首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
问充质干细胞体外调控骨髓造血前体细胞向单核系分化   总被引:2,自引:0,他引:2  
研究间充质干细胞(MSC)能否在体外调控造血.体外分离培养人骨髓来源的MSC,RT-PCR检测其造血生长因子的表达,并以其为饲养层细胞,接种骨髓单个核细胞(MNC),观察生长情况,并通过形态学观察和流式细胞术分析,鉴定细胞来源和分化方向.结果显示,MSC构成性表达SCF、Flt3L和M-CSF,不表达G-CSF和GM-CSF,在骨髓MNC和MSC共培养体系中,大约2周左右可以看到大量的圆形细胞粘附在梭型MSC上生长,细胞胞体为圆形,胞浆较丰富,胞核为圆形、半月型或肾型,部分细胞呈典型的单核细胞形态,流式细胞术分析该类细胞表达CD14,不表达CD15、CD41、glycophorin A、CD5和CD19.表明不需要添加外源性造血生长因子,间充质干细胞能在体外调控骨髓造血前体细胞向单核系分化,其定向分化可能与MSC分泌造血生长因子及MSC与造血细胞间相互作用有关.  相似文献   

2.
The mechanisms by which multipotent mesenchymal stromal cells (MSCs) contribute to tissue repair following transplantation into host tissues remains poorly understood. Current concepts suggest that, in addition to differentiation into cells of the host tissues, MSCs also generate trophic factors that modulate host tissue microenvironment to aid in the repair process. In this communication, we assessed whether factors secreted by MSCs undergoing osteogenic differentiation induce expression of osteoblast markers in exogenous MSCs as well as their migration. Murine MSCs were cultured in osteogenic medium, and at different time points, medium conditioned by the cells was collected and assessed for its effects on differentiation and migration of exogenous MSCs. In addition, we determined whether MSCs infused into mice femurs expressed genes encoding for factors predicted to play a role in paracrine activities. The results showed that MSCs maintained in osteogenic medium, secreted factors at specific time points that induced alkaline phosphatase activity (ALP) in exogenous MSCs as well as their migration. MSCs infused into mice femurs and retrieved at different days expressed genes that encoded predicted factors that play a role in cell differentiation and migration. Neutralizing antibodies to bone morphogenetic protein-2 (BMP-2) led to the decrease in ALP activity by exogenous MSCs. These data demonstrated that, as MSCs differentiate toward osteogenic lineage, they secrete factors that induce recruitment and differentiation of endogenous progenitors. These data reveal mechanisms by which donor MSCs may contribute to the bone reparative process and provide a platform for designing approaches for stem cell therapies of musculoskeletal disorders.  相似文献   

3.
We investigated chondrogenesis of cell-mediated sox9 gene therapy as a new treatment regimen for cartilage regeneration. pIRES2-EGFP vector containing a full-length mouse sox9 cDNA was transfected into bone marrow-derived mesenchymal stem cells (MSCs) by lipofection and chondrogenic differentiation of these cells was evaluated. In vitro high density micromass culture of these sox9 transfected MSCs demonstrated that a matrix-rich micromass aggregate with EGFP expressing MSCs was positively stained by Alcian blue and type II collagen. Next, sox9 transfected MSCs were loaded into the diffusion chamber and transplanted into athymic mice to analyze in vivo chondrogenesis. A massive tissue formation in about 2mm diameter was visible in the chamber after 4 weeks transplantation. Histological examinations demonstrated that both Alcian blue and type II collagen were positively stained in the extracellular matrix of the mass while type X collagen was not stained. These results indicated that cell-mediated sox9 gene therapy could be a novel strategy for hyaline cartilage damage.  相似文献   

4.
The presence within bone marrow of a population of mesenchymal stem cells (MSCs) able to differentiate into a number of different mesenchymal tissues, including bone and cartilage, was first suggested by Friedenstein nearly 40 years ago. Since then MSCs have been demonstrated in a variety of fetal and adult tissues, including bone marrow, fetal blood and liver, cord blood, amniotic fluid and, in some circumstances, in adult peripheral blood. MSCs from all of these sources can be extensively expanded in vitro and when cultured under specific permissive conditions retain their ability to differentiate into multiple lineages including bone, cartilage, fat, muscle, nerve, glial and stromal cells. There has been great interest in these cells both because of their value as a model for studying the molecular basis of differentiation and because of their therapeutic potential for tissue repair and immune modulation. However, MSCs are a rare population in these tissues. Here we tried to identify cells with MSC-like potency in human placenta. We isolated adherent cells from trypsin-digested term placentas and examined these cells for morphology, surface markers, and differentiation potential and found that they expressed several stem cell markers. They also showed endothelial and neurogenic differentiation potentials under appropriate conditions. We suggest that placenta-derived cells have multilineage differentiation potential similar to MSCs in terms of morphology and cell-surface antigen expression. The placenta may prove to be a useful source of MSCs.  相似文献   

5.
Despite significant progress in our understanding of mesenchymal stem cell (MSC) biology during recent years, much of the information is based on experiments using in vitro culture-selected stromal progenitor cells. Therefore, the natural cellular identity of MSCs remains poorly defined. Numerous studies have reported that CD44 expression is one of the characteristics of MSCs in both humans and mice; however, we here have prospectively isolated bone marrow stromal cell subsets from both human and mouse bone marrow by flow cytometry and characterized them by gene expression analysis and function assays. Our data provide functional and molecular evidence suggesting that primary mesenchymal stem and progenitor cells of bone marrow reside in the CD44(-) cell fraction in both mice and humans. The finding that these CD44(-) cells acquire CD44 expression after in vitro culture provides an explanation for the previous misconceptions concerning CD44 expression on MSCs. In addition, the other previous reported MSC markers, including CD73, CD146, CD271, and CD106/VCAM1, are also differentially expressed on those two cell types. Our microarray data revealed a distinct gene expression profile of the freshly isolated CD44(-) cells and the cultured MSCs generated from these cells. Thus, we conclude that bone marrow MSCs physiologically lack expression of CD44, highlighting the natural phenotype of MSCs and opening new possibilities to prospectively isolate MSCs from the bone marrow.  相似文献   

6.
7.
目的建立小鼠骨片间充质干细胞(MSC)分离培养及扩增的方法。方法取小鼠胫骨和股骨,洗去骨髓后,用胶原酶I消化疏松骨密质,利用MSC具有迁徙和贴壁生长的能力进行分离。并对获取的细胞进行流式鉴定和诱导分化。结果培养2d小鼠骨片边缘爬出成纤维样细胞,呈克隆和鱼群样生长,并可以进行持续传代培养。流式鉴定结果显示这群细胞表达MSC标志Scall(92.7%),CD29(98.4%),CD90(91.6%),不表达造血细胞标志CD34(1.57%),CD45(3.99%),CD11b(0.63%),并可成功诱导分化成骨细胞和脂肪细胞。结论成功建立从小鼠骨片中获得MSC的方法,为实验研究提供可靠的细晌实源.  相似文献   

8.
The aim of this study was to analyze the changes that occur in the population of bone marrow mesenchymal stromal cells (MSCs) during the individual development of an organism. For this purpose, the basic characteristics of MSCs (the content of clonogenic cells, immunophenotype, and potencies to differentiate in vitro and in vivo) in the prenatal, early postnatal, and late postnatal ontogeny of the rat were compared. It is shown that the cloning efficiency of bone marrow MSCs in 10-day-old and adult rats is comparable and hundreds of times smaller than that of bone cells of 20-day-old fetuses with a bone marrow rudiment. The activity of alkaline phosphatase, a marker of osteogenic cells, was found in the majority of colonies formed by MSCs of postnatal bone marrow but not by the fetal bone. By the CD90 expression and potencies for in vitro adipogenesis, the stromal cells from the fetal bone and bone marrow of 9- to 10-day-old rats were comparable with those of the mature bone marrow MSCs but differed from them by the small number of CD73-bearing cells and a weaker ability to osteogenesis in an inductive environment. The analysis of the fate of MSCs from the studied sources after their transplantation to adult rats showed that their ectopic transplantation as part of tissue fragments into the kidney results in the formation of bone tissues and hematopoietic stroma. In diffusion chambers with MSCs that were precultured in vitro, transplantation into the peritoneal cavity led to osteogenesis and chondrogenesis. However, no significant differences in the potencies of bone marrow MSCs for differentiation in vivo depending on the developmental stage have been found. Thus, during ontogeny, bone marrow MSCs enhance the expression of CD73 and the ability to osteogenesis in vitro, whereas the expression of CD90 and the potencies for adipogenesis in induction medium and differentiation in different directions in vivo do not change significantly.  相似文献   

9.
Fetal liver, during its hematopoietic activity, contains mesenchymal stromal cells (MSCs) generating its hematopoietic microenvironment. These cells are clonogenic and capable of multilineage differentiation; however, little is known about how their properties alter during embryogenesis. We compared the cloning efficiency of MSCs from rat fetal liver at 14, 16, and 20 days of development, as well as their capacity for osteo- and adipogenesis in vitro and chondrogenesis in vivo by ectopic transplantation of intact liver. The relative content of clonogenic MSCs in liver cell suspension was highest in 16-day fetuses and lowest in 20-day fetuses. Cells from 14-day fetuses exhibited high osteogenic and less apparent adipogenic and chondrogenic potential; cells from 20-day fetuses displayed weak adipogenic capacity and no osteo- or chondrogenic ability. These results show the correlation of MSC content and the cell differentiation potential with hematopoietic dynamics in developing rat liver. It may be thought that the changes we observed are related to the loss of hematopoietic activity and liver getting of definitive functions.  相似文献   

10.
Numerous papers have reported that mesenchymal stem cells (MSCs) can be isolated from various sources such as bone marrow, adipose tissue and others. Nonetheless it is an open question whether MSCs isolated from different sources represent a single cell lineage or if cells residing in different organs are separate members of a family of MSCs. Subendothelial tissue of the umbilical cord vein has been shown to be a promising source of MSCs. The aim of this study was to isolate and characterize cells derived from the subendothelial layer of umbilical cord veins as regards their clonogenicity and differentiation potential. The results from these experiments show that cells isolated from the umbilical cord vein displayed fibroblast-like morphology and grew into colonies. Immunophenotyping by flow cytometry revealed that the isolated cells were negative for the hematopoietic line markers HLA-DR and CD34 but were positive for CD29, CD90 and CD73. The isolated cells were also positive for survivin, Bcl-2, vimentin and endoglin, as confirmed by RT-PCR and immunofluorescence. These cells can be induced to differentiate into osteogenic and adipogenic cells, but a new finding is that these cells can be induced to differentiate into endothelial cells expressing CD31, vWF and KDR-2, and also form vessel-like structures in Matrigel. The differentiated cells stopped expressing survivin, thus showing a diminished proliferative potential. It can be assumed that the subendothelial layer of the umbilical cord vein contains a population of cells with the overall characteristics of MSCs, with the additional capability to transform into endothelial cells.  相似文献   

11.
Although ongoing clinical trials utilize systemic administration of bone-marrow mesenchymal stromal cells (BM-MSCs) in Crohn's disease (CD), nothing is known about the presence and the function of mesenchymal stromal cells (MSCs) in the normal human bowel. MSCs are bone marrow (BM) multipotent cells supporting hematopoiesis with the potential to differentiate into multiple skeletal phenotypes. A recently identified new marker, CD146, allowing to prospectively isolate MSCs from BM, renders also possible their identification in different tissues. In order to elucidate the presence and functional role of MSCs in human bowel we analyzed normal adult colon sections and isolated MSCs from them. In colon (C) sections, resident MSCs form a net enveloping crypts in lamina propria, coinciding with structural myofibroblasts or interstitial stromal cells. Nine sub-clonal CD146(+) MSC lines were derived and characterized from colon biopsies, in addition to MSC lines from five other human tissues. In spite of a phenotype qualitative identity between the BM- and C-MSC populations, they were discriminated and categorized. Similarities between C-MSC and BM-MSCs are represented by: Osteogenic differentiation, hematopoietic supporting activity, immune-modulation, and surface-antigen qualitative expression. The differences between these populations are: C-MSCs mean intensity expression is lower for CD13, CD29, and CD49c surface-antigens, proliferative rate faster, life-span shorter, chondrogenic differentiation rare, and adipogenic differentiation completely blocked. Briefly, BM-MSCs, deserve the rank of progenitors, whereas C-MSCs belong to the restricted precursor hierarchy. The presence and functional role of MSCs in human colon provide a rationale for BM-MSC replacement therapy in CD, where resident bowel MSCs might be exhausted or diverted from their physiological functions.  相似文献   

12.
Bone regeneration is a tightly regulated process that ensures proper repair and functionality after injury. The delicate balance between bone formation and resorption is governed by cytokines and signaling molecules released during the inflammatory response. Interleukin (IL)-17A, produced in the early phase of inflammation, influences the fate of osteoprogenitors. Due to their inherent capacity to differentiate into osteoblasts, mesenchymal stem/stromal cells (MSCs) contribute to bone healing and regeneration. This review presents an overview of IL-17A signaling and the leading cellular and molecular mechanisms by which it regulates the osteogenic differentiation of MSCs. The main findings demonstrating IL-17A’s influence on osteoblastogenesis are described. To this end, divergent information exists about the capacity of IL-17A to regulate MSCs’ osteogenic fate, depending on the tissue context and target cell type, along with contradictory findings in the same cell types. Therefore, we summarize the data showing both the pro-osteogenic and anti-osteogenic roles of IL-17, which may help in the understanding of IL-17A function in bone repair and regeneration.  相似文献   

13.
间充质干细胞体外调控骨髓造血前体细胞向单核系分化   总被引:3,自引:0,他引:3  
研究间充质干细胞(MSC)能否在体外调控造血。体外分离培养人骨髓来源的MSC,RT-PCR检测其造血生长因子的表达,并以其为饲养层细胞,接种骨髓单个核细胞(MNC),观察生长情况,并通过形态学观察和流式细胞术分析,鉴定细胞来源和分化方向。结果显示,MSC构成性表达SCF、Flt3L和M-CSF,不表达C-CSF和GM-CSF,在骨髓MNC和MSC共培养体系中,大约2周左右可以看到大量的圆形细胞粘附在梭型MSC上生长,细胞胞体为圆形,胞浆较丰富,胞核为圆形、半月型或肾型,部分细胞呈典型的单核细胞形态,流式细胞术分析该类细胞表达CDl4,不表达CDl5、CD41、glycophorin A、CD5和CDl9。表明不需要添加外源性造血生长因子,间充质干细胞能在体外调控骨髓造血前体细胞向单核系分化,其定向分化可能与MSC分泌造血生长因子及MSC与造血细胞间相互作用有关。  相似文献   

14.
Irradiation from γ-rays can cause severe damage to bone marrow and hematopoietic tissues. Presently, the most effective method available to treat severe hematopoietic injury is a bone marrow transplant (BMT). Allogeneic BMT is a difficult technique to perform due to the differences in human leukocyte antigen proteins between the donor and recipient, with acute graft-versus-host disease being a major complication of the technique. This limits the widespread applicability of allogeneic BMT. To develop a novel treatment for acute hematopoietic damage, we transplanted bone marrow derived mesenchymal stem cells (MSCs) into recipient mice and treated them with recombinant human bone morphogenetic protein 2 (rhBMP2) to investigate whether MSCs and rhBMP2 could additively promote the restoration of hematopoietic function. MSCs are vital components of the hematopoietic microenvironment that supports hematopoiesis, and bone morphogenic protein is a key factor in hematopoiesis. The 30-day survival rate as well as the numbers of nucleated cells, bone marrow colony-forming unit-granulocyte macrophages, spleen colony-forming units and peripheral blood cells were enumerated. The results showed that, after γ-irradiation and transplantation, MSCs and rhBMP2 additively promoted and improved hematopoietic restoration and function in vivo and in vitro. This additive effect of MSCs and rhBMP2 may one day provide a novel means of treating acute hematopoietic damage.  相似文献   

15.
We examined osteo-chondrogenic differentiation of a human chondrocytic cell line (USAC) by rhBMP-2 in vivo and in vitro. USAC was established from a transplanted tumor to athymic mouse derived from an osteogenic sarcoma of the mandible. USAC usually shows chondrocytic phenotypes in vivo and in vitro. rhBMP-2 up-regulated not only the mRNA expression of types II and X collagen, but also the mRNA expression of osteocalcin and Cbfa1 in USAC cells in vitro. In vivo experimental cartilaginous tissue formation was prominent in the chamber with rhBMP-2 when compared with the chamber without rhBMP-2. USAC cells implanted with rhBMP-2 often formed osteoid-like tissues surrounded by osteoblastic cells positive for type I collagen. rhBMP up-regulated Ihh, and the expression of Ihh was well correlated with osteo-chondrogenic cell differentiation. These results suggest that rhBMP-2 promotes chondrogenesis and also induces osteogenic differentiation of USAC cells in vivo and in vitro through up-regulation of Ihh.  相似文献   

16.
17.
目的 从脐带中分离培养脐带间充质干细胞(mesenchymal stem cell, MSC) 并进行鉴定,阐明其多向分化的潜在作用.方法 收集健康胎儿脐带,分离培养脐带中的间充质干细胞,以流式细胞仪对培养的间充质干细胞进行细胞表面标志检测,多种成分联合诱导其向脂肪、成骨方向分化,细胞化学染色检测诱导后的细胞变化.结果 脐带中分离培养的间充质干细胞不表达造血细胞系的标志CD34、CD45、HLA-DR,强表达CD105、CD44、CD90,在适当的诱导条件下可向脂肪及成骨方向分化.结论 脐带中存在具有多向分化潜能的间充质干细胞.  相似文献   

18.
Adult mesenchymal stem cells (MSCs) are under investigation as an alternative cell source for the engineering of cartilage tissue in three-dimensional (3D) scaffolds. However, little is known about the intracellular mechanisms involved in the chondrogenic differentiation of MSCs. This study investigated the signaling pathways evoked by TGF-β1 and IGF-1 that mediated chondrogenic differentiation in adult rat bone-marrow derived MSCs in (i) monolayer on plastic and (ii) a 3D collagen-GAG scaffold. The data demonstrated involvement of the p38 pathway, but not ERK1/2 or PI3K in TGF-β1-induced chondrogenic differentiation in monolayer. Similarly, when the MSCs were seeded onto a collagen-GAG scaffold and treated with TGF-β1, the chondrogenic differentiation was dependent upon p38. In contrast, IGF-1-induced chondrogenic differentiation in monolayer involved p38, ERK1/2, as well as PI3K. The phosphorylation of Akt occurred downstream of PI3K and phospho-Akt was found to accumulate in the nucleus of IGF-1-treated cells. When MSCs were seeded onto the collagen-GAG scaffold and exposed to IGF-1, PI3K was required for chondrogenesis. These findings highlight the respective and differential involvement of p38, ERK1/2 and PI3K in growth factor-induced chondrogenesis of MSCs and demonstrates that intracellular signaling pathways are similar when differentiation is stimulated in a 2D or 3D environment.  相似文献   

19.
Megakaryocytopoiesis and thrombocytopoiesis result from the interactions between hematopoietic progenitor cells, humoral factors, and marrow stromal cells derived from mesenchymal stem cells (MSCs) or MSCs directly. MSCs are self-renewing marrow cells that provide progenitors for osteoblasts, adipocytes, chondrocytes, myocytes, and marrow stromal cells. MSCs are isolated from bone marrow aspirates and are expanded in adherent cell culture using an optimized media preparation. Culture-expanded human MSCs (hMSCs) express a variety of hematopoietic cytokines and growth factors and maintain long-term culture-initiating cells in long-term marrow culture with CD34(+) hematopoietic progenitor cells. Two lines of evidence suggest that hMSCs function in megakaryocyte development. First, hMSCs express messenger RNA for thrombopoietin, a primary regulator for megakaryocytopoiesis and thrombocytopoiesis. Second, adherent hMSC colonies in primary culture are often associated with hematopoietic cell clusters containing CD41(+) megakaryocytes. The physical association between hMSCs and megakaryocytes in marrow was confirmed by experiments in which hMSCs were copurified by immunoselection using an anti-CD41 antibody. To determine whether hMSCs can support megakaryocyte and platelet formation in vitro, we established a coculture system of hMSCs and CD34(+) cells in serum-free media without exogenous cytokines. These cocultures produced clusters of hematopoietic cells atop adherent MSCs. After 7 days, CD41(+) megakaryocyte clusters and pro-platelet networks were observed with pro-platelets increasing in the next 2 weeks. CD41(+) platelets were found in culture medium and expressed CD62P after thrombin treatment. These results suggest that MSCs residing within the megakaryocytic microenvironment in bone marrow provide key signals to stimulate megakaryocyte and platelet production from CD34(+) hematopoietic cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号