in strains of Escherichia coli with different mutations in the oxyR gene. Hydrogen peroxide treatment did not induce manganese-superoxide dismutase, but did induce the oxyR regulon. Paraquat induced this enzyme in a strain compromised in its ability to induce the defense response against oxidative stress (oxyR deletion) as well as in a strain that is constitutive and overexpresses the oxyR regulon. Catalase (HPI), but not manganese-superoxide dismutase, was over-expressed under anaerobic conditions in a strain harboring a constitutive oxyR mutation. The data clearly demonstrate that the induction of manganese-superoxide dismutase is independent of the oxyR-controlled regulon.  相似文献   

16.
17.
The nitro- and amino-substituted phenazines were synthesized and assayed for their mutagenicity in Salmonella typhimurium strains TA98 and TA98NR. Of 7 tested nitrophenazines, 4 were mutagenic in the absence of a microsomal metabolic activation system (S9 mix) and were more mutagenic in TA98 than in TA98NR. The order of mutagenicity of nitrophenazines in TA98 is 1.7- less than 2- less than 2.8- less than 2.7-substituted phenazine. Of 7 tested amino derivatives, 4 exhibited mutagenic activity with S9 mix in TA98. 1-Nitro-, 1-amino, 1.6-dinitro-, 1.9-dinitro-, 1.6-diamino- and 1.9-diamino-phenazine were not mutagenic. As regards the relationship between mutagenic potency and chemical structure of the phenazines, the results suggested that structural requirements favoring mutagenic activity were the presence of substituents at the 2 and/or 7 position. Furthermore, 2.7-disubstituted phenazines were extremely mutagenic, 2.7-dinitrophenazine and 2.7-diaminophenazine induced 36,450 and 12,110 rev./nmole, respectively. In the preliminary study, 2.7-diaminophenazine was identified by gas chromatography/mass spectrometry from the reaction mixture of m-phenylenediamine and hydrogen peroxide.  相似文献   

18.
Bacterial cells respond to the deleterious effects of reactive oxygen species by inducing the expression of antioxidant defence genes. Here we show that treatment with hydrogen peroxide leads to a transient decrease in DNA negative supercoiling. We also report that hydrogen peroxide activates topA P1 promoter expression. The peroxide-dependent topA P1 activation is independent of oxyR, but is mediated by Fis. This nucleoid-associated protein binds to the promoter region of topA. We also show that a fis deficient mutant strain is extremely sensitive to hydrogen peroxide. Our results suggest that topA activation by Fis is an important component of the Escherichia coli response to oxidative stress.  相似文献   

19.
Implication of hydrogen peroxide in the mutagenicity of coffee   总被引:1,自引:0,他引:1  
A cup of instant coffee (150 ml) of normal strength (15 mg/ml) was found to contain about 500 and 750 micrograms of hydrogen peroxide soon after its preparation at 37 degrees C and 80 degrees C, respectively, but the concentration of hydrogen peroxide in the coffee increased with time for up to 24 h after its preparation. Thus coffee contains a hydrogen peroxide generating system. As extracts of green coffee beans were found to have very low capacity to generate hydrogen peroxide, this generating system is produced by roasting coffee beans. Hydrogen peroxide itself was only weakly mutagenic to Salmonella typhimurium TA100, but in the presence of methylglyoxal, which is also present as a mutagenic component in coffee, hydrogen peroxide showed strong mutagenicity. Hydrogen peroxide and methylglyoxal seem to be responsible for most of the mutagenicity of instant coffee.  相似文献   

20.
2,4-Diaminotoluene (DAT) was reacted with hydrogen peroxide at room temperature for 2 days, and the resulting red precipitates were separated into 5 fractions on silica gel column chromatography. On the gas chromatographic (GC) study, the first fraction (Fr. 1), which is mutagenic (1425 and 1391 revertants/micrograms in the absence and presence of S9 respectively) in Salmonella typhimurium TA98, contained several peaks. Fr. 1 was further separated into 4 subfractions (Fr. 1-I-Fr. 1-IV) by silica gel column chromatography. The red crystals were separated from Fr. 1-III and the structure of the compound was determined to be 1,8-diamino-2,7-dimethylphenazine from physicochemical and chemical evidence. Further, o-nitro-p-toluidine, p-nitro-o-toluidine, 3,3'-diamino-4,4'-dimethylazobenzene and 3,3'-diamino-4,4'-dimethylazoxybenzene were identified with authentic and synthesized samples by gas chromatography/mass spectrometry. These compounds without nitrotoluidines were mutagenic, and phenazine, azo and azoxy compounds induced 49, 301 and 245 revertants/nmole in Salmonella typhimurium TA98 with 25 microliters S9 per plate, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号