首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The primary sex determination signal in Drosophila melanogaster, the ratio of X chromosomes to autosomes, sets the activity state of the switch gene, Sex-lethal ( Sxl), by regulating the establishment promoter, m-Sxl-Pe. We have identified and characterized the establishment promoter, v-Sxl-Pe, of the distantly related species Drosophila virilis. Like melanogaster, the virilis Sxl-Pe is organized into four sub-domains: the Sxl-Pe mRNA leader and exon E1 of Sxl protein, the core promoter, the sex-specific element and the augmentation element. The core promoter and sex-specific element of v-Sxl-Pe show considerable sequence similarity to m-Sxl-Pe and contain target sites for components of the X/A signaling system. While the augmentation element of v-Sxl-Pe also has sequence motifs that could function as target sites for the X/A signaling system, it shows little similarity to the melanogaster augmentation element. Functional studies reveal that v-Sxl-Pe drives sex-specific expression in D. melanogaster embryos and that the activity of the virilis promoter is controlled by known components of the melanogaster X/A counting system. Although v-Sxl-Pe responds appropriately to the melanogaster sex determination signal, it is less active than Sxl-Pe from melanogaster. Unexpectedly, the reduced activity is due to differences in the activity of the conserved core promoter, while the non-conserved augmentation element functions effectively. These findings suggest that low-affinity target sites for the X/A counting system are critical for the functioning of Sxl-Pe.  相似文献   

2.
In Drosophila melanogaster the doublesex (dsx) and fruitless (fru) regulatory genes act at the bottom of the somatic sex determination pathway. Both are regulated via alternative splicing by an upstream female-specific TRA/TRA-2 complex, recognizing a common cis element. dsx controls somatic sexual differentiation of non-neural as well as of neural tissues. fru, on the other hand, expresses male-specific functions only in neural system where it is required to built the neural circuits underlying proper courtship behaviour. In the mosquito Aedes aegypti sex determination is different from Drosophila. The key male determiner M, which is located on one of a pair of homomorphic sex chromosomes, controls sex-specific splicing of the mosquito dsx orthologue. In this study we report the genomic organization and expression of the fru homologue in Ae. aegypti (Aeafru). We found that it is sex-specifically spliced suggesting that it is also under the control of the sex determination pathway. Comparative analyses between the Aeafru and Anopheles gambiae fru (Angfru) genomic loci revealed partial conservation of exon organization and extensive divergence of intron lengths. We find that Aeadsx and Aeafru share novel cis splicing regulatory elements conserved in the alternatively spliced regions. We propose that in Aedes aegypti sex-specific splicing of dsx and fru is most likely under the control of splicing regulatory factors which are different from TRA and TRA-2 found in other dipteran insects and discuss the potential use of fru and dsx for developing new genetic strategies in vector control.  相似文献   

3.
Sex-determining cascades are supposed to have evolved in a retrograde manner from bottom to top. Wilkins 1995 hypothesis finds support from our comparative studies in Drosophila melanogaster and Musca domestica, two dipteran species that separated some 120 million years ago. The sex-determining cascades in these flies differ at the level of the primary sex-determining signal and their targets, Sxl in Drosophila and F in Musca. Here we present evidence that they converge at the level of the terminal regulator, doublesex (dsx), which conveys the selected sexual fate to the differentiation genes. The dsx homologue in Musca, Md-dsx, encodes male-specific (MdDSXM) and female-specific (MdDSXF) protein variants which correspond in structure to those in Drosophila. Sex-specific regulation of Md-dsx is controlled by the switch gene F via a splicing mechanism that is similar but in some relevant aspects different from that in Drosophila. MdDSXF expression can activate the vitellogenin genes in Drosophila and Musca males, and MdDSXM expression in Drosophila females can cause male-like pigmentation of posterior tergites, suggesting that these Musca dsx variants are conserved not only in structure but also in function. Furthermore, downregulation of Md-dsx activity in Musca by injecting dsRNA into embryos leads to intersexual differentiation of the gonads. These results strongly support a role of Md-dsx as the final regulatory gene in the sex-determining hierarchy of the housefly.Edited by D. Tautz  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
R-spondin1 (RSPO1) is a potential female-determining gene in human (Homo sapiens) and mouse (Mus musculus). Its differential expression in these mammals is correlated with signaling for sex determination. As a way of studying sex determination in fish we cloned and analyzed a RSPO1 gene in zebrafish (Danio rerio). Using real-time PCR, we observed that RSPO1 is expressed more strongly in ovaries than in testes, suggesting that RSPO1 may have a role in gonad differentiation. High RSPO1 expression was detected in some non-gonadal organs like muscle and kidneys. In situ hybridization results demonstrate that RSPO1 is expressed in premature germ cells, in oogonia and primary oocytes in ovaries and in spermatogonia and spermatocytes in testes. It is also expressed in gonad somatic cells during gonadal development: in granulosa cells and theca cells of early and late cortical-alveolar stage follicles in ovaries, and in Leydig cells in testes. This differential expression may indicate that RSPO1 has a role(s) in zebrafish gonad development and differentiation. By fusing zebrafish RSPO1 with a green fluorescent protein gene, we found that RSPO1 is located in the cytosol and Golgi apparatus but not the nucleus of fish epithelioma papulosum cyprinid (EPC) cells. These preliminary findings suggest some aspects of RSPO1 like differential expression linked to sex determination may be conserved in fish while other aspects like subcellular localization differ from the mammalian RSPO1.  相似文献   

12.
13.
14.
Asexual seed formation (apomixis) in Hieracium aurantiacum occurs by mitotic embryo sac formation without prior meiosis in ovules (apomeiosis), followed by fertilization-independent embryo and endosperm development. Sexual reproduction begins first in Hieracium ovules with megaspore mother cell (MMC) formation. Apomixis initiates with the enlargement of somatic cells, termed aposporous initial (AI) cells, near sexual cells. AI cells grow towards sexually programmed cells undergoing meiosis, which degrade as the dividing nuclei of AIs obscure and displace them. Following Agrobacterium-mediated transformation of an aneuploid Hieracium aurantiacum apomict, a somaclonal mutant designated “loss of apomeiosis 1” (loa1) was recovered, which had significantly lost the ability to form apomictic seed. Maternal apomictic progeny were rare and low levels of germinable seedlings were primarily derived from meiotically derived eggs. Cytological analysis revealed defects in AI formation and function in loa1. Somatic cells enlarged some distance away from sexual cells and unlike AI cells, these expanded away from sexual cells without nuclear division. Surprisingly, many accumulated callose in the walls, a marker associated with meiotically specified cells. These defective AI (DAI) cells only had partial sexual identity as they failed to express a marker reflecting entry to meiosis that was easily detected in MMCs and they ultimately degraded. DAI cell formation did not lead to a compensatory increase in functional sexual embryo sacs, as collapse of meiotic embryo sacs was prevalent in the aneuploid somaclonal mutant. Positional cues that are important for AI cell differentiation, growth and fate may have been disrupted in the loa1 mutant and this is discussed. The authors Takashi Okada, Andrew S. Catanach and Susan D. Johnson made equal contributions to the data.  相似文献   

15.
GTP cyclohydrolase I (GTPCH) is a key enzyme in the de novo synthesis of tetrahydrobiopterin. Previously, the Drosophila melanogaster GTPCH gene has been shown to be expressed from two different promoters (P1 and P2). In our study, the 5′-flanking DNA regions required for P1 and P2 promoter activities were characterized using transient expression assay. The DNA regions between −98 and +31, and between −73 and +35 are required for efficient P1 and P2 promoter activities, respectively. The regions between −98 and −56 and between −73 and −41 may contain critical elements required for the expression of GTPCH in Drosophila. By aligning the nucleotide sequences in the P1 and P2 promoter regions of the Drosophila melanogaster and Drosophila virilis GTPCH genes, several conserved elements including palindromic sequences in the regions critical for P1 and P2 promoter activities were identified. Western blot analysis of transgenic flies transformed using P1 or P2 promoter-lacZ fusion plasmids further revealed that P1 promoter expression is restricted to the late pupae and adult developmental stages but that the P2 promoter driven expression of GTPCH is constitutive throughout fly development. In addition, X-gal staining of the embryos and imaginal discs of transgenic flies suggests that the P2 promoter is active from stage 13 of embryo and is generally active in most regions of the imaginal discs at the larval stages.  相似文献   

16.
The Drosophila melanogaster broad locus is essential for normal metamorphic development. Broad encodes three genetically distinct functions (rbp, br, and 2Bc) and a family of four zinc-finger DNA-binding proteins (Z1-Z4). The Z1, Z2, and Z3 protein isoforms are primarily associated with the rbp, br, and 2Bc genetic functions respectively. The Z4 protein isoform also provides some rbp genetic function, however an essential function for the Z4 isoform in metamorphosis has not been identified. To determine the degree of conservation of Z4 function between the tobacco hornworm Manduca sexta and Drosophila we generated transgenic Drosophila expressing the Manduca broad Z4 isoform and used this transgene to rescue rbp mutant lethality during Drosophila metamorphosis. We find that the Manduca Z4 protein has significant biological activity in Drosophila with respect to rescue of rbp-associated lethality. There was also some overlap in effects on cuticle gene expression between the Manduca Z4 and Drosophila Z1 isoforms that was not shared with the Drosophila Z4 isoform. Our findings show that Z4 function has been conserved over the 260-million-year period since the divergence of Diptera and Lepidoptera, and are consistent with the hypothesis that the Drosophila Z4 and Manduca Z4 isoforms have essential roles in metamorphosis.Edited by M. Akam  相似文献   

17.
18.
The conversion of pyruvoyl-H(4)-pterin to pyrimidodiazepine (PDA), which is an essential step in the biosynthesis of the red components of Drosophila eye pigments known as drosopterins, requires the products of the genes sepia and clot. While the product of sepia has been shown to correspond to the enzyme PDA-synthase, the role of clot remains unknown, although the clot(1) allele was one of the first eye-color mutants to be isolated in Drosophila melanogaster,and much genetic and biochemical data has become available since. Here we report the cloning of the clot gene, describe its molecular organization and characterize the sequence alterations associated with the alleles cl(1) and cl(2). The coding properties of the gene show that it encodes a protein related to the Glutaredoxin class of the Thioredoxin-like enzyme superfamily, conserved members of which are found in human, mouse and plants. We suggest that the Clot protein is an essential component of a glutathione redox system required for the final step in the biosynthetic pathway for drosopterins.  相似文献   

19.
Phylogenetic relations within the genus Gordonia were analyzed using partial gyrB and secA1 gene sequences of 23 type species in comparison with those of 16S rRNA gene. The gyrB and secA1 phylogenies showed agreement with that constructed using 16S rRNA gene sequences. The degrees of divergence of the gyrB and secA1 genes were approximately 3.4 and 1.7 times greater, respectively, than that of 16S rRNA gene. The gyrB gene showed more discriminatory power than either the secA1 or 16S rRNA gene, facilitating clear differentiation of any two Gordonia species using gyrB gene analysis. Our data indicate that gyrB and secA1 gene sequences are useful as markers for phylogenetic study and identification at the species level of the genus Gordonia.  相似文献   

20.
The P transposable element invaded the Drosophila melanogaster genome in the middle of the twentieth century, probably from D. willistoni in the Caribbean or southeastern North America. P elements then spread rapidly and became ubiquitous worldwide in wild populations of D. melanogaster by 1980. To study the dynamics and long-term fate of transposable genetic elements, we examined the molecular profile of genomic P elements and the phenotype in the P-M system of the current North American natural populations collected in 2001-2003. We found that full-size P and KP elements were the two major size classes of P elements present in the genomes of all populations ("FP + KP predominance") and that the P-related phenotypes had largely not changed since the 1980s. Both FP + KP predominance and phenotypic stability were also seen in other populations from other continents. As North American populations did not show many KP elements in earlier samples, we hypothesize that KP elements have spread and multiplied in the last 20 years in North America. We suggest that this may be due to a transpositional advantage of KP elements, rather than to a role in P-element regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号